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Statistical Analysis of Functional MRI Data
in the Wavelet Domain
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Abstract—The use of the wavelet transform is explored for
the detection of differences between brain functional magnetic
resonance images (fMRI’s) acquired under two different exper-
imental conditions. The method benefits from the fact that a
smooth and spatially localized signal can be represented by a
small set of localized wavelet coefficients, while the power of
white noise is uniformly spread throughout the wavelet space.
Hence, a statistical procedure is developed that uses the imposed
decomposition orthogonality to locate wavelet-space partitions
with large signal-to-noise ratio (SNR), and subsequently restricts
the testing for significant wavelet coefficients to these partitions.
This results in a higher SNR and a smaller number of sta-
tistical tests, yielding a lower detection threshold compared to
spatial-domain testing and, thus, a higher detection sensitivity
without increasing type I errors. The multiresolution approach of
the wavelet method is particularly suited to applications where
the signal bandwidth and/or the characteristics of an imaging
modality cannot be well specified. The proposed method was
applied to compare two different fMRI acquisition modalities.
Differences of the respective useful signal bandwidths could be
clearly demonstrated; the estimated signal, due to the smoothness
of the wavelet representation, yielded more compact regions of
neuroactivity than standard spatial-domain testing.

Index Terms—Functional magnetic resonance imaging, mul-
tiresolution analysis, statistical models, wavelet transform.

I. INTRODUCTION

OVER the past few years, there have been numerous re-
ports on the use of wavelets in medical imaging [1], [2].

One of the more traditional applications is data compression
of image sequences and/or image volumes [3]–[5]. Wavelets
have also been found to be useful for tomographic image
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reconstruction [6], [7], and in the design of new acquisition
schemes for magnetic resonance imaging (MRI) [8]–[11].
Wavelet representations are also well suited for a variety
of data processing tasks. For example, one of the earlier
papers presented a simple threshold-based denoising method
for MRI images [12], which was the precursor of Donoho’s
wavelet shrinkage method [13]. Perhaps most of the efforts
in this area have been directed toward applying wavelets to
digital mammography, for both image enhancement [14] and
the detection of microcalcifications [15]–[17]. In Section II, a
brief review of the basic concepts of the wavelet transform
is presented, with emphasis given to the selection of basis
functions, and to implementation issues regarding multiple
dimensions and discrete realizations.

The present application of wavelets to the analysis of
functional MRI (fMRI) data was inspired by our earlier work
with functional image data obtained by positron emission
tomography [18]. In functional imaging, the information of
clinical interest is usually the difference between images
of two different activation states of the brain controlled by
some experimental paradigm. Because the images have a poor
signal-to-noise ratio (SNR), arising from intrinsic biological
heterogeneity and scanner-induced noise, averaging over sev-
eral experimental trials (or subjects) is usually performed,
yielding a mean difference image and its associated sample
standard deviation (SD) image. The direct statistical analysis
of these data in the spatial domain is problematic because
of a poor SNR, the large number of pixels (i.e., test vari-
ables) that need to be investigated, and the often unknown
and strong spatial correlation among the pixels. In order to
mitigate some of these problems, statistical analysis in the
wavelet domain, as described in Section III, is proposed. The
motivation for this approach is derived from the fact that
wavelets are efficient for the representation of a wide variety of
signals. Consequently, if the signal to be detected is spatially
relatively localized, it can be represented by a small number
of strong local coefficients, while the power of white noise is
uniformly spread throughout the wavelet space. It then follows
that improved localized SNR conditions may arise in certain
wavelet-space partitions, which can be exploited by the use
of an orthogonal wavelet decomposition. Hence, our rationale
was to locate such favorable space partitions and restrict the
statistical testing for significant coefficients to these partitions.
The benefits expected from such a strategy are improved SNR
conditions, and a decrease of the detection threshold due to
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the reduced number of statistical tests, both contributing to a
higher detection sensitivity without increasing type I errors.

Functional Magnetic Resonance Imaging (fMRI)

Functional MRI is a fast-developing technique for studying
physiological processes in the brains of conscious human sub-
jects. It measures blood oxygenation-level dependent (BOLD)
signal changes caused by regional hemodynamic adjustments
in response to changes in neuronal activity [19]. The current
understanding is that an increase in local brain activity leads
to hyperoxemia (decreased level of deoxyhemoglobin), which
is due to an overcompensation of the local tissue perfusion
in response to the increased energy demand in the acti-
vated neurons [20]. However, the exact mechanisms of these
regulatory processes are not fully known. In particular, the
interpretation for BOLD signal decreases is not yet established.
Nonetheless, BOLD methods offer considerable advantages
over other functional imaging modalities, in that they can be
performed on widely available clinical scanners, do not require
exogenous contrast agents or exposure to ionizing radiation,
provide excellent spatial resolution, and can be registered with
anatomical images acquired on the same machine.

Although the first reports of imaging in humans based on
BOLD effects appeared in 1992 [21]–[23], important issues
regarding sensitivity, reproducibility, and the nature of arti-
facts are still unsettled. Neuronal activity changes induced by
various experimental stimuli typically result in signal intensity
changes of 1%–5% in 1.5-T scanners, which are close to the
scan-to-scan variability. While the SNR can often be improved
by stimulus repetition with subsequent scan averaging, there
is a practical limit to the number of scans that can be collected
in a single human subject. Changes in physiological processes
as a result of habituation, learning or fatigue, subject motion,
and machine calibration drift, impose time constraints on the
duration of an experiment. Consequently, scan acquisition time
is an important factor. A major problem of BOLD methods
is the presence of artifacts associated with head and/or vessel
motion [24], as well as vascular inflow [25], [26] and drainage
effects [27]. Most detrimental is that these artifacts are quite
often correlated with the signal of interest, and thus resistant to
simple image averaging. Hence, in attempts to overcome some
of these technical difficulties, new image acquisition schemes
are rapidly evolving where, unfortunately, formal performance
comparisons are often missing (abstracts for the 1995 Annual
Meeting of the Society for Magnetic Resonance yielded a
list of 76 acronyms for different MRI acquisition techniques
[28]).

Considering the rate at which new fMRI acquisition tech-
niques emerge, the availability of objective, automated im-
age comparison methods should be of great interest. The
wavelet decomposition approach is eminently suited for such
comparison tasks because it can be applied “blindly” to
images acquired by different techniques, where knowledge
of possible signal bandwidth limitations may not have been
sufficiently well established [29]. In particular, no method-
specific preprocessing is needed, and instead of requiring
assumptions regarding signal bandwidth limitations, crude, yet

unbiased estimates of the effective bandwidth are obtained as
a byproduct of the statistical analysis in the wavelet domain.

The paper is organized as follows. Section II introduces a
few basic concepts of wavelet transforms, presents extensions
to multiple dimensions, and provides important detail for
their digital implementation. In Section III we introduce the
statistical model and develop inferential testing procedures
for the detection of activation signals. Section IV details
fMRI acquisition procedures and experimental neuroactivation
paradigms. As an application of the developed methods, the
performance of two particular fMRI acquisition techniques,
PRESTO [30] and EPI [31] are compared in Section V, and
conclusions are drawn in Section VI.

II. THE WAVELET TRANSFORM

The usefulness of orthogonal transformations, such as the
Fourier or orthogonal wavelet transforms, is that they project
a signal onto a set of basis functions without altering the
signal itself. If a key feature of a signal is well represented
by a few basis functions in the set, while all other basis
functions are orthogonal, then the presence of that feature can
be easily detected by projecting the signal onto this orthogonal
basis. However, in many applications, such as fMRI, the
key signal features are not well known and the optimal
basis functions cannot be specified in advance. For such
applications, the multiresolution analysis made possible by the
wavelet transform offers the benefit that signal features not
known beforehand can be detected and extracted over many
scales. A fusion of the extracted features at different scales
then permits a succinct signal representation with emphasis
on key signal properties.

A. Multiresolution and Wavelet Decomposition
of a One-Dimensional (1-D) Signal

For simplicity of the exposition, the 1-D case is considered
first, which can be easily extended to multiple dimensions.
An orthogonal wavelet transform is characterized by two
continuously-defined functions: 1) thescaling function ,
and 2) its associatedwavelet ,
where is a suitable weighting sequence. The scaling
function is the solution of a two-scale equation

(1)

The sequence is the so-calledrefinementfilter. The
wavelet basis functions are constructed by dyadic dilation
(index ) and translation (index) of the mother wavelet

(2)

The sequences and —or, equivalently and —can be
selected such that constitutes an orthonormal
basis of , the space of finite energy functions [32], [33].
This orthogonality permits the wavelet coefficients and
approximation coefficients of any function
to be obtained by inner product with the corresponding basis
functions

(3)
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(a)

(b)

Fig. 1. Fast implementation of the wavelet transform. (a) Basic principle of
the algorithm is the repetitive split of the sequencescj�1(k) into two halves
using the low and high operators. (b) Implementation of the low (low-pass)
and high (high-pass) operators using filtering and decimation by a factor of
two.

where is the conventional -inner
product. In practice, the decomposition is only carried out
over a finite number of scales. The wavelet transform with
a depth is then given by

(4)

where and are defined in (3).
Although the synthesis and expansion formulas (4) and (3)

are usually given for continuous signals [32], [33], equivalent
expressions also exist for a purely discrete framework [34].
In the discrete formulation, which is the appropriate one here,
these formulas can be rewritten in the following matrix form:

(5)

(6)

where is the (infinite dimensional) signal
(or image) vector, the orthogonal wavelet transforma-
tion matrix, and
the wavelet coefficient vector. The wavelet transform (6) is
therefore an orthonormal transformation of the signal vector
.

Rather than defining the transform matrix explicitly,
it is much easier to describe the underlying decomposition
algorithm, which uses the two complementary filtersand

. In the orthogonal case, the low-pass filtersatisfies the
so-called quadrature mirror filter (QMF) conditions

(7)

(8)

where is the transfer function (-transform) of . The
high-pass filter is the modulated version of given by

(9)

The wavelet decomposition is implemented iteratively as in
Fig. 1(a), by successive filtering and decimation using the

(a)

(b)

Fig. 2. (a) One iteration of the separable wavelet transform in 2-D. First, the
basic 1-D algorithm is applied in thex-direction, which splits the columns
of the data into two halves. Second, it is applied in they-direction with (a)
as input, splitting the rows into two halves. (b) The basis functions for each
quadrant are obtained from the product of the corresponding basis functions
in x andy. The procedure is then iterated on the upper left quadrant in (b).

QMF filterbank in Fig. 1(b). The iterative definition of
enables implementation of (5) and (6) for a signal vector
of length by operations, rather than . This
makes the computation of the wavelet transform slightly more
efficient than that of the standard FFT, which has complexity
of .

B. Extension to Multiple Dimensions

The decomposition (3) is easily extended to two-
dimensional (2-D) or three-dimensional (3-D) by using
tensor product basis functions, which amounts to applying the
1-D decomposition algorithm [Fig. 1(b)] successively along
the separate dimensions of the data. The effect of one iteration
of this splitting process is illustrated in Fig. 2 for the 2-D
case. In this way, one generates different types of basis
functions in dimensions. The correspondingD separable
scaling functions with are given by

(10)

where we use the vector integer index . The
other types of wavelet basis functions are obtained in
a similar fashion by replacing one or several factors in (10)
by a wavelet term of the form . Let
a binary vector with if is replaced by ,
otherwise . By defining

if
otherwise

(11)
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the mixed tensor product wavelets then are

(12)

with

(13)

Since is low pass and high pass, the mixed tensor product
wavelets will typically have a preferential spatial orientation
along one (or several if ) of the spatial directions. In
this view, assumes the role of a spatial direction indicator.
For the 2-D case illustrated above, for
correspond to wavelets oriented along the vertical, horizontal,
and diagonal directions. Note that by extending the definition
of (12) to , it includes (10); i.e., .

The corresponding multidimensional coefficients

(14)

(15)

are in the digital implementation obtained iteratively by suc-
cessive filtering and down-sampling by a factor of two as
illustrated in Fig. 2 for the 2-D case.

C. Selection of Basis Functions

Spline wavelets have many desirable properties [35]. For our
application, orthogonal spline (or Battle–Lemarié) wavelets
[32], [36], [37] were selected for the following reasons: 1)
orthogonality is required in the subsequent statistical analysis
(Section III); 2) the resulting family of transforms has the
advantage of using symmetrical basis functions; and 3) splines
provide a simple way of reducing spectral overlap between
resolution channels by increasing the degree of the spline.
Symmetric basis functions do not introduce phase distortions
and thus maintain a more faithful signal localization in the
wavelet domain; in particular, the location of strong wavelet
coefficients due to a signal transition does not depend on the
direction the signal is swept.

Small spectral overlap results in good data decorrelation
[18], which is important to achieve a high detection sensitivity.
The excellent decorrelation property of orthogonal spline
wavelets derives from the fact that splines with degree
provide vanishing moments. A Taylor series
expansion of the wavelet transform shows that the correlation
of the coefficients between scalesand decays proportional
to , where is the ratio of the scales
[18], [29]. Hence, the correlation across scale can be controlled
by choosing a sufficiently high polynomial order. In the limit,
as increases indefinitely, the spline wavelets tend to the
modulated sinc-wavelet, and the correlation approaches zero
[38]. However, as another ramification of the uncertainty
principle, correlation suppression comes at the expense of
a loss of spatial localization in terms of the decay rate of
the filter coefficients, requiring larger spatial support for the

implementation of higher order wavelet filters. Note, since the
modulated sinc-wavelet is the limiting case, the spatial decay
rate of the filter coefficients for low-order spline wavelets is
always better than (i.e., powers of ). In practice, the
extent of channel decorrelation must be balanced against a loss
of spatial localization, and the issue of selecting the degree of
the spline depends on the assumed smoothness of the signal
to be detected and is essentially a matter of compromise.
Fortunately, the assumption of signal smoothness is not very
restrictive because smooth wavelet bases are (asymptotically)
“near-optimal” for estimating signals that may contain some
points of discontinuity, but are otherwise largely smooth
[39], [40]. Higher order wavelets will yield higher detection
sensitivity in areas of smooth signal changes, but also will
give rise to “ringing” artifacts near discontinuities when the
signal is reconstructed from a reduced number of coefficients,
though much less than a suppression of Fourier coefficients
would cause in a Fourier-base representation of the same signal
[41]. Conversely, the representation of signal discontinuities
with a reduced number of zero-order wavelets will be more
faithful, at a loss of sensitivity in detecting smooth signal
changes. Since the fMRI volumes in our application were
spatially coregistered employing tricubic spline interpolation
(Section IV-C), orthogonal cubic-spline wavelets were used
for the statistical analyses.

D. Periodic Implementations

A simplified form for the transfer function of the low-pass
refinement filter (Fig. 1) for an orthogonal spline of degree
is (cf. [42])

(16)

where is the Fourier transform of the discrete B-
spline of degree . Recursive formulas for computing

can be found in [43]. For example, for piecewise
linear splines and for piecewise cubic
splines

. An expedient way to obtain these filter coefficients
is to sample at the frequencies

, and perform an -point inverse FFT where
is chosen sufficiently large to avoid aliasing in the time

domain. This yields symmetric low-pass filter coefficients
, which are then truncated to , with

, to yield finite impulse response filters of length
. The associated high-pass filter response is obtained

from (9) by simply applying a shift of one to the low-pass
filter coefficients and alternating the sign

(17)

The function is in practice a discrete sequence of
finite length , where .
The inner products in (3) then take the form of circular
convolutions; i.e.,
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and

(18)

where supplies the samples at the
boundaries whenever .

III. STATISTICAL ANALYSIS

Typically, statistical analysis of brain fMR images com-
pares data from one subject acquired under two different
experimental conditions, where the experiment has been repli-
cated times. In our particular application, each subject
performed on/off blocks of a finger tapping paradigm
(Section IV-B). Eight block difference images were calculated
by subtracting the means of the images acquired within a finger
tapping “on” block, , from the means of the images
acquired within the preceding “off” blocks, , yielding

(19)

where is the equidistant sampling grid on. For fMR
images, the number of dimensionsis typically two or three.
The difference images are assumed to be characterized by the
population model

(20)

where is the unknown deterministic signal common to
all replications, which we would like to recover, and is a
homogeneous random field of identically and independently
distributed Gaussian noise, . Averaging over

uncorrelated replications improves the SNR and yields an
estimate of the signal

(21)

which is asymptotically unbiased and consistent;
i.e.,

(22)

The estimated sample variance at each pixel location

(23)

has degrees of freedom (DOF’s). The use of (22) and
(23) requires the assumption of uncorrelated replications of the
random field, which was sufficiently well satisfied for the mean
block images and , because of the relatively
long duration of the block cycle (Section IV-B). This assump-
tion would definitely be violated if the volumetric images at
each time point in the acquisition series were considered as
replications, due to their high temporal correlation. If a time-
series variance were to be used for statistical inference in the
spatial domain, either specific time-series analysis methods
that properly adjust for temporal correlation needed to be

applied [44], or the effective DOF’s for the residual variance
in a general linear model incorporating the hemodynamic
response function needed to be estimated [45].

Since is homogeneous by assumption, an improved
variance estimate can be obtained by pooling over all
intracranial (IC ) pixels, , yielding an approxima-
tion of with very large DOF [46]

(24)

The recovery procedure of is then cast within the
framework of hypothesis testing, a well established practice in
the life sciences. The null hypothesis postulates ;
i.e., there is no systematic difference between the images
acquired under the two different experimental conditions. If
the hypothesis is refuted by the data, then the inference is that
the signal is nonzero at certain spatial locations. In that case,
it is of particular interest to the neuroscientist to obtain both a
good estimate of the spatial locations and shape of the signal
at these locations.

An attractive method to apply this statistical framework is
to assume that the images in question can be approximated
by a continuous random field, where the pixel values are
considered to be the realizations of a random field sampled
on an equally spaced lattice[46]. The relevant test statistics
are then evaluated at each pixel and searched for local extrema
that might indicate the presence of an activation signal. Formal
statistical methods have been developed by Worsleyet al.
[46] to guard against false positive detections, who provided
explicit expressions for the probability of excursion sets of
Gaussian,-, -, and -fields. While elegant, potential draw-
backs of the random field methods are that (a) a smoothness
parameter, usually the full-width–half-maximum (FWHM) of
the pointspread function of the imaging method, is required
to be either known or imposed upon by filtering, and (b) the
images be sufficiently finely sampled (FWHM/pixel size ,
see Section IV-A). Unfortunately, condition (b) does not hold
for currently produced fMR images, and with regard to (a), the
“proper” amount of further smoothing to be applied is often
inextricably related to the research question itself, as is the case
in our application. Since random field methods cannot be used
in our context (at least not without prior image smoothing),
the results of the wavelet-based analysis developed below will
be compared to results obtained by a spatial-domain analysis,
where the false positive detection rate (i.e., the significance
level) is controlled by the Bonferroni correction. While this
correction is somewhat conservative in the presence of spatial
noise correlations (which are presumed to be relatively small
due to the undersampling existing in present fMRI’s), the
method is certainly valid and, like the wavelet method, requires
no presmoothing.

The multiresolution strategy offered by the wavelet de-
composition contrasts from the random field methods, or
other “traditional” signal analysis methods, in the way the
question of “appropriate” image smoothing is approached.
These methods consider the shape and/or size of the brain
activation regions as known and typically apply low-pass
filtering to the images, in an attempt to maximize the SNR.
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The question then remains, what is the “best” smoothing filter
to use? If the activations are highly focal, then only a little
smoothing would be best. Conversely, if they are diffuse, more
extensive smoothing would be appropriate. The problem is
further compounded by the possibility that a particular brain
stimulation task may elicit both types of activation patterns
concurrently. Hence, a monoresolution strategy for these kind
of applications is likely to be suboptimal. In an attempt to
pick the “optimal” filter for each possible activation pattern, a
proposal has been made to apply sequentially a set of spatially
invariant and isotropic Gaussian low-pass filters with succes-
sively larger kernel widths, and then extend the search for
activations over the 3-D location space as well as the 1-D filter
scale space [47]. However, the decomposition into a set of
low-pass-filtered images is both redundant and nonorthogonal.
Consequently, the number of statistical tests required to locate
activations is increased (search in four-dimensional (4-D)
rather than 3-D space), and a higher detection threshold must
be selected to protect the significance level, incurring a loss of
detection sensitivity [48]. Although the idea of a scale-space
search is also pursued in the wavelet-based estimation method,
this search is statistically and computationally more efficient
due to the lack of redundancy of the wavelet decomposition.
In contrast to traditional, monoresolution signal detection
techniques, wavelet detection is spatially adaptive and thus is
able to deal in a direct and straightforward manner with signals
that may have spatially heterogeneous smoothness properties,
as well as a finite number of discontinuities. Hence, the
question regarding the “best” smoothing need not be answered
beforehand. In fact, answering that question is an integral part
of the wavelet-based multiresolution strategy, and the answer
may be complex in that different amounts of smoothing in
different spatial neighborhoods may be required. It has been
shown that if nothing is known regarding the smoothness (or
lack thereof) of a signal, wavelets constitute a “near-universal”
orthogonal basis [49]; i.e., they are, asymptotically, for a wide
range of -error norms and a variety of different smoothness
classes, nearly optimal for recovering a signal buried in white
noise.

To implement the wavelet-based detection procedure, the
average difference image (21) is subjected to a multiresolution
decomposition according to (14) and (15). At each level
, the wavelet coefficients are computed by (15),

with replaced by , and where are the D tensor
product wavelets (12) along the directions .
Under the null hypothesis , and perform
orthonormal linear transformations on the means ofiid
Gaussian variates with variance, resulting from (22) in the
distribution of asiid . Hence, standardizing
the wavelet coefficients by the standard error

(25)

with obtained from (24), yields for each of the directional
channels at the resolution level

iid (26)

and

iid (27)

Properties (26) and (27), in conjunction with the orthogo-
nality of the decomposition permit a two-stage approach to the
estimation of , which reduces the overall number of statistical
tests that need to be performed. The first stage addresses the
question as to whether there is significant signal power in
any of the direction-oriented resolution channels.
The approximation coefficients represent the extreme low-
pass and dc information in the images and, as is common
practice [13], are routinely left unprocessed for inclusion
in the subsequent signal estimation by the inverse wavelet
transform. In the second stage, only channels with significant
signal power are further examined to determine the spatial
location of the signal. Hence, based on (27), the sum of the
squared, standardized coefficients in each channel is under the
hypothesis a chi-square variate with DOF equal to the
number of summation terms. This provides the rationale for the
first-stage test procedure, which jointly tests in each resolution
channel the significance of the coefficients. Channels where

is accepted are discarded as carrying only noise, yielding
the reduced coefficient set, shown in (28) at the bottom of the
page, where

(29)

is the threshold at resolution obtained from the
probability cutoff of the chi-square distribution with DOF
equal to the number of intracranial wavelet coefficients at level

. If each of the tests is performed at a
significance level of (Bonferroni adjustment),
the overall significance per volumetric image is maintained
at the specified -level. To facilitate the follow-up testing in
the second stage, the index pairs of channels with
significant power are entered into a look-up table.

The second stage procedure follows from (26) as a two-
sided -test of only the coefficients in the channels determined
to carry significant power

if
otherwise

(30)

where

(31)

is the threshold for the standardized normal variate with the
significance level adjusted for the total number of follow-
up tests performed in the wavelet search space, i.e., the total

for and if
otherwise

(28)
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number of intracranial coefficients contained in the channels
considered for follow-up testing

(32)

Equation (32) constitutes the Bonferroni adjustment for multi-
ple testing, requiring an elevation ofrelative to the single-test
threshold. The associated penalty in terms of loss of statistical
power (increased rate of signal misses) is ameliorated to the
extent that .

The final step in this signal recovery procedure consist in
applying the inverse discrete wavelet transform (5) to the
surviving coefficients, i.e.,

(33)

Hence, the estimate is obtained as the sum of wavelets
with coefficients that exceeded a statistically determined noise
threshold. This process can be viewed as a kind of adaptive
noise filtering, where the filter passband is determined by
the SNR levels in the various resolution channels. Frequency
bands of the dyadic resolution channels are combined into the
overall signal bandpass definition, depending on whether the
estimated power level in a channel exceeds the noise threshold.
This results in a crude estimate of the effective bandwidth of
the activation signal . It is obtained from the first testing
stage as times the sampling rate, with the smallest

(highest resolution level) where at least one of the
directional channels carries significant signal power.

It is to be emphasized that the principle of wavelet thresh-
olding as described above does not depend on the use of
thresholds based on parametric statistical distributions. Non-
parametric thresholds may alternatively, and perhaps more
validly, be derived from the corresponding empirical null
distributions generated by randomization procedures applied to
the original images [50]. Such procedures could be generalized
to establish spatially variant thresholds for the detection of
activation signals in the presence of spatially inhomoge-
neous noise (i.e., different sample SD’s at different pixel
locations). While randomization methods provide “exact”-
values, nothing is known regarding the statistical power of the
corresponding tests, and they impose a heavy computational
burden to accumulate the null distributions. For these reasons,
randomization procedures are mainly relegated, at least cur-
rently, to validate existing parametric methods, particularly
if there is doubt regarding the tenability of some of the
underlying assumptions.

IV. I MAGE ACQUISITION AND EXPERIMENTAL PROCEDURES

A. Imaging Parameters

All studies were performed on a clinical 1.5-T scanner
(SIGNA, General Electric Medical Systems, Milwaukee, WI).
The PRESTO method used a GE quadratic head coil and
standard shielded gradients with a maximum amplitude of 10
mT/m and maximum slew rate of 17 T/m/s. As previously de-
scribed [30], the pulse sequence had the following parameters:

24 ms, with TE ranging from 29.6 to 40.4 ms for five
consecutive gradient echoes, and a flip angle of 11. This pro-
duced susceptibility ( -weighted) images, captured in a data
matrix of 64 50 24 pixels in transverse orientation. The
field of view (FOV) was 240 187.5 90 mm, which, after
reconstruction resulted in isotropic pixels with dimension 3.75
mm, and an isotropic resolution of 4.5-mm FWHM. Because
of the limitations of the gradient field homogeneity, only the
middle 14 contiguous slices of the imaged volume were used
for analysis. This provided a sampled volume with a total
axial width of 5.25 cm that included the primary sensorimotor
cortex as the area of primary interest, and extended from the
top of the brain to the middle segment of the lateral gyrus.

Gradient-echo EPI scanning was performed with a com-
bined radio-frequency (RF) and gradient insert coil capable
of generating 20 mT/m with a rise time of 100 ms (Medi-
cal Advances, Milwaukee, WI). Fifty-six sagittal (3.75-mm-
thick) interleaved sections were acquired (TR/TE5 500/60
ms, with a flip angle of 90), with a FOV of 240 240
mm [31]. This provided full-head coverage in a data matrix
of 64 64 56 with 3.75-mm isotropic pixel size and an
isotropic FWHM after reconstruction of 4.5 mm.

B. Subjects and Tasks

Data are presented from seven healthy (mean age 30 yr),
strongly right-handed volunteers, who gave informed consent
to submit to MRI scanning by both the PRESTO and the EPI
technique. The research protocol was approved by the National
Institute of Mental Health Human Studies Review Board.

During scan acquisition, the subjects had their eyes closed
and performed a finger tapping task with their right hand.
The tapping was self-paced (about 2 Hz) and consisted of
touching the thumb sequentially with each one of the digits,
repeating this sequence for 33 s. Eight alternating blocks of
33 s rest were followed by 33 s of finger tapping. Six fMRI
scans were acquired during each block to yield a total of 96
images. The first and last image in each block of six scans
were discarded after conclusion of the experiment to avoid
transients related to the delay in the vascular responses to
neuroactivity changes, which is in the order of a 4–6 s [22],
[23]. The remaining four images in each block were considered
steady state representations, and averaged within each block to
yield mean “on” block images, , and mean “off” block
images, , used in (19).

C. Image Preprocessing

In an attempt to reduce artifacts due to small involuntary
head motion, all images of each subject were registered off-line
to the first image of the data set such that the squared gray-
level difference summed over all brain pixels was minimized.
This was achieved by applying a modified version of the
Marquardt–Levenberg algorithm to a cubic-spline resolution
pyramid representation of the respective volumes [51]. Since
only intrasubject registration was required, the transformation
parameters to achieve registration were restricted to 3-D
rotations and translations.
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A binary brain mask image, encompassing all intracranial
pixels, was created by applying an intensity threshold to
the average image computed from all registered volumes
for a subject. -weighted images display usually very little
tissue contrast [30], [52], rendering their intensity histograms
strongly bimodal (background or tissues). Hence, the thresh-
old was selected as the intensity level corresponding to the
“valley-point” separating the two modes in the histogram.
The resulting masks were trimmed subsequently to ensure
homogeneity of variance as stipulated in the model (20).
For that purpose, the mean “on” block images were
subtracted from adjacent mean “off” block images ,
and the resulting mean and sample variance computed at each
pixel within the mask. As in previous analyses [30], [52], a chi-
square test with DOF’s (nominal Bonferroni corrected
significance level per 2-D slice) was applied to
eliminate pixels not satisfying the homogeneity assumption,
resulting in a trimmed intracranial mask (IC). Only data from
pixel locations within this mask were tested subsequently
for the presence of activation signals. Pixels eliminated this
way constituted 5% of the brain volume and were located
mainly along the brain boundary (subarachnoidal cerebrospinal
fluid, sagittal sinuses). High variance at these locations was
most likely due to motion and/or gradient artifacts, as well
as classification errors in the initial generation of the brain
mask due to partial volume effects. Mean and sample variance
of the difference images were then recomputed based on the
trimmed intracranial maskIC , because this mask defines the
region of homogenous variance, and pixel locations outside
this region should not contribute to the estimates (5) and (6)
of the random field parameter .

V. RESULTS

Most currently applied fMRI acquisition methods are based
on echo planar imaging (EPI), which involves the repeti-
tive scanning of a series of 2-D slices throughout the brain
[21]–[23]. Direct 3-D scanning methods of contiguous vol-
umes would have the potential of yielding less ambiguous
registrations to anatomical MRI’s, because the time skew
inherent in sequential slice acquisitions is eliminated. Also,
3-D scans are less susceptible to inflow effects [53] than
sequential 2-D methods. However, conventional 3-D gradient-
echo methods require prohibitively long acquisition times
because of the restriction that TRTE, while TE must be
long for sufficient susceptibility weighting. To overcome
this restriction, echo shifting methods have been developed
in which the echoes are shifted beyond the next RF pulse
[53], [54], permitting TR TE and resulting in much shorter
scanning times. The specific 3-D method to be compared with
EPI combines echo shifting with the acquisition of multiple
gradient echoes per RF excitation [30], [55] and carries the
acronym PRESTO (principles of echo shifting with a train of
observations).

The quality of the PRESTO and EPI images were compared
by a previously used index [30], defined as , where is
the pooled SD of the difference images (24), andis the
average MR signal intensity, pooled over all brain pixels

Fig. 3. PRESTO modality. (a) Average of all fMRI’s, (b) sample SD of
on/off difference images, (c) sample average of on/off difference images,
(d) wavelet coefficients for four-level transform, (e) significant(� = 0:05)
wavelet coefficients, and (f) inverse wavelet transform of significant coeffi-
cients.

and all images

(34)

Note, the smaller this index, the better the image quality.
For the seven subjects the index value ranged from 0.74%
to 1.19% for the PRESTO method, and between 0.81% and
1.28% for the EPI method. This index was statistically not
different between the two modalities, and its range was similar
to that in a previous study (0.8%–1.2%) [30].

Examples of the wavelet-based signal detection procedure
applied to a PRESTO and an EPI brain slice are shown in
Figs. 3 and 4. The PRESTO method yields a transversely
oriented volume from which a set of transaxial slices, 3.75-
mm-thick, were selected that included the area of the primary
sensorimotor cortex (23 mm from the top of the brain). These
are presented in Fig. 3 with the front of the brain oriented
toward the right. The EPI method provided sagittal slices,
3.75-mm-thick, located 38 mm to the left (ipsilateral to the
active hand) of the midsagittal plane, with the front of the
brain oriented toward the right (Fig. 4). In Fig 4(a) the average
fMRI’s before subtraction are shown, and illustrate the very
low tissue-contrast that is typically obtained in functional
imaging. In Fig 4(b) and (c) the respective sample SD images
(square root of in (23), for within the brain mask)
and the mean difference images (21) are shown. The display
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Fig. 4. EPI modality. (a) Average of all fMRI’s, (b) sample SD of on/off
difference images, (c) sample average of on/off difference images, (d) wavelet
coefficients for four-level transform, (e) significant(� = 0:05) wavelet
coefficients, and (f) inverse wavelet transform of significant coefficients.

has been scaled to the highest positive (white) gray level.
Shown in Fig. 4(d) are the 2-D wavelet coefficients before
thresholding and in Fig. 4(e) after thresholding (30), for an
overall significance level per volume of .
The resolution channels are organized in the usual pyramid
representation, as illustrated in Fig. 2 for the first resolution
level. The results for the PRESTO images are typical in that
they had in general only a few significant coefficients, with
none of them at the finest resolution level. Resyntheses of the
difference images by inverse wavelet transform of only signif-
icant coefficients are shown in Fig. 4(f). For both modalities, a
large amount of noise suppression was attained because most
of the coefficients deleted were from high-resolution channels.
However, since generally a larger number of coefficients from
the high-resolution channels were suppressed in PRESTO
images, the resulting bandwidth reduction was more severe
for this modality than for EPI.

Table I summarizes the results of the statistical procedures
applied to the particular images shown in Figs. 3 and 4.
For PRESTO, none of the variance ratios (i.e., total channel
power/noise power) at the two highest resolution levels ex-
ceeded the critical threshold (28). In particular, only five out
of the total of 12 channels [see Fig. 3(e)] carried significant
power and required follow-up testing by-tests (30), (31).
This resulted in five significant coefficients, or 0.55% of the
total number of 904 pixels in the brain mask. In contrast, all
channels for the EPI slice [see Fig. 4(e)] exceeded the noise
threshold, resulting in 55 significant coefficients after follow-

TABLE I
STATISTICAL TEST RESULTS FORIMAGES IN FIGS. 3 AND 4

a V: vertical; H: horizontal; D: diagonal resolution channels.
b Variance ratio: Var .
c Threshold value of VR for overall significance per volume of ,

.
d Number of coefficients remaining significant after follow-up test (30).

TABLE II
PERCENTAGE OFWAVELET CHANNELS WITH POWER SIGNIFICANTLY ABOVE NOISE

up testing by -tests, or 8.36% of the total number of 658
pixels in the brain mask.

Table II summarizes the accumulated results from all seven
subjects regarding the test for significant channel power (28)
and (29). At the highest resolution level, none of the channels
in the PRESTO images were significant, while 71.4% of these
channels carried significant power in EPI .
Also at the second resolution level were the proportion of
useful channels higher in EPI than in PRESTO ,
and only at the third level were the percentages for the two
modalities comparable . At the lowest resolution
level, there was a slightly larger proportion of channels with
significant power in EPI than in PRESTO . These
results show that, viewed from a multiresolution perspective,
EPI scans contained signal features at a finer resolution than
PRESTO scans. Consequently, the bandwidth limitations im-
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(a)

(b)

(c)

Fig. 5. Four contiguous PRESTO slices. Row (a) sample average of on/off
difference images, row (b) signal response estimated by wavelet detection,
and row (c) regions of significant signal response(� = 0:05) detected by
spatial-domain analysis (in black), superposed over wavelet detection results.

(a)

(b)

(c)

Fig. 6. Four contiguous EPI slices. Row (a) sample average of on/off
difference images, row (b) signal response estimated by wavelet detection,
and row (c) regions of significant signal response(� = 0:05) detected by
spatial-domain analysis (in black), superposed over wavelet detection results.

posed implicitly by resynthesizing activation images from only
significant wavelet coefficients are less severe for EPI than
for PRESTO. Since the finger tapping tasks were identical
for both imaging modalities, one can reasonably assume the
spatial smoothness of the respective activation areas to be
very similar. Hence, the smoother appearance of the estimated
activation signals for PRESTO relative to EPI [Figs. 3(f) and
4(f)] is for the largest part due to the lower SNR conditions
in the difference images formed from the PRESTO scans.

Figs. 5 and 6 compare the signal estimates derived by
wavelet analysis in a sequence of contiguous slices (columns)
to the results of direct significance testing in the spatial
domain. For the spatial domain analysis, the model as defined
in (20) with independent, white noise at the pixel level was
assumed. Rows (A) present the signal estimates (21) obtained
by averaging, and rows (B) show the signal estimates resulting
from the wavelet analysis (33). The significance of the spatial-

domain signal estimates was established by-tests on the ratio
of the average difference image (21) to the pooled standard
error (25). The Bonferroni adjustment was applied to maintain
the overall significance level per volume at ; i.e., the

-level for the pixelwise tests was set to
. Rows (C) show in black, superposed over the wavelet-

based signal estimates, the pixels found to be significant by
these -tests. The signal estimates shown in rows (A) were
at these pixel locations significantly different from zero. The
wavelet-reconstructed signal estimates reflect the smoothness
of the selected wavelets, resulting in regions of estimated
neuroactivity that are generally larger than the discontinuous
regions obtained by significance testing and thresholding in
the spatial domain. This is most evident for PRESTO images.
At certain locations, only one pixel exceeded the threshold
for significance in the spatial-domain testing, whereas the
corresponding signals reconstructed from significant wavelets
indicated more diffuse areas of increased activity.

In comparison to PRESTO, the SNR in images generated by
EPI (Fig. 6) was sufficiently high in the regions of the primary
sensorimotor cortex, resulting in the inclusion of wavelet coef-
ficients at the highest resolution level (see also Table II). This
yielded signal estimates with the smallest amount of smoothing
imposed by the wavelet representation. Therefore, the signal
extent estimated from the wavelet representation overlapped
largely with the signal extent derived by pixelwise statistical
testing of the original (not additionally smoothed) image.
However, this was only true in regions of the sensorimotor
cortex where brain activation was expected to occur. Outside
these regions, the spatial detection method found additional
significant responses, which were mainly of single-pixel extent
and most often did not coincide with wavelet resynthesized
responses. The local SNR in these outlying areas was not
sufficient to yield wavelet coefficients of significant strength at
the highest resolution level. Whether these outlying responses
are “true” or technical artifacts is beyond the scope of this
work. If we assume them to be artifacts, then some local
smoothing of the EPI data, as automatically implemented by
the retention of only significant wavelet channels, is indeed
indicated.

In order to further differentiate the signal estimates obtained
by wavelet reconstruction and by spatial significance testing, a
3-D region of interest (ROI) was defined that included the left-
hemispheric primary sensorimotor cortex in both modalities.
This ROI contained 1 125 pixels (59.3 cm), of which four
consecutive 2-D sections for the same slices shown in Figs. 5
and 6 are displayed in rows (a) of Fig. 7. In rows (b), the
wavelet-derived signals were thresholded at a 0.5% of the
average image intensity (27). With this threshold setting
slightly below the best observed scan-to-scan stability (0.74%),
most of the activation signal (maximum about 5% in BOLD
methods [20]) was captured. Rows (c) show pixels (white)
where significant activity was detected by spatial thresholding
[corresponding to black pixels of Figs. 5 and 6 (c)]. A qualita-
tive comparison shows that in PRESTO images the thresholded
signal estimates derived from significant wavelet coefficients
produced larger clusters than spatial thresholding of the mean
difference images, while for EPI the two results were similar.
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(a)

(b)

(c)

(a)

(b)

(c)

Fig. 7. Four contiguous slices from ROI of left primary sensorimotor com-
plex for (top) PRESTO and (bottom) EPI modality (corresponding to Figs. 5
and 6). Rows (a) sample averages of on/off difference images, rows (b)
wavelet-detected responses, thresholded at 0.5% of the average fMRI intensi-
ties, and rows (c) regions of significant response detected by spatial-domain
analysis.

Fig. 8. Cluster-size distributions within ROI for PRESTO. Filled bars,
regions detected by wavelet analysis and subsequent thresholding at 0.5%
of the average fMRI intensities. Open bars, significant regions detected by
spatial-domain analysis.

For a quantitative comparison of the wavelet based anal-
ysis to the spatial detection method, cluster-size distribution
analyses were applied to the thresholded signal representations
derived by either method. The results are summarized in
Figs. 8 and 9 for cluster sizes of up to ten pixels. For PRESTO
(Fig. 8), the proportions of clusters with one or two pixels
obtained by the spatial detection method greatly exceeded
those obtained by the wavelet detection method. Equality of
the two distributions was clearly rejected by the
Kolmogorov–Smirnov test [56], with median cluster sizes for
the spatial and wavelet methods of one and six, and maximum
detected cluster sizes of seven and 28, respectively. A cor-

Fig. 9. Cluster-size distributions within ROI for EPI. Filled bars, regions de-
tected by wavelet analysis and subsequent thresholding at 0.5% of the average
fMRI intensities. Open bars, significant regions detected by spatial-domain
analysis.

TABLE III
DETECTION THRESHOLDSa FOR WAVELET AND

SPACE DOMAIN ANALYSIS WITHIN AN ROI

a Standardized with respect to the standard error (25), overall significance per ROI of
.

responding cluster-size distribution analysis for EPI (Fig. 9)
indicated a similar tendency, although less pronounced, for the
spatial detection method to yield disproportionately smaller
cluster sizes. The median (maximum) cluster sizes for the
spatial method was 2 (32), as compared to three (34) for the
wavelet method, and the Kolmogorov–Smirnov test formally
rejected distribution equality . Hence, the results
of these cluster-size analyses are in concordance with the
rankings of image smoothness for the various approaches.
The spatial method applied no smoothing in addition to
the one imposed by the volume coregistration procedure
(Section IV-C), while the smoothing implemented by the
wavelet method was dependent on the inherent local SNR
conditions, and was typically minor for EPI and quite extensive
for PRESTO images.

Table III compares for the selected 3-D ROI the statisti-
cal efficiency of the wavelet-based analysis to that of the
Bonferroni-adjusted spatial thresholding. The first row shows
for the two modality images the space reduction attained by
implementing the first step of the wavelet-based procedure
that tests for significant channel power (28), (29). There
were 120 wavelet channels (10 slices4 resolution levels 3
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orientations) to be tested in this ROI, of which, on average,
about 6 (5.32%) for PRESTO and about 47 (38.39%) for EPI
were found to carry significant power and to require follow-up
testing. The second row expresses the resultant search space
reduction in terms of the number of coefficients that needed
to be tested in the second stage (30). Out of the total of 1 125
coefficients (equal to the number of pixels in the ROI) only
about 20 (1.83%) required follow-up testing for PRESTO and
about 678 (60.27%) for EPI. The large difference between the
two modalities arises from the fact that for PRESTO nearly all
channels with significant power were at low resolution levels
(Table II), containing progressively smaller number of wavelet
coefficients, while for EPI significant power was distributed
into high-resolution channels that carry many coefficients.
This difference in the number of follow-up tests effected
the respective Bonferroni adjustments (24) and resulted in
standardized thresholds of 3.22 and 3.87 for PRESTO and
EPI, respectively. Hence, compared to the standardized spatial
threshold of 4.59 (1 125 tests), the search space reductions
achieved by the wavelet method yielded for both modalities
a substantial threshold reduction. The lowest standardized
threshold for is attained if only a single -test
were required, yielding a value of 1.96. The standardized
thresholds for PRESTO and EPI were about at 48% and 73%,
respectively, of the difference between the standardized spatial
threshold and this lower limit.

VI. CONCLUSION

In applications where no realistic assumptions regarding
the shape, smoothness and location of the signals to be
detected can be made, wavelet-based multiresolution methods
are eminently suitable. Such applications arise when new
functional imaging modalities with unknown characteristics
emerge, and/or the signals of interest are largely unspecified
due to either ill-controlled experimental paradigms or un-
known underlying physiology. All of the above apply to brain
fMRI’s of human subjects. Wavelet-based methods permit the
investigator to avoid the familiar problem of selecting the
“best” monoresolution smoothing filter by using instead the
more appropriate multiresolution point of view. By making use
of the orthogonality and regularity conditions imposed on the
wavelet bases, a fully automated procedure can be developed
that applies standard parametric tests of significance directly
to the wavelet coefficients. This then answers the posed
question as to the “best” filtering by producing almost optimal,
spatially adaptive filters. In contrast to the monoresolution
approach, the resulting adaptive filters do not need to be
specified beforehand, but rather are automatically derived from
the prevalent SNR conditions at the various resolution levels
of the image itself. Consequently, wavelet-based methods
are particularly indicated if nothing specific can be assumed
regarding the shape and spatial extent of the activation signals
to be detected. In our application, a good estimate of the
fastest spatial change of the signal of interest that could
be expected was available, because image smoothness was
imposed by the cubic-spline interpolation process required for
the coregistration of the serial fMRI volumes. Hence, this

knowledge was taken into account in the choice of cubic-
spline wavelets for an efficient signal representation. Since
both PRESTO and EPI scans were represented in the same
wavelet basis, the relative comparison of the two acquisition
techniques was not biased by this choice.

The two-stage signal detection approach as implemented
here, answered one or two heuristic questions asked in se-
quence: 1) Are there any activation signals with a certain
spatial extent present in the image? If affirmative, then: 2)
Where are they located? This sequence achieves economy in
statistical testing by limiting the search for spatial localizations
to orthogonal signal-space partitions (i.e., resolution scales)
with favorable SNR’s. Hence, wavelet-based procedures have
a potential advantage over spatial detection methods in that the
SNR’s prevalent in a limited number of statistically selected
resolution channels typically exceed a monoresolution SNR,
and that this selective resolution limitation results in a lower
number of statistical tests and thus, a lower detection threshold
for a given overall significance level. These advantages were
shown to be practically realizable in direct comparisons to
monoresolution spatial-domain detection for both PRESTO
and EPI scans. Although both scans were acquired with equiv-
alent nominal image resolutions, the wavelet based analysis
clearly showed that, compared to EPI, current PRESTO tech-
niques yielded generally a lower SNR in the difference images
between baseline and task performance, and a lower resolution
bandwidth by one to two octaves of the estimated activation
signal. Clearly, this comparison of the two acquisition methods
was only with respect to performance indexes characterizing
signal detection, and both methods are still evolving and being
improved.
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