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We perform a detailed comparison of results of the Gamow shell model and the Gaussian expansion method
supplemented by the complex scaling method for the same translationally invariant cluster-orbital shell model
Hamiltonian. As a benchmark test, we calculate the ground state 0+ and the first excited state 2+ of mirror nuclei
6He and 6Be in the model space consisting of two valence nucleons in a p shell outside of a 4He core. We find a
good overall agreement of results obtained in these two different approaches, also for many-body resonances.
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I. INTRODUCTION

In recent years, the playground of nuclear physics has
extended towards neutron and proton drip lines [1–3]. A huge
amount of new experimental data on nuclei far from the valley
of stability has been provided by new rare-isotope facilities.
The knowledge of these nuclei has largely improved also due
to the progress in theoretical methods and computing power
which allows to calculate light nuclei in ab initio framework
taking into account the proximity of the scattering continuum.
The description of various manifestations of the continuum
coupling requires the generalization of existing many-body
methods and calls for theories which unify structure and
reactions.

Realistic studies of the coupling to continuum in the many-
body framework can be made in the open quantum system
extension of the shell model (SM), the so-called continuum
shell model (CSM) [4,5]. A recent realization of the CSM is
the complex-energy CSM based on the Berggren ensemble [6],
the Gamow shell model (GSM), which finds a mathematical
setting in the rigged Hilbert space [7]. This model is a natural
generalization of the standard SM for the description of
configuration mixing in weakly bound states and resonances.
The Berggren completeness relation can be derived from the
Newton completeness relation [8] for the set of real-energy
eigenstates by deforming the real momentum axis to include
resonant poles which are located in the fourth quadrant
of the complex k plane. Thus the Berggren completeness
relation, which replaces the real-energy scattering states by the
resonance contribution and a background of complex-energy
continuum states, puts the resonance part of the spectrum on
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the same footing as the bound and scattering spectra. As the
benefit of the explicit inclusion of the nonresonant continuum
and resonant poles, the contribution of the unbound states to
the one- and two-body matrix elements can be discussed. The
Berggren ensemble has found the application in the GSM [9],
time-dependent Green’s function approach [10], the no-core
GSM [11], the coupled cluster approach [12], the density
matrix renormalization group (DMRG) approach [13], and
in the coupled-channel GSM [14,15] to study various nuclear
structure and reaction problems.

Another approach is the complex scaling (CS) method [16],
which has been used to solve many-body resonances in many
fields including atomic physics, molecular physics [17,18],
and nuclear physics [19,20]. In the CS method, asymptotically
divergent resonant states are described within L2-integrable
functions through the rotation of space coordinates and
their conjugate momenta in the complex plane. As basis
functions, the Gaussian expansion method (GEM) [21] has
been extensively employed for the cluster-orbital shell model
(COSM) [22] and coupled rearrangement channel model such
as the TV model [23]. The CS-COSM has successfully been
applied to a description of resonant states observed above the
many-body decay threshold in p-shell nuclei (A = 5–8) using
a 4He+XN model, where X = 1–4 and N = p, n [24,25].
The CS-TV model for the core+2N systems has been shown
to reproduce the observed Coulomb breakup cross sections for
three-body continuum energy states [26,27].

The purpose of these studies is to perform a detailed
comparison of the GSM and the GEM+CS results for 6He and
6Be using the same COSM coordinates for valence nucleons
[22] and the same Hamiltonian. In COSM, all coordinates
are taken with respect to the core center-of-mass (c.m.), so
that the translational invariance is strictly preserved. COSM
combined with the CS method has been employed in numerous
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FIG. 1. Coordinate system of the COSM approach.

studies of weakly bound states and resonances in light nuclei
[20,23,28–34]. COSM coordinates have been also used in the
GSM [35] to investigate isospin mixing in mirror nuclei [36]
and charge radii in halo nuclei [37].

The paper is organized as follows. In Sec. II we present our
COSM Hamiltonian and the model space. In Sec. III, the two
theoretical approaches, namely the GEM+CS (Sec. III A) and
the GSM (Sec. III B), are briefly introduced. GEM+CS and
GSM results for 6He and 6Be are presented and discussed in
Sec. IV. Finally, Sec. V gives the main conclusions of these
studies.

II. THE COSM HAMILTONIAN

In these studies, we employ the three-body model for 4He
plus two-nucleon system in the COSM coordinates [22] (see
Fig. 1). The Hamiltonian is written as follows:

Ĥ =
2∑

i=1

(
t̂i + V̂

(C)
i

) + (
T̂12 + v̂12 + V̂

(C)
12

)
, (1)

where t̂i and V̂
(C)
i are the kinetic and potential energy operators

for the 4He core and an ith valence nucleon subsystem. In
Eq. (1), the first parenthesis corresponds to the single-particle
Hamiltonian for the ith valence nucleon, which is defined as

ĥi ≡ t̂i + V̂
(C)
i , (i = 1,2). (2)

In the second parenthesis of Eq. (1), v̂12 is the nucleon-nucleon
interaction for valence particles, and

T̂12 = − �
2

M (C)
∇1 · ∇2 (3)

is the recoil part which comes from the subtraction of thec.m.
motion, due to the finite mass M (C) of the core nucleus. The
last term of Eq. (1) is the three-body potential of 4He and two
valence nucleons.

The interaction V̂
(C)
i between the core and the ith valence

nucleon contains three terms:

V̂
(C)
i = V̂ αn

i + V̂ Coul
i + λ �̂i , (i = 1,2). (4)

The nuclear interaction part V̂ αn
i is the modified KKNN

potential [23,38], which reproduces the α-N phase shifts in
the low energy region. This potential contains a central and an

LS parts as

V̂ αn
i (ri) = V αn

0 (ri) + 2V αn
LS (ri) L · S, (i = 1,2), (5)

where ri is the relative coordinate between 4He and the ith
valence nucleon. The central part of Eq. (5) is written as

V αn
0 (ri) =

5∑
k=1

[(−1)�i ]k V 0
k exp

(−ρ0
k r2

i

)
, (6)

where [(−1)�i ]k is given by

[(−1)�i ]k =
{

1 (k = 1,2)
(−1)�i (k = 3,4,5)

. (7)

The LS part is

V αn
LS (ri) =

3∑
m=1

f LS
m V LS

m exp
(−ρLS

m r2
i

)
, (8)

where the factor f LS
m is

f LS
m =

{
1 (m = 1)

1 − 0.3 × (−1)�i (m = 2,3)
. (9)

Parameters of the modified KKNN potential [23,38] are
shown in Table I.

For the Coulomb part V̂ Coul
i in Eq. (4), we use a folded-type

Coulomb interaction for the 4He+p subsystem:

V̂ Coul
i (ri) = 2e2

ri

Erf(α ri), (10)

where Erf(r) is the error function, and α = 0.828 fm−1.
To eliminate the spurious states in the relative motion

between the 4He-core and the valence nucleon in CS, we use
a projection operator [40]:

�̂i = λ|FS〉〈FS|, (11)

where the forbidden state in the 4He+N case; |FS〉 = |0s1/2〉,
is given by the harmonic oscillator function with the size
parameter b = 1.4 fm.

In the GSM, the forbidden state is eliminated from the set
of the single-particle states, φi , as

φi ⇒ (1 − �̂i)φi . (12)

We can confirm that the core-particle potential (4) with the
parameters given in Table I, reproduces experimental energies
and widths of 3/2−

1 and 1/2−
1 resonances in the 5He(4He+n)

and 5Li( 4He+p) systems.

TABLE I. Parameters of the modified KKNN potential [23,38]
used in this calculation.

k = 1 2 3 4 5

V 0
k [MeV] −96.3 77.0 34.0 −85.0 51.0

ρ0
k [fm−2] 0.36 0.90 0.20 0.53 2.50

V LS
k [MeV] −8.4 −10.0 10.0 – –

ρLS
k [fm−2] 0.52 0.396 2.20 – –
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TABLE II. Parameters of the Minnesota potential [39].

k 1 2 3

V nn
k [MeV] 200 −178 −91.85

ρnn
k [fm−2] 1.487 0.639 0.465

W
(u)
k u/2 u/4 u/4

M
(u)
k (2 − u)/2 (2 − u)/4 (2 − u)/4

B
(u)
k 0 u/4 −u/4

H
(u)
k 0 (2 − u)/4 −(2 − u)/4

For the two-body interaction ˆv12(r12) of valence nucleons,
where r12 ≡ r1 − r2, we use the Minnesota potential [39]:

v̂12(r12)

=
3∑

k=1

V 0
k

(
W

(u)
k − M

(u)
k P σ P τ + B

(u)
k P σ − H

(u)
k P τ

)

× exp
(−ρk r2

12

)
. (13)

Parameters of this interaction are summarized in Table II, and
the exchange parameter is taken as u = 1.0. The Coulomb
interaction between valence protons is taken as an ordinary
1/r-type functional form.

It was shown that the binding energy of 6He cannot be
reproduced using the reliable one- and two-body potentials for
core-particle and particle-particle parts, respectively [23,29].
The correct binding energy in a system 4He+N + N is
recovered by using a simple two-body Gaussian interaction,
mimicking a physical three-body effect in the system [29] as

V̂
(C)

12 (r1,r2) = V 0
αnn exp

(−ραnn

(
r2

1 + r2
2

))
(14)

with the parameters V 0
αnn = −0.41 MeV and ραnn = 5.102 ×

10−3 fm−2.

III. THE MODELS

In this section, we discuss two models for solving 4He+2N
(N is proton or neutron) systems with the COSM Hamiltonian.
One is the GEM+CS approach, and another one is the GSM
approach. The essential differences between the GEM+CS
and GSM approaches are the choice of the basis functions and
the treatment of continuum states.

The basis function 
(r1,r2) in the COSM is defined with a
product of the functions with respect to each coordinate from
the core to a valence nucleon,


(r1,r2)JM ≡ [A{φα1 (r1) ⊗ φα2 (r2)}]JM . (15)

Here, αi denotes the angular part of the ith particle {ji, �i},
and its z components are implicitly included. A is the
antisymmetrizer for particles 1 and 2.

The basis function for the ith valence nucleon is

φαi
(ri) = f (ri)|jimi〉. (16)

The angular momentum part of the basis function is con-
structed by using the normal jj -coupling scheme as

|JM〉 = |[j1 ⊗ j2]JM〉. (17)

The above coupling procedure is the same both for the GEM
and GSM.

A. The Gaussian expansion method with complex scaling

The radial part of the GEM wave function is not an
eigenfunction of the single-particle Hamiltonian ĥi , but the
Gaussian function with the width parameter a as

fni
(ri) ≡ u

ni

�1
(ri)

= Nir
�i

i exp
(− 1

2ani
r2
i

)
, (i = 1,2), (18)

where Ni is the normalization, and �i is angular momentum
for the ith nucleon.

The width parameter ani
= 1/b2

ni
in the GEM basis func-

tions is defined using the geometric progression as bni
=

b0γ
ni−1 [21]. Here, b0 and γ are input parameters, and ni

is an integer. The model space of the system is spanned by
basis functions from ni = 1 to Nmax. The kth eigenfunction
ψk: αi

of the core+N system can be obtained by diagonalizing
the single-particle Hamiltonian ĥi with the Gaussian basis
functions,

ψk: αi
(ri) =

Nmax∑
m

c(k)
m φ(m)

αi
(ri). (19)

Here, ĥiψk: αi
= εkψαi

, and c(k)
m are determined by using the

variational principle.
For solving the core+2N system, the basis function (15) is

given by the product of basis functions in Eq. (18) for particles
1 and 2 as follows:



(m)
JM = A{

u
(m)
�1

(r1) · u
(m)
�2

(r2)|JM〉(m)}. (20)

Here, the width parameters a
(m)
i in u

(m)
�i

are prepared indepen-
dently for particles 1 and 2. m is the index of the one-body
basis functions.

The calculation of two-body matrix elements (TBME),
〈
(m)|Ô12|
(n)〉 can be performed analytically. Even for
different Gaussian width parameters, we can obtain the value
of TBME without any approximations.

The solution of the core+2N system can be obtained by
diagonalizing the Hamiltonian

Ĥ
k: JM = Ek 
k: JM , (21)

and the corresponding eigenfunction is expressed as a linear
combination of the basis functions,


k: JM =
Ntot∑
m

C(k)
m 


(m)
JM . (22)

In order to treat the many-body resonant states, we apply
the CS method. In this method, the coordinate and momentum
are transformed using a rotation angle θ as

r → r eiθ (k → k e−iθ ). (23)

Resonance wave functions, which diverge in the asymptotic
region, can be converged with this transformation for a suitable
rotation angle. This essential feature is proven by the ABC-
Theorem [16,41]. After this transformation, all continuum
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FIG. 2. Complex-scaled eigenstates of the three-body Hamilto-
nian for the Borromean system. Solid circles are bound and resonance
states, and open circles are continuum states.

states are aligned along the rotated axis. Furthermore, using
the GEM, the continuum states are automatically discretized
through the diagonalization of the Hamiltonian. A schematic
figure of the bound states and resonances and discretized
continuum states are shown for the Borromean system like
4He+N + N in Fig. 2.

B. Gamow shell model approach

Another approach to study many-body resonances is the
GSM approach [9,11–13]. This generalization of the nuclear
SM treats single-particle bound, resonance, and continuum
states on the same footing using a complete Berggren single-
particle basis [6]:

1 =
∑
i∈b,r

|φi〉〈φi | +
∮

�k

dk|φ(k)〉〈φ(k)|, (24)

where �k is a deformed momentum contour. For each (�,j ) of
the resonant single-particle state in the basis, the set (�,j )c of
continuum states along the discretized contour in the k plane
enclosing the resonant state(s) (�,j ) is included in the basis
(see Fig. 3):

1 

∑
i∈b,r

|φi〉〈φi | +
∑

η∈cont

|φ(kη)〉〈φ(kη)|, (25)

where kη are linear momenta discretized on the deformed
contour with the parameters of a maximum k and a number
of discretized points. Different shapes of (�,j ) contours are
equivalent unless the number of resonant states contained
in them changes. The complete many-body basis is then

Im
 k

 

Re k 

Im
 k

 

Re k 

Bound state Bound state

Resonant state Resonant state

(a) (b)

FIG. 3. Deformed contour on the complex momentum plane (a),
and discretized continuum states along the deformed contour (b).
Solid circles are bound and resonant states, and open circles are
discretized continuum states.

formed by all Slater determinants where nucleons occupy the
single-particle states of a complete Berggren ensemble [9].

In the Berggren basis, the basis function of the core+2N
system is



(ν)
JM = A{[

φ
(ν)
1 ⊗ φ

(ν)
2

]
JM

}
. (26)

Here, φ
(ν)
i are single-particle bound, resonance, and

discretized-continuum states for particles 1 and 2.
In the GSM, the deformed contour for each (�,j ) is varied to

obtain the best numerical precision of calculated eigenenergies
and eigenvalues for a given discretization of the contour. Since
the direct calculation of the TBME using the continuum and/or
resonant single-particle states is numerically demanding, and
even difficult to define from a theoretical point of view for
some particular instances, one calculates the TBME using the
harmonic oscillator (HO) expansion procedure [35]. For the
TBME between GSM basis functions 


(i)
GSM and 


(j )
GSM, one

obtains〈



(i)
GSM

∣∣Ô12

∣∣
(j )
GSM

〉
=

∑
α,β

〈



(i)
GSM

∣∣
(α)
HO

〉〈



(α)
HO

∣∣Ô12

∣∣
(β)
HO

〉〈



(β)
HO

∣∣
(j )
GSM

〉

=
∑
α,β

d∗
i,α dj,β

〈



(α)
HO

∣∣Ô12

∣∣
(β)
HO

〉
, (27)

where 

(α)
HO are HO basis functions and di,α is the overlap

between the GSM basis function 

(i)
GSM and the HO basis

function:

di,α ≡ 〈



(β)
HO

∣∣
(i)
GSM

〉
. (28)

The advantage of this procedure is that the TBMEs with the
HO expansion can be stored for a fixed bHO, and one only
needs to calculate the overlaps di,α , whatever the Berggren
states are.

IV. RESULTS

For numerical calculations, we define the number of basis
states. In the GEM+CS approach, the number of radial wave
functions for each valence nucleon Nmax is Nmax = 22. The
typical value of the Gaussian width parameters are b0 = 0.1 fm
and γ = 1.3. Hence, the maximum size of the width parameter
becomes b = b0γ

Nmax−1 = 0.1 × 1.321 
 25 fm. In the GSM,
the continuum is discretized with 40 points for each partial
wave and the maximum momentum is kmax = 3.5 fm−1.

A. 6He in the 4He+2N model space

First, we show results for the ground state 0+
1 and the

first excited state 2+
1 of 6He. The ground state of 6He is

bound one with an energy E = 0.97 MeV from the 4He+2n
threshold. Hence, we can take the rotation angle as θ = 0 for
the calculation of this state in GEM+CS approach.

We calculate energies of 6He by changing the maximum
angular momentum for the coordinates r1 and r2 from �max = 1
to 5, where �max is the maximum angular momentum in the
basis function for the 4He+n subsystem. Parameters of the
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TABLE III. Energies of the ground 0+
1 and the first excited 2+

1

states of 6He calculated using the GEM+CS and GSM approaches.
All units except for the angular momentum are in MeV.

�max GEM+CS GSM

1 −0.117 −0.116
2 −0.737 −0.737

E(0+
1 ) 3 −0.870 −0.870

4 −0.933 −0.932
5 −0.978 −0.977

�max GEM+CS GSM
1 0.805 − i0.086 0.804 − i0.086
2 0.675 − i0.038 0.669 − i0.041

E(2+
1 ) 3 0.628 − i0.027 0.619 − i0.030

4 0.605 − i0.023 0.595 − i0.026
5 0.589 − i0.021 0.577 − i0.024

interaction are chosen to reproduce the binding energy of the
ground state of 6He in a model space with �max = 5.

The energies of the 0+
1 state are shown in Table III for

different values of �max. One can see that the calculation for
�max = 1, which includes the s1/2, p3/2, and p1/2 orbits of the
4He+N system, is not enough to reproduce the binding energy
of 6He. The inclusion of higher angular momenta (�max �
2) improves the calculated energy significantly. Nevertheless,
even �max = 5 is not enough to obtain the converged ground
state energy since the T-type Jacobi configuration of valence
neutrons is very important [23]. However, since the scope of
this paper is to compare results of the GEM+CS approach and
the GSM, we restrict the maximum angular momentum for
the core+N system to �max = 5 and determine the interaction
parameters in this model space.

We find a good agreement between GEM+CS and GSM
for a Borromean 6He nucleus. The �max dependence of the 0+

1
and 2+

1 energies is shown in Table III and Fig. 4.
The density of valence neutrons in the 0+

1 state of 6He
is plotted in Fig. 5. One can see that the GEM+CS and

Im
 E

 (
M

eV
)

−0.15

−0.1

−0.05

 0

−1.5 −1 −0.5  0  0.5  1

}

}
0+

lMax = 5

Re E (MeV)

lMax = 1

2+

lMax = 5

lMax = 1

FIG. 4. Convergence of the poles of the ground 0+
1 and the first

excited 2+
1 states of 6He, which are calculated using the GEM+CS

approach and the GSM for 1 � �max � 5. Open and solid circles
denote GEM+CS and GSM results, respectively.

10−1

10−2

10−3

10−4

10−5

10−6

ρ(
r)

0 2 4 6 8 10 12 14
r (fm)

GEM+CS

GSM

FIG. 5. (Color online) The density of valence neutrons in the
COSM coordinate system for the ground 0+

1 state of 6He. The
normalization of the density distribution is 1.

GSM approaches give indistinguishable results for the density
distributions in the 0+

1 halo configuration of 6He.
Results for the 2+

1 narrow resonance are shown in
Table III and Fig. 4. The difference between GEM+CS and
GSM results in this case is at most ∼10 keV. The trajectories
of the 2+

1 state of the GEM+CS and GSM poles are shown in
Fig. 4. Similarly, as for the 0+

1 state, results of the GEM+CS
and GSM approaches agree well.

B. 6Be in the 4He+2N model space

The 6Be nucleus, the mirror system of 6He, is unbound in
the ground state. In this section, we shall compare results of the
GEM+CS and GSM for the 0+

1 and 2+
1 states of 6Be described

as a 4He+2p three-body system.
Calculated energies of the 0+

1 and 2+
1 states for different

�max values are shown in Table IV. The difference of GEM+CS
and GSM energies is less than ∼10 keV for the 0+

1 state and
∼20 keV for the 2+

1 state.
The trajectory of the 0+

1 and 2+
1 poles in the complex energy

plane is shown in Fig. 6. Contrary to the 0+
1 state, one may

notice a slight difference between trajectories of 2+
1 poles

in the GEM+CS approach and in the GSM. This difference
diminishes with increasing �max.

TABLE IV. Energies of the ground 0+
1 and the first excited 2+

1

states of 6Be calculated using the GEM+CS and GSM approaches.
All units except for the angular momentum are in MeV.

�max GEM+CS GSM

1 1.932 − i0.152 1.926 − i0.146
2 1.490 − i0.046 1.482 − i0.041

E(0+
1 ) 3 1.380 − i0.036 1.374 − i0.030

4 1.324 − i0.033 1.318 − i0.026
5 1.285 − i0.031 1.279 − i0.024

�max GEM+CS GSM
1 2.741 − i0.703 2.776 − i0.711
2 2.614 − i0.559 2.610 − i0.596

E(2+
1 ) 3 2.565 − i0.518 2.538 − i0.543

4 2.537 − i0.500 2.512 − i0.518
5 2.517 − i0.491 2.495 − i0.505
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FIG. 6. Poles of the ground and first excited states of 6Be
calculated using GEM+CS approach and GSM from �max = 1
to 5. Open and solid circles correspond to GEM+CS and GSM results,
respectively.

C. Discussion

In the comparison between the GEM+CS and GSM
approaches, we obtain a good agreement for the bound state
0+

1 in 6He, and narrow resonances; 2+
1 in 6He and 0+

1 in 6Be.
A small difference appears only for the 2+

1 broad resonance in
6Be. Below, we shall discuss a possible origin of such a small
difference in the numerical results.

Both GEM+CS and GSM approaches solve the non-
Hermitian problem. In the GEM+CS approach, the wave
function of a resonance becomes L2 integrable with the help
of the complex rotation. As a result, the Hamiltonian becomes
non-Hermitian. The standard procedure to find the optimum
values of the parameters is to search for a stationary point
of the eigenvalue with respect to the variational parameters.
The variational parameters are the complex rotation angle
θ and the parameter b0 in a definition of the Gaussian
width: bni

= b0γ
ni−1 [20] for the Gaussian basis functions.

The optimization procedure is a simplified version of the
generalized variational principle for complex eigenvalues [42].
The procedure works efficiently and gives very accurate
solutions even for broad resonant states [20].

The GSM is formulated in the Berggren set, which includes
bound single-particle states, single-particle resonances, and
scattering states from the discretized contour for each consid-
ered (�,j ). Consequently, the Hamiltonian matrix in this basis
becomes complex-symmetric. The number of scattering states
on each discretized contour (�,j ) and the momentum cutoff
have to be chosen to assure the completeness of many-body
calculations. Moreover, in the HO expansion procedure of
calculating the TBMEs, the dependence on the oscillator
length and the number of oscillator shells should be carefully
examined.

Figure 7 presents a trajectory of the 2+
1 narrow resonant

pole of 6He calculated in the GEM+CS approach by changing
the rotation angle θ , where the stationary point at the optimum
value of the rotation angle is θopt = 13◦, and the optimum point
for the GSM calculation, which is obtained with the oscillator
length and the number of oscillator shells are bHO = 2 fm

−0.09

−0.08

−0.07

 0.8  0.81  0.82
Re E (MeV)

Im
 E

 (
M

eV
)

Optimum value in GEM+CS

Pole of GSM

θ = 5°

θ = 25°

(θ = 13°)

GEM+CS

FIG. 7. Poles of 6He (2+) with �max = 1. For the GEM+CS, we
change the rotation angle θ from 5◦ to 25◦ in steps of 1◦.

and N = 41, respectively. In this case, the difference is only
∼1 keV, and both methods give almost the equivalent result.

On the other hand, the 2+
1 state of 6Be is a broad resonant

pole due to the presence of the Coulomb force for all three
particles. The optimum value of the rotation angle in the
GEM+CS calculation is θopt = 17◦, and the optimal HO
oscillator length in GSM calculations is bHO = 3 fm. The
difference of complex GEM+CS and GSM eigenenergies
becomes in the order of 10 keV. To improve the agreement for
the eigenvalues obtained by the GEM+CS and GSM, it would
be necessary to examine the optimization of the variational
parameters more precisely. However, in the practical point of
view, the difference is only less than 1 percent to the total
energy.

The convergence can be tested by introducing an extrap-
olation procedure, e.g., the Richardson extrapolation [43].
We extrapolate the energy E as a function of 1/�max to
1/�max = 0. The energies E(1/�max) of the 2+ state of 6Be
become 2.483 − i0.474 and 2.464 − i0.481 (MeV) for the
GSM+CS and GSM, respectively. The difference becomes
smaller than that of the �max = 5 case. Hence, we can conclude
that both methods provide a sufficient accuracy even for the
calculation of the broad resonant states.

V. SUMMARY

The GSM and GEM+CS are two different theoretical
approaches which allow to describe unbound resonant states.
These two approaches differ in the choice of the basis functions
and the numerical procedure to obtain the eigenvalues. To
benchmark the GSM and GEM+CS approaches, we have
performed a precise comparison for weakly bound and
unbound states using the same Hamiltonian in the COSM
coordinates preserving the translational invariance. For a
weakly bound ground state of 6He, the GSM and GEM+CS
give essentially identical results. For the three-body resonance
states, the GEM+CS and GSM give very close results proving
the reliability of both schemes of the calculation for unbound
states. The slight difference between GSM and GEM+CS
results for broad resonances may have different origins. The
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HO expansion procedure in calculating the TBMEs in the GSM
may lead to rounding errors, especially for broad many-body
resonances. On the other hand, the stationarity condition in
the GEM+CS approach could also be a source of small
imprecision for broad resonances. Based on our results, we
conclude that both approaches are essentially equivalent for
all quantities studied. The other work for a comparison in the
6He system has been done and also shows a good agreement
between two different approaches [44].
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