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ABSTRACT: Finding new enzyme variants with the desired substrate
scope requires screening through a large number of potential variants. In
a typical in silico enzyme engineering workflow, it is possible to scan a few
thousands of variants, and gather several candidates for further screening
or experimental verification. In this work, we show that a Graph
Convolutional Neural Network (GCN) can be trained to predict the
binding energy of combinatorial libraries of enzyme complexes using only
sequence information. The GCN model uses a stack of message-passing
and graph pooling layers to extract information from the protein input
graph and yield a prediction. The GCN model is agnostic to the identity
of the ligand, which is kept constant within the mutant libraries. Using a
miniscule subset of the total combinatorial space (204−208 mutants) as
training data, the proposed GCN model achieves a high accuracy in predicting the binding energy of unseen variants. The network’s
accuracy was further improved by injecting feature embeddings obtained from a language module pretrained on 10 million protein
sequences. Since no structural information is needed to evaluate new variants, the deep learning algorithm is capable of scoring an
enzyme variant in under 1 ms, allowing the search of billions of candidates on a single GPU.

■ INTRODUCTION
Enzyme engineering is the process of tailoring existing
enzymes to enhance some property through alteration of the
sequence of amino acids that constitute the enzyme.1 The
property of interest is typically�but not limited to�catalytic
activity, substrate specificity, enantioselectivity, or thermo-
stability. The most well-established strategies for tailoring
enzymatic properties are directed evolution2 and rational
design.3 The two strategies require large amounts of
experimental or computational effort to find suitable variants.
A third possibility to guide enzyme engineering efforts is

through machine learning (ML), and in particular deep
learning (DL) approaches. Two of the aspects that have
hampered the application of ML in protein engineering are the
large data sets needed for training ML models and the
challenge of meaningfully representing molecules. The former
has been addressed by more efficient architectures (e.g., few-
shot or one-shot learning), by designing unsupervised learning
tasks, or by using the data generated by classical molecular
modeling methodologies (e.g., molecular dynamics trajecto-
ries) as training data. The latter aspect has been addressed by
representing molecules as graphs,4 sequences,5,6 Cartesian
coordinates,7 or vectors obtained via representation learning.8

ML-assisted protein engineering is thus an emerging field, with
recent successes including classification and prediction of the
location of the binding site,9 prediction of the protein 3D
structure from the sequence,10 design of artificial enzymes,11

de novo protein design,12 scoring protein−protein docking

complexes,13 scoring drug target interactions,4,14 low-data drug
discovery with one-shot learning,15 predicting the native-like
probability of every amino acid in a protein sequence,16 and
protein thermostability.17

High-throughput screening of enzyme variants can be done
experimentally or in silico. In wet-lab experiments, it is possible
to screen >106 variants per hour.18 The number of variants that
can be screened in silico depends on the specific methodology
used, which determines the accuracy, and on the computa-
tional resources available. In either case, screening the entire
combinatorial space may not be the most cost-effective strategy
to find suitable candidate variants. A good alternative would be
to train some algorithm, for example a neural network, that
learns to combine mutations and predict the outcome at
lightning-fast speed (super high-throughput screening). DL-
assisted super high-throughput screening of enzyme variants
has been attempted before with varying degree of success.19

Cadet et al.20 used a ML approach with protein spectra
obtained via Fourier transform of the protein sequence to
predict the enantioselectivity of variants of epoxide hydrolase.
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Their ML approach can evaluate 230 enzyme variants in less
than 48 h (∼0.16 ms per variant). Wu et al.21 used shallow
neural networks to evaluate combinatorial libraries from
human GB1 binding protein (fitness) and a putative nitric
oxide dioxygenase from Rhodothermus marinus (enantioselec-
tivity). Liao et al.22 tested the ability of eight ML algorithms to
evaluate mutants of proteinase K using a small data set (<100
variants) with experimentally determined enzymatic activities.
The approach presented in this study uses deep Graph

Convolutional Neural Networks (GCNs) to explore the fitness
landscape of enzyme variants trained on large data sets (104
variants) generated by traditional molecular modeling
approaches, enabling the evaluation of 108 variants in less
than 24 h.
The enzyme herewith explored is an ω-transaminase from

Vibrio fluvialis (Vf-TA) that catalyzes the conversion of ketones
into chiral amines with high enantioselectivity.23 Vf-TA is
interesting from a protein engineering perspective for industrial
production of chiral amines.24 However, the substrate range of
Vf-TA, and other ω-transaminases, often needs to be tailored
to produce the amine of interest.25,26 Searching for enzyme
variants that are better suited to accommodate the molecule of
interest is a laborious task that can be aided by computational
design approaches. Rational design of new Vf-TA variants can
be performed in silico, in which new variants are generated and
scored computationally, and only the best variants are selected
for experimental verification. A computationally inexpensive
strategy for scoring the goodness of Vf-TA variants is by
measuring the Rosetta Interface Energy of the enzyme-ligand
intermediate complex. The Rosetta Interface Energy (from
now on referred to as the binding energy) has been shown to
correlate well with the enzymatic activity of ω-trans-
aminases.27,28 Libraries of Rosetta-generated mutants labeled
with the binding energy (yi) were used to train NNs to predict
the binding energy (ŷi) of unseen variants.
GCNs extend the convolution from regular (e.g., images) to

irregular (graphs) representations.29,30 Similar to classical
Convolutional Neural Networks (CNNs), the pooling
operation allows GCNs to learn increasingly abstract

representations and to discard unnecessary information.
However, the non-Euclidean nature of graphs makes the
convolution operation difficult to define and the application of
GCNs has lagged behind respect to CNNs. GCNs have been
used before to process graphs representing proteins to score
protein−protein13,31 or protein−ligand4 complexes. The two
main approaches to handling convolutions with irregular
shapes are spatial and spectral convolution. The former
attempts to perform convolution directly in the vertex domain
typically by allowing information to flow between neighboring
nodes through architecture-specific propagation rules. The
latter attempts to perform convolutions in the frequency
domain (Fourier-like basis), centering its attention in the graph
Laplacian matrix, L = D − A, where D is the diagonal degree
matrix, = =D Aii j

n
ij1 , and A is the adjacency matrix.

In this work, the spectral GCN proposed by Bianchi et al.32

is used to analyze the Vf-TA variants. The architecture was
chosen because the pooling operation clusters the nodes not
just according to graph topology but also to node features,
which is useful if the graph topology does not change across
mutants but the node features do.

■ METHODS
Training Data Sets. A randomly sampled library

containing 10,000 Vf-TA variants was created to be used as
training data. The variants were created by randomly mutating
a set of predetermined Nhot hotspots, to generate Lth-order
mutants (L = 1, single mutant; L = 2, double mutant; etc.),
into one amino acid sampled from the set of 20 naturally
o c c u r r i n g am i n o a c i d s , AA = {A , C , D , E , F , -
G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. Each example, si, was labeled
(yi) by calculating the binding energy between the enzyme
variant and the ligand (Figure 1A). The ligand (Figure S1) was
maintained constant within the data set of 10,000 variants. The
full data set was split into training (80%), validation (10%),
and test (10%) subsets. The standard data set referred to in the
paper is 1. Additional data sets were generated by changing
the number of hotspots allowed to mutate Nhot = {4,6,8}, the
maximum Lth-order of the generated mutants, the number of

Figure 1. A) Proposed methodology. In the data set, the enzyme variants (si) are labeled with the binding energy of the variant in complex with the
ligand (yi). The data set is used to train a NN, which learns the synergic relationships between mutations and can make predictions for unseen
mutants. B) Graph representation of the query variant. Nodes (circles) represent the protein residues connected by edges (red lines). The nodes
are characterized by a set of attributes (checked rectangles) representing physicochemical properties of the amino acid.
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amino acids allowed as target mutations |AA| = {10, 20}, or the
identity of the ligand LIG = {E1, E2, E3, E4, E5}.

Data Labeling. The enzyme variants were labeled using
the binding energy of the query variant in complex with a
ligand. The binding energy is the Rosetta Interface Energy and,
unless otherwise indicated, the ligand is E4 (Figure S1). The
procedure for performing molecular docking and measuring
binding energies is the same as described in Ramıŕez-Palacios
et al.33 Very briefly, the external aldimine form of the query
compound is docked into the binding site of Vf-TA and the
binding energy is calculated and averaged over 10 replicas. The
binding energies were calculated using the Rosetta suite (build
number 57927).34 The binding energies were whitened to have
zero mean and standard deviation of one, y = (x − mean)/
stdev.

Graph Representation of the Protein. The enzyme
variants were represented as graphs formed by protein residues
(nodes) with pairwise connections (edges). Let = ( , ) be
a graph, where is the set of nodes with F-dimensional real
attributes = { | }=xi

F
i N1,..., , and ε is the set of edges with

S-dimensional real attributes = { | }eij
S

x x x,i j
connecting

nodes i and j. For computation, the graph = A X E( , , ) is
represented by a binary adjacency matrix { } ×A 0, 1 N N ,
node features ×X N F , and edge features × ×E N N S,
where N is the number of nodes (i.e., the number of protein
residues).35

The graph representation of Vf-TA included only nodes
representing residues near the binding site (N = 23) (Figure
2A), and all other residues were truncated away. Including only

Figure 2. A) Example of a graph representation of the binding site of Vf-TA. B) Heatmap showing the edge weight matrix, where the weight of each
edge (eij) is the inverse pairwise distance between nodes i and j. The edge features were maintained constant across mutants. C) Heatmap showing
the feature matrix, where each node (rows) is described by features (along the columns) which are the physicochemical properties of the constituent
amino acid.

Figure 3. Spectral graph convolution as implemented by the employed layers. The message-passing operation consists of neighboring nodes passing
information to each other, which also depends on edges. The pooling operation consists of clustering a subgroup of nodes together according to
graph topology and node features. The purpose of these operations is to reduce complexity and yield a more abstract representation. The coarser
node(s) (orange) contains information from all parent nodes (gray and blue).
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a small subset of protein residues to form the graph helps ease
computations. A smaller subset of those 23 residues was
allowed to mutate, Nhot ∈ N|Ndhot = {4,6,8}. Featurization of the
node matrix, X, was carried out using F features taken from the
AAindex36 (Figure 2C and S4). The AAindex is a collection of
529 biophysical and biochemical properties of amino acids,

|F F1 529. All nodes in the graph were connected to all
other nodes. Finally, the edge attributes, E, were defined as the
inverse of the pairwise distance between the protein residues
Cα atoms, eij = 1/∥ei − ej∥2. Since the position of the protein
Cα atoms does not change significantly upon mutagenesis, the
edge tensor, E, was set to be invariant to the identity of the
mutant (Figure S2). The main advantage of keeping the edges
constant across mutants is that evaluation of new variants can
be done from the protein sequence alone, which massively
reduces the computational cost.

Graph Convolutions. The input graph, , goes through a
stack of convolutional layers to generate an increasingly more
abstract representation of the input signal. The graph
convolution layers used in this work, proposed by Bianchi et
al.,32 were obtained from the Spektral python library, and
consist of a message-passing followed by a graph pooling layer.
The message passing operation is performed using the

GCSConv layer. In this operation, the graph topology remains
intact while the features of each node are updated by rules
learned through training (Figure 3). The output of the
message-passing layer is

= +X AX XReLU( )m s (1)

Where Θm and Θs are the trainable weights of the mixing and
skip component, respectively. Ã is the symmetrically
normalized adjacency matrix, Ã = D−1/2AD−1/2.
The pooling operation is performed using the MinCutPool

layer on X̅, which uses a skip connection to Ã and passes the
input through an MLP, to cluster the graph and yield the
cluster assignment matrix S. Graph clustering helps discard
superfluous information, provides translation invariance, and
reduces model complexity. The coarsened graph, (Apool, Xpool),
is thus a more abstract representation of the protein. The
pooling operation clusters the nodes according to both graph
topology and node features (nodes with similar features are
more likely to be clustered together).
The message-passing and clustering operations can be

performed several times on the newly generated graphs. At
the end, the graph is linearized and passed through a single FC
layer with one output unit.

= +WX by ReLU( )i
pool

(2)

Predictions can then be evaluated using the Mean Squared
Error (MSE).

=
=

MSE
n

y y1
( )

i

n

i i
1

2

(3)

Model Build and Training. The graph convolutional
network models were run using the Spektral35 and Tensor-
Flow37 2.4 libraries. The model is composed of an input layer, a
GCSConv layer, a maxpooling layer, a MLP layer, and an
output layer.32 The models were trained for 200 epochs using
the ADAM optimizer with a learning rate of 1 × 10−4 and
parameters β1 = 0.9, β2 = 0.999, and ε ̂ = 1 × 10−7.38 The input

data was fed to the network in batches of size 1 for training. To
avoid overfitting, early stopping with patience of 40 was used.

Representation Learning Using a Pretrained LSTM
Model. To further improve the accuracy of the trained GCN
models, protein sequence embeddings were fed to the NN
(Figure 4). The sequence of the query variant, si

452, is

converted to a latent space representation, ×hi
LSTM 452 512,

by a pretrained bidirectional LSTM model. The LSTM model
was trained with ∼10 million protein sequences from the Pfam
database (https://github.com/flatironinstitute/DeepFRI). The
latent space representation is then reshaped to a low-d vector
by passing it through a 2D-CNN module that treats the vector
embedding as an image. The hidden representation passes
through two convolutional and two pooling layers to yield an
8-d vector. The 8-d vector is then concatenated to the output
of the penultimate layer of the already-trained GCN module.
The resulting 16-d vector is finally passed through a single
dense layer to produce the final 1-d output vector, yi .

■ RESULTS
The Trained Spectral Graph Convolutional Network

Can Predict Binding Energies with High Accuracy. A
neural network was trained on a mutant library of Vf-TA
enzyme-ligand complexes generated and scored by Rosetta.
The data set is a collection of variants, in which a fixed number
of positions (Nhot ∈ {4,6,8}) were randomly mutagenized. The
targets (yi) correspond to Rosetta binding energies, but any
other type of binding energy would work. The network is
unaware of the identity of the ligand used for training, and
predictions (ŷi) are based solely on the protein sequence (si).
The protein sequence is converted to a graph representation of
the binding site, = A X E( , , ), to serve as input for the
GCN. The neural network thus predicts the binding energies
of unseen enzyme variants using the graph representation of
the protein (Figure 2A). The trained model was not only able
to predict with high accuracy the binding energies of unseen
variants (Figure 5A and S3), but also does it 6 orders of
magnitude faster than Rosetta. Evaluation takes approximately
1.36 ms per screened variant on a single GPU, but it can be
parallelized with more workers within the same GPU. This
massive speed-up opens the possibility of scanning billions of
enzyme variants at a low computational cost. For example, the
search space of all eighth-order variants (octuple mutants) is
208 = 2.56 × 1010, which is virtually inaccessible by traditional

Figure 4. Representation learning approach. The query sequence is
mapped into a latent space representation (si→hiLSTM) by a pretrained
LSTM network. The same protein sequence can be represented as a
graph (Gi = (X,E)) and passed through a pretrained GCN network
(Gi→hiGCN). The two latent space representations are then
concatenated (cat.) and passed through a shallow network to yield
a prediction. The trapezoid represents the dimensionality reduction
via either an FC or a CNN module.
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methods. The proposed methodology enables screening of the
entire search space (Figure 5B).
The GCN model trained on 1 was used to screen the

whole combinatorial space of 1, i.e., 160,000 mutants (Figure
5B black line). The distribution of the entire combinatorial
space of 1 was then compared to the distribution of mutants
obtained when running Rosetta to propose new mutants (n =
2,000). In the run, Rosetta is tasked with proposing mutants
(Figure 5B blue bars) where positions 19, 57, 150, and 85 are
mutated, without limitations or constraints as to the identity of
the amino acids to which these four positions are allowed to
mutate. The two distributions are similar, which suggests that
the GCN model is able by brute force to propose as good
mutants as Rosetta can but at a lower computational cost.
Moreover, the brute force approach can explore variants that
are not near the initial variant (wild-type) in combinatorial or
conformational space (Figure 5C). The screening of the entire
combinatorial space of 1 by the trained GCN predicted the
following five mutants to be the best: F85A_W57F_Y150F
(− 1 5 . 1 4 ) , F 8 5P_W57F_F19Y (− 1 5 . 1 5 ) , F 8 5
V_W57F_Y150F (−15.18), F85G_Y150W_F19W (−15.19),
and F85P_W57F_Y150F_F19Y (−15.29). The number in
parentheses is the energy predicted by the GCN model.
Rosetta later scored these mutants with energies of −15.28,
−15.04, −15.12, −14.35, and −15.52 kcal/mol, respectively.
Except for the mutant with a score of −14.35, the other four
mutants seem promising candidates. For reference, the training
data set contained mutants in the range of −8.84 to −15.38.
How far the trained model can extrapolate to energies outside
the range of the training data set is addressed later in the text
and Figure S7.
The main ligand used in this study is the external aldimine

intermediate of compound 4 (Figure S1). In addition to E4,
other ligands were used for training and testing: E1, E2, E3,
and E5. The ligands E1−E5 were chosen because it has been
experimentally shown that the Rosetta score is a good
predictor of the enzyme’s activity toward these five
compounds.27 Overall, the trained models are accurate in
making binding energy predictions with all five ligands (Figure
S6).
The proposed architecture is ideal for the task because the

MinCutPool layer assigns clusters based on both graph
topology (edge attributes) and node features.32 Since the
majority of the residues in the protein are never mutated, the

graph topology is constant across variants. Because of that,
clustering methods that heavily rely on graph topology would
not perform ideally. For reference, a model using the classical
architecture of Kipf and Welling39 (Spektral layer: GCNConv)
was trained and the results show that while the model is
capable of scoring new protein variants, its performance is
inferior to GCSConv (Table 1). In general, the power of the
graph representations is clear from the poor performance of a
FC dense network, in which no learning occurred.

Since by definition the edge matrix is the same across
mutants (Figure S2), one could ask whether the pairwise
distances are adding any useful information to the network.
Thus, a model was trained without edge information (the
weights of all edges were simply set to 1, eij = 1), which
resulted in a performance penalty (Table 1). This means that
the extra information that the edge matrix provides to the
network, i.e., the relative positions of the protein residues, does
indeed improve performance. Additionally, one could ask
whether the number of residues (nodes) selected beforehand
to be part of the graph representation is optimal. After all, only
4−8 residues are allowed to mutate, and the other 15−19
residues are kept constant. The network may benefit from
knowing the identities of more residues as this would provide
additional information on the environment of the binding site.
A model trained with 291 nodes did not improve performance,
and on the contrary increased the evaluation time 10-fold and
reduced the accuracy of the predictions (Table 1).

Figure 5. A) KDE scatter plot showing the correlation between the GCN-predicted binding energies (y-axis; ŷi) and the Rosetta scores (x-axis; yi)
with the test data set (n = 2,000). B) Histogram showing the distribution of binding energies from the entire combinatorial space (black line)
obtained with the trained model (n = 160,000), overlapped to the histogram obtained with designs proposed by Rosetta (not used for training)
(blue bars) (n = 800). C) When Rosetta is tasked with proposing new variants from a set of predefined mutable positions, the generated variants
will tend to be nearby in combinatorial and conformational space. The variants easily accessible are located close to the wild-type enzyme. The
variants that are farther away are less likely to be generated, especially if a barrier needs to be overcome.

Table 1. Results of the Trained Models on the Validation
and Test Data Sets for Various Architecturesa

Validation Test

Model ↑Acc. ↓Loss ↑r2 ↑Acc. ↓Loss ↑r2

GCSConv 0.44 0.23 0.76 0.46 0.23 0.77
GCSConv (no edges)b 0.60 0.56 0.44 0.60 0.54 0.47
GCSConv (extra
nodes)c

0.75 0.72 0.31 0.75 0.66 0.34

GCNConv 0.59 0.46 0.57 0.59 0.45 0.55
Dense 0.00 1.00 −1.0 0.00 1.00 −1.00
aData Set is 1.

bAll edges were simply set to 1. cNumber of nodes
was increased from 23 to 291. Evaluation time increases to 14.1 ms
per variant.
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The data set insofar used for training and testing the NNs
contained single, double, triple, and quadruple mutants (L = 1,
2, 3, and 4, respectively) on Nhot = 4 positions (positions 19,
57, 150, and 85 are allowed to mutate). With Nhot = 4, the total
combinatorial space is 1.6 × 105 variants, which means that the

training data set of 1 × 104 variants covered 6.25% of the total
combinatorial space (Figure S5). Additional data sets with
more hotspot positions and higher-order mutants were tested
(Table 2). With Nhot = 6, the training data represents 0.015%
of the total combinatorial space of 6.4 × 107 variants. And with

Table 2. Data Sets Used for Traininga

Name Nhot Nhot positions Lmax
b |AA|c Search spaced

D1 4 F19,W57,Y150,F85′ 4 20 1.6 × 105

D2 6 F19,W57,Y150,A228,R415,F85′ 6 20 6.4 × 107

D3 8 F19,W57,Y150,V225,A228,R415,F85′,F86′ 8 20 2.56 × 1010

D4 8 F19,W57,Y150,V225,A228,R415,F85′,F86′ 4 20 1.12 × 107

D5 4 F19,W57,Y150,F85′ 4 10 1 × 104
aThe number of examples per data set is 10,000 variants. 1 is the main data set used in this study, it contains mutants of degrees 1, 2, 3, and 4
(Lmax = 4) in 4 positions (Nhot = 4) that are allowed to mutate to any of the 20 standard amino acids (|AA| = 20). The search space of 1 is
therefore 1.6 × 105. Data set 3 (Lmax = 8, Nhot = 8) also resembles conditions relevant in enzyme design campaigns, with a search space of 2.56 ×
1010. In all cases, ligand is E4. bMaximum allowed mutant degree. Lmax = 4, means that single (L = 1), double (L = 2), triple (L = 3), and quadruple
(L = 4) mutants were allowed. cThe number of amino acids allowed as target mutation, |AA|, was reduced to 10 in 5: AA =
{A,C,D,E,G,H,I,K,L,M}, to see if the trained model could generalize to unseen amino acids, i.e., AA = {F,N,P,Q,R,S,T,V,W,Y}. dThe search space for
each data set was calculated with the following formula: C(Nhot,L)·|AA|L, where C(Nhot,L) is the combination of L items (mutant degree) taken from
the set of size Nhot (number of hotspots), and |AA| is the number of amino acids allowed (normally 20).

Table 3. Performance of the GCN and LM-GCN Models on Various Data Setsa

GCN model LM-GCN model

Data set Train Validation Train Validation

Train Eval. ↑r2 ↓loss ↑r2 ↓loss ↑r2 ↓loss ↑r2 ↓loss
D1 D1 0.819 0.182 0.813 0.188 0.808 0.158 0.805 0.194
D2 D2 0.574 0.427 0.552 0.435 0.667 0.310 0.651 0.356
D3 D3 0.502 0.498 0.497 0.489 0.642 0.347 0.625 0.368
D4 D4 0.596 0.405 0.588 0.405 0.601 0.399 0.597 0.405
D5 D5 0.786 0.213 0.778 0.227 0.852 0.152 0.855 0.147
D5 D1 − − 0.602 0.403 − − 0.638 0.361
D4 D3 − − 0.396 0.587 − − 0.449 0.542

aThe architecture of the LM-GCN model is shown in Figure 6. The size of the data sets is 10,000 examples, with 80:20 split for training and
validation, respectively.

Figure 6. LM-GCN model. A) The LM-GCN model consists of a pretrained LM module, a trained GCN module, and a 2D-CNN module. All
layers from the LM and GCN modules are frozen when training the LM-GCN model during 200 epochs. The prediction reached by the combined
LM-GCN model is better than the predictions of the GCN model alone. β represents the batch size. B) and C) are the correlations for the GCN
and LM-GCN model, respectively. Training was done on the Nhot = 8 data set. The 2D-CNN module using the LM embeddings (

×hi
LSTM 452 512, where 452 is the length of the enzyme sequence and 512 is the number of units in the pretrained LM) as input vectors can

achieve a correlation r2 = 0.43 on its own, lower than the correlation of the GCN and LM-GCN models.
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Nhot = 8, the training data represents a mere 0.000039% of the
total search space of 2.56 × 1010 variants. Gratifyingly, the
GCN models were still able to perform well on the prediction
task but with a reduced accuracy (r2 = 0.52 for Nhot = 8)
(Table 3). An easy solution to increase the accuracy of the
trained NN is to increase the number of examples in the
training data set. Training the NN with a larger data set of 5 ×
104 variants (0.00019% of the total combinatorial space)
marginally increased the accuracy to r2 = 0.59. However,
increasing the size of the training data set is not always the
optimal solution, especially when more sophisticated and
expensive methodologies are used to label the mutants.
Instead, we increased accuracy by feeding vector embeddings
from a pretrained language model (see below).
Unsurprisingly, the degree of the mutants in the training

data set had an impact on the model’s performance. A model
trained and evaluated on a data set containing first−fourth
order mutants (e.g., 4, r

2 = 0.588, loss = 0.405) performed
better than a model trained and evaluated on a data set
containing first−eighth order mutants (e.g., 3, r

2 = 0.497, loss
= 0.489). Models trained with lower-order mutants did not
generalize well to higher-order mutants, as shown by the
results of the model trained on 4 but evaluated on 3 (r2 =
0.396 and loss = 0.587) (Table 3). Furthermore, the NN did
not generalize to unseen amino acids either. A NN trained on
the 5 data set, which contained mutants with only 10 amino
acids (Ala, Cys, Asp, Glu, Gly, His, Ile, Lys, Leu, or Met), was
not particularly good at evaluating mutants from the 1 data
set, which contained mutants with all 20 amino acids (r2 =
0.602, loss = 0.403) (Table 3).

Vector Embeddings from a Pretrained Bidirectional
LSTM Module Can Increase Accuracy. The pretrained
LSTM model maps the protein sequence, si, to a vector
representation, hi, that can be fed to the GCN model to
improve predictions. The projection, si→hi, is made in the
context of all the 10 million Pfam protein sequences with
which the LSTM model was trained. Thereby, mutant
sequences that are close to the sequences with which the
LSTM was trained (e.g., mutant sequences that do not have a
Pro residue within an α helix region) will be close in the
embedding space. The vector embeddings, ×hi

452 512, are
passed through a 2D-CNN module to project them to a low
dimensional 8-d vector. The 8-d vector is concatenated with
the 8-d vector produced by the trained GCN module, resulting
in a 16-d vector that can then be passed through as single
dense layer with one output unit to generate a prediction, ŷi.
The model presented in Figure 6 was trained keeping both the
GCN and the pretrained LSTM modules frozen. After training
for 200 epochs, the resulting LM-GCN model outputted better
predictions than the GCN model alone (Figure 6B,C; Table
3). Originally, a representation learning strategy more similar
to the one reported by Gligorijevic et al.9 was attempted, using
the hidden state representation from the last amino acid
position of the input sequence of length |si| = 452. The
mutations in the Vf-TA data set occur in positions 19, 57, 85,
86, 150, 255, 228, and 415, which means that the signal from
the early substitutions (e.g., position 19) will have degraded by
the time we arrive at the last position (Figure S8). Therefore,
the embeddings coming from all positions were used, more
similar to the strategy of Bepler and Berger.40

Applicability in Protein Engineering Campaigns.
There are three limitations to consider for the application of

the presented methodology in protein engineering campaigns.
1) Generation of the training data set can be expensive.
Scoring 10,000 mutants using Rosetta with 10 replicas each
required 1,600 core-hours, which is equivalent to a runtime of
133 h on a desktop with 12 threads per CPU (HP workstation
Z4 with an Intel Xeon W-2135 processor). Training the model
only takes 0.5−2 h on a GPU (NVIDIA GTX 1080). Once the
model has been trained, evaluation of new mutants takes less
than 1 ms, which is 1 × 106 times faster than Rosetta. 2) If
good mutants are not already present in the training data set,
the model is not expected to extrapolate to the region of good
scores. However, we did find that a model trained only with
bad mutants was still able to give the best scores it could to
good mutants when tested (Figure S7). 3) Mutants that
significantly change the protein backbone conformation might
prove difficult because we set the edge attributes, i.e., the
pairwise distances between protein residues Cα atoms, to
remain constant across mutants. In practice, we do not expect
the protein backbone to change considerably with mutants of
degree 1−8 (Figure S2) or Rosetta to be able to move the
protein backbone to beyond ∼1 Å.41 Moreover, the NN was
observed to still make predictions even when all edge attributes
were set to 1.0 (Table 1), which means that while edge
attributes help accuracy, they are not essential. While these
limitations should generally not hinder applicability to protein
engineering campaigns, we believe the importance of this study
should be in the fact that a simple algorithm lacking much
awareness about the identity of the molecules involved is
capable of learning the intricate synergic relationships needed
to assess new combinations of mutants.

■ DISCUSSION
In this work, it has been shown that it is possible to train a
neural network to learn the intricate synergic relationships
needed to assess mutants resulting of the combination of two
or more individual mutations. The main advantage of the
presented deep learning strategy for predicting binding
energies of protein−ligand complexes is the massive speed-
up compared to traditional computational HTS screening
methods. The trained DL model can, after ∼2 h of training,
predict the binding energy of unseen enzyme variants in 1.36
ms with high accuracy, enabling super high-throughput
screening. Computational strategies for fast screening of
enzyme variants are useful because of the astronomic size of
the combinatorial space that can be explored. Targeted
mutagenesis efforts explore a limited number of variants in
search of a good variant, typically by mutating 4−8 positions
around the binding site, but the combinatorial space of 8
positions amounts to 208 possible variants. One possibility
could be to generate all possible single mutants in 8 positions
(8 × 20 = 160 variants) and combine the best amino acid from
each position to generate double or higher-order mutants.
However, such a strategy would not take correlations into
account, i.e., the effect that mutating a position in the vicinity
can have on the ability of the enzyme to catalyze the desired
reaction. Another way to explore the combinatorial space
without exhaustive screening of the entire combinatorial space
is to generate library pathways, but it may produce a
nonoptimal solution or a dead end.42 By contrast, this work
proposes to train a neural network to learn the combinatorial
space from a few examples, and then use the trained network
to scan the entire combinatorial space at high speed. Using
NNs to solve the combinatorial libraries task has, thus, the
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potential to reduce the experimental (or computational) effort
required to explore the combinatorial space in search of good
enzyme mutants.
Feature injection has been used before in biological

problems to either achieve higher performance9,40 or train
with small data sets.4,15,43 And, the idea of using pretrained
models to learn continuous vector embeddings to be used in
combinatorial libraries has previously been attempted.44 In that
early study, the method was unsuccessful and the authors note
that protein design and protein classification (i.e., the task on
which using the vector embeddings was successful) are two
very distinct tasks and that the vector embeddings are only
100-d, which is not enough to represent a protein. In this
study, the vector embeddings (sized [452,512]) come from a
model pretrained on a data set of protein sequences 20 times
larger.9,45 The method hereby presented was successful in
increasing the accuracy of the network upon injection. The
idea was that the trained embeddings (hi) contain information
about the query sequence (si) in the context of all protein
sequences seen during training (S = {s1,s2, ...,s∼10 000}). For
example, mutation to Proline of a position within an α helix
would prevent the continuation of the α helix, and decrease the
ability of the LSTM model to predict the next residue in the
sequence. The embeddings coming from this mutant sequence
can be interpreted by the network to improve binding energy
predictions (Figure S8).
In practice, the use-cases of the presented strategy are

limited. The obvious application would be in exploring the
entire combinatorial space to find the top-scoring variants
(Figure 5C). However, the main problem is that the Rosetta-
generated binding energies are never perfect, and the
discovered variants may not necessarily work out in wet-lab
experiments. The binding energies could be generated by more
sophisticated or accurate methods (e.g., molecular dynamics
simulations or experimental enzymatic activities) with the
increased cost (computational or in lab equipment) in
generating the training data set. Another possibility would be
to train the model with a massive data set generated by a
computationally inexpensive methodology (e.g., Rosetta) and
later retrain it on the smaller but more accurate data set.
Another application could be in exploring and comparing the
entire combinatorial spaces of seemingly related enzymes (for
example the ω-TA from Vibrio fluvialis and Chromobacterium
violaceum). Beyond potential use cases, the success of the
presented methodology in evaluating unseen mutants by a
neural network unaware of the identity of the ligand or any
structural information also hints that the task may not be as
complex as initially thought.

■ CONCLUSIONS
The proposed deep learning strategy for predicting the binding
energy of enzyme variants with the ligand of interest achieved a
high accuracy after training with a data set sized a miniscule
fraction of the total combinatorial space. The methodology
leverages the high combinatory power of neural networks to
quickly learn patterns for combining mutants from a few
examples. The naked GCN module achieved high accuracy
when the number of mutation hotspots was small, but the
accuracy decreased in data sets with a larger number of
mutation hotspots. The combined LM-GCN module enhanced
the predictions of the GCN module by injecting feature
vectors generated by a pretrained LM module.
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