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******************** 

 

Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus 
jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-
specifically incorporated unnatural amino acids (UAA) in high yields through the use of 
optimized amber suppressor tRNACUA

opt and optimization of reagent concentrations. The 
efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using 
a polyspecific synthetase evolved previously for p-cyano-phenylalanine, and the incorporation of 
UAAs at two different sites of the same protein without any re-engineering of the E. coli cells 
used to make the cell-free extract. 

 

********************** 
 
 
 
Keywords: aminoacyl-tRNA-synthetase, cell-free protein synthesis, Escherichia coli, suppressor 
tRNA, unnatural amino acids 
 
Abbreviations: AcF, p-acetyl-phenylalanine; AzF, p-azido-phenylalanine; Bpa, L-4-benzoyl-
phenylalanine; Bpy, L-bipyridylalanine; CECF, continuous exchange cell-free; CF, cell-free; 
Cmr, chloramphenicol resistance; CNF, p-cyano-phenylalanine; Hco, 7-hydroxy-coumarin-4-yl-
ethylglycine; RS, aminoacyl-tRNA-synthetase; tfmF, L-4-trifluoromethyl-phenylalanine; 
tRNACUA, amber suppressor tRNA derived from M. jannaschii and optimized for UAA 
incorporation in E. coli in 2001; tRNACUA

opt, recently further optimized tRNACUA; UAA, 
unnatural amino acid. 
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1. Introduction 

Unnatural amino acids (UAA) positioned in proteins at strategically chosen sites open an 
exciting new range of possibilities for the study and engineering of proteins and their interactions 
with other molecules. The most successful approach for site-specific incorporation of UAAs is 
by genetic encoding, where an amber suppressor tRNA is enzymatically charged with the UAA. 
With the advent of efficient orthogonal suppressor-tRNA (tRNACUA)/aminoacyl-tRNA 
synthetase (RS) systems, this is possible in vivo [1,2]. It has recently been shown that 
tRNACUA/RS systems evolved for in vivo incorporation of UAAs can also be used in cell-free 
(CF) protein synthesis [3-7]. In general, modern CF systems produce more protein in a given 
volume of medium than in vivo systems [8,9], which would make them attractive for the 
production of proteins from expensive UAAs. In addition, optimal reagent concentrations vary 
among different UAAs, mutants and proteins, highlighting the importance of controlling reaction 
conditions, which is difficult to achieve in in vivo systems.  

 Here we report an efficient implementation of tRNACUA/RS systems for the incorporation 
of different UAAs in a continuous exchange CF (CECF) system. CECF systems enhance protein 
yields by the exchange of low-molecular weight compounds across a dialysis membrane [10]. 
Our system is based on an E. coli CECF system supplied with orthogonal suppressor-tRNA 
(tRNACUA) and aminoacyl-tRNA synthetases (RS) evolved from M. jannaschii [2]. By 
optimization of the reagent concentrations, the system readily produces proteins with UAAs in 
yields comparable to those of the wild-type. A recently optimized amber suppressor tRNACUA

opt 

[11] is found to perform as well or better than the original tRNACUA [1]. We demonstrate the 
production of proteins containing UAAs at two different sites, without any need for orthogonal 
ribosomes [12] or extensively reengineered E. coli strains [13-15]. Furthermore, we show that a 
polyspecific RS enzyme [16] that has not previously been used for the incorporation of 
trifluoromethyl-phenylalanine (tfmF) delivers excellent protein yields at increased RS 
concentrations. Our system allows protein expression from conventional pET vectors [17] or 
linear DNA containing the T7 promoter and terminator. By expressing the genes from linear 
PCR-amplified DNA [18], the amber mutations and corresponding UAAs are readily introduced 
at different sites without any cloning step, creating a high-throughput system.  
 
2. Materials and Methods 

2.1. Materials 

Synthetic oligonucleotides were purchased from GeneWorks (Hindmarsh, SA, Australia) or 
Integrated DNA Technology, Inc. (Coralville, IA, USA). The sequences of oligonucleotides used 
are listed in Table S1 (Appendix A). The plasmids pEVOL-pAcF [11], pEVOL-pAzF [11], 
pEVOL-pCNF [11,16], pEVOL-CouA [11,19], pSup-MjTyrRS-6TRN [20] and pSup-BpaRS-
6TRN [20] were obtained from Prof. Peter G. Schultz (Scripps Research Institute, CA, USA). 
Vent DNA polymerase, restriction enzymes and other enzymes for cloning were from New 
England Biolabs (Ipswich, MA, USA). The NucleoSpin Extract II kit was obtained from 
Macherey-Nagel (Düren, Germany). E. coli strains BL21Star (DE3) and BL21 (DE3)/pLysS 
were from Invitrogen (Carlsbad, CA, USA).  ProPur IMAC Mini spin columns were purchased 
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from Nalge Nunc International (USA). L-4-Benzoyl-phenylalanine (Bpa) and L-4-trifluoro-
methylphenylalanine (tfmF) were purchased from Peptech Corporation (Burlington, MA, USA), 
and p-acetylphenylalanine (AcF) and p-azidophenylalanine (AzF) were obtained from Mr Ansis 
Maleckis (University of Latvia). All other standard chemicals necessary for cell-free protein 
synthesis were as described previously [21]. 
 
2.2. tRNACUA and tRNACUA

opt expression vectors 

Total tRNA containing tRNACUA derived from M. jannaschii [1] or a newly optimized version 
(tRNACUA

opt) [11] was purified from E. coli cells containing tRNACUA or tRNACUA
opt expression 

vectors. To generate an expression vector for tRNACUA, the wild-type MjTyrRS gene was excised 
from the plasmid pSup-MjTyrRS-6TRN (4379 bp) [20] using NdeI and PstI. The resulting vector 
was treated with T4 DNA polymerase to generate blunt ends and the blunt-ended vector was re-
ligated. The resulting plasmid was termed pSUP-6TRN (about 3.2 kb, Cmr). It contains two sets 
of three copies of M. jannaschii amber suppressor tyrosyl-tRNACUA (tRNACUA). To generate an 
expression vector for tRNACUA

opt, the vector pEVOL-pAcF (about 6.1 kb, Cmr) was digested with 
BglII and PstI to remove the AcF-RS gene, treated with T4 DNA polymerase to generate blunt 
ends and re-ligated. The resulting plasmid was termed pKO1474 (about 4 kb, Cmr). It contains a 
single copy of the recently optimized M. jannaschii amber suppressor tyrosyl-tRNACUA 
(tRNACUA

opt [11]).  
 
2.3. Expression and purification of total tRNA containing suppressor tRNACUA  

Preparations of total tRNA containing suppressor tRNACUA
 were obtained from E. coli BL21 Star 

(DE3) cells harboring the plasmid pSUP-6TRN (for tRNACUA [20]) or pKO1474/pEVOL-AcF 
(for the optimized tRNACUA

opt [11]). The cells were grown at 37˚ C in 20 L of Z medium [21] (pH 
7.3) supplemented with 22.4 mM glucose, 10 mg/L thiamine and 33 mg/L chloramphenicol in a 
fermenter [21,22] until A595 = 3.0. While 15–16 L of this culture were used for subsequent 
preparation of S30 extracts (see below), the remaining 4–5 L were used for purification of 
tRNACUA (or tRNACUA

opt). 20 g of cells were resuspended in 100 mL of 0.3 M potassium acetate 
solution (pH 4.8) and the cells were disrupted by being passed twice through a French press at 
12,000 psi. Next, an equal volume of water-saturated phenol was added. After vigorous shaking 
for 1 h at room temperature, the greenish mixture was centrifuged at 18,000 rpm (using a Sorvall 
SS-34 rotor) for 30 min. The supernatant was subjected to ethanol precipitation. The resulting 
pellet was air-dried and resuspended in 100 mL of Milli-Q water. It was loaded onto a 2.5 x 8 cm 
column of Q-Sepharose (Amersham Pharmacia) equilibrated with equilibration buffer (20 mM 
Tris-HCl, pH 7.5, 10 mM MgCl2, 0.2 M NaCl). The column was washed with 120 mL of 
equilibration buffer and the total tRNA was eluted with running buffer (20 mM Tris-HCl, pH 
7.5, 10 mM MgCl2, 1 M NaCl) at a flow rate of 1.0 mL/min. The eluted tRNA was subjected to 
ethanol precipitation and resuspended in sterile Milli-Q water to make a 17.5 mg/mL stock 
solution. Typical yields were about 85 mg of total tRNA. The tRNA concentration was 
determined by measuring A260 with a NanoDrop spectrophotometer (Thermo Scientific, USA), 
assuming A260 ≈ 40 µg tRNA/mL. 
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2.4. RS enzyme preparations 

The M. jannaschii-derived RS enzymes BpyRS, BpaRS, AzF-RS, AcF-RS, HcoRS and CNF-RS 
for the incorporation of different UAAs [2] were individually produced with His6-tags and 
purified. The wild-type MjTyrRS was overexpressed and purified without a His6-tag. Detailed 
protocols are provided in Appendix A.  
 
2.5. Preparation of E. coli S30 extracts 

S30 extracts were prepared from the cell cultures grown for suppressor-tRNA preparation (see 
above) using E. coli BL21 Star (DE3) containing pSup-6TRN (or pKO1474 for the optimized 
tRNACUA

opt), using our published standard procedure [21]. Over-expression of T7 RNA 
polymerase was induced with 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) at A600 = 1.0 
and the cells were harvested after a further 2 h incubation at 37 ˚C, A600 = 3.0 [21,22]. S30 
extracts prepared from E. coli BL21 Star (DE3) without any additional plasmids (but including 
induction of T7 RNA polymerase) performed equally well for the incorporation of UAAs in 
CECF experiments.  
 
2.6. Cell-free reactions  

CECF reactions were carried out as described previously [21], using either plasmids or PCR-
amplified DNA as DNA templates, in 0.2 or 0.6 mL reaction mixtures in a dialysis bag 
suspended in a ten times larger volume of outer buffer. The inner buffer was supplied with 
purified RS and tRNA, and inner and outer buffers contained the 20 natural amino acids and the 
UAA (each at 1 mM). Except for the additional presence of tRNACUA and RS and UAA, the 
reactions were performed at 30 ˚C in 7 hours or overnight as described previously [21]. 

 
2.7. WNVpro mutants Trp53TAG and Tyr132TAG 

The WNVpro construct and the mutants with amber stop codons replacing W53 and Y132 were 
described previously [5,6].  
 
2.8. WNVpro double-mutant Glu101TAG/Lys104TAG 

The double-amber mutant Glu101TAG/Lys104TAG of the WNVpro-K96A gene was prepared 
in two rounds of PCR, always using Vent DNA polymerase. First, the site-specific mutation was 
introduced in two separate PCR reactions (50 µL each) with 20–30 ng of pRSET-5b-WNVpro-
K96A template [11]. The first reaction used primer 1375 and the reverse primer 2231 (containing 
the desired mutations) and the second reaction used the forward primer 2230 and primer 1376 
(Table S1). The PCR products were separately purified by 1.5% agarose gel electrophoresis and 
extraction from the gel using the NucleoSpin Extract II kit (Macherey-Nagel, Düren, Germany) 
to remove the residual primers and template plasmid. The gel-purified 5’ and 3’ DNA fragments 
from the first round of PCR were mixed together in equimolar ratio to produce the template (20–
30 ng) for the second round of PCR (50 µL) using the primer pairs 1375 and 1376 (Table S1). 
The resulting PCR product was digested with NdeI and EcoRI, followed by agarose gel 
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purification and isolation using the NucleoSpin Extract II kit. The isolated WNVpro-K96A gene 
with the double-amber mutation Glu101TAG/Lys104TAG was cloned into the NdeI–EcoRI sites 
of the high-copy number pRSET-5b T7-expression vector [23]. 
 
2.9. DnaB mutant Phe166TAG 

The template DNA of the DnaB Phe166TAG mutant was prepared as linear PCR-amplified 
DNA without cloning into a vector. Similarly to the double-amber mutant of WNVpro, the 
template DNA was prepared in two rounds of PCR, using Vent DNA polymerase for all PCR 
reactions. Starting from plasmid DNA with the  E. coli dnaB gene in the vector pETMCSIII [24]. 
The first round used primer 1375 and the reverse primer 2572 (containing the desired mutation) 
and the forward primer 2571 and primer 1376 in separate reactions. Following gel-purification 
and mixing in equimolar ratio as described above, the second round of PCR appended the T7 
promoter and terminator sequences in two separate PCR reactions (50 µL each) using the primer 
pairs 1131 and 1134, and 1132 and 1133, respectively (Table S1), with a mixture of 20–30 ng of 
purified PCR products from the first round. The two PCR products were mixed in an 
approximately equimolar ratio and the residual primers removed using the NucleoSpin Extract II 
kit. Following denaturation at 95 ˚C (5 min) and reannealing at room temperature (5 min), this 
generated DNA with complementary single-stranded 8-nt overhangs suitable for cyclization by 
the intrinsic ligase activity of the cell extract [18,22]. The reannealed DNA solution was used as 
the template for subsequent cell-free protein synthesis at a concentration of about 10 µg DNA 
per mL of reaction mixture. 
 
3. Results 

3.1. CECF reactions 

Our CECF system is based on the system described by Kigawa et al. [10], which we modified in 
several aspects [21], most importantly by using an S30 extract from the OmpT protease deficient 
E. coli strain BL21 Star (DE3) and by inducing the cells grown to produce the S30 extract with 
IPTG at A600 = 1 to produce T7 RNA polymerase, obviating the need for additional polymerase 
during the CF reactions. In addition, tRNACUA derived from M. jannaschii [1] or a newly 
optimized version (tRNACUA

opt) [11] was provided together with the natural tRNAs by supplying 
a total tRNA mixture purified from E. coli cells containing tRNACUA or tRNACUA

opt expression 
vectors, and the M. jannaschii-derived RS enzymes for the incorporation of different UAAs [2] 
were provided as purified proteins following expression with a His6-tag.  
 
3.2. Comparison of tRNACUA

 and tRNACUA
opt 

Fig. 1 shows that the protein yields in CECF synthesis with UAAs depended on the sequence 
context of the amber stop codon. Total tRNA containing the tRNACUA

opt optimized previously for 
in vivo expression [11] invariably performed as well or better than the original tRNACUA [1] for a 
range of different proteins (Fig. 1 and unpublished results).  
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Fig. 1. Incorporation of 7-hydroxycoumarin-4-yl-
ethylglycine (Hco) into the West Nile virus protease 
(WNVpro) amber mutants Trp53TAG and Tyr132TAG, 
using tRNACUA [1] or tRNACUA

opt [11] in the CECF 
reaction. The concentrations of tRNA (263 µg/mL) and 
HcoRS (180 µg/mL) were the same in all reactions. FL: 
full-length product. TR: truncated product. The truncated 
product fluoresces weakly because of the high tryptophan 
content of WNVpro (K. V. Loscha, unpublished results). 
(A) SDS-PAGE photographed under UV (312 nm). (B) 
Same gel as in (A) following staining with Coomassie 
blue. 
 
 

 
 
3.3. Incorporation of UAAs at two different sites in the same protein 
 
Using tRNACUA

opt, we tested the possibility of incorporating two UAAs at two different sites, 
using the double mutant WNVpro with amber codons at positions 101 and 104. Fig. 2 shows that 
CECF reactions with tRNACUA

opt delivered good yields with a range of different UAAs. As might 
be expected for different RS activities, different UAAs were incorporated with different 
efficiencies under otherwise similar conditions. Most notably, for p-acetyl-phenylalanine (AcF), 
bipyridyl-phenylalanine (Bpy) and Hco, the expression yields approached that of the wild-type 
protein without UAAs (Fig. 2). 
 

 
 
 
 
 
 
 

Fig. 2. Incorporation of UAAs into WNVpro at two different sites. The codons for Glu101 and 
Lys104 were replaced by amber codons. In all experiments, the concentration of total tRNA 
containing tRNACUA

opt was 175 µg/mL and the UAA was present at 1 mM. Wild-type and mutant 
MjTyrRS were supplied as purified proteins. Except for the wild-type MjTyrRS, all RS had an N-
terminal His6-tag. The lanes are labeled with the UAA used. wt: control without amber codons. Tyr: 
double amber mutant made using 1.1 mg/mL MjTyrRS; Bpa: 1.1 mg/mL BpaRS; AzF: 1.1 mg/mL 
AzF-RS; 1.1 mg/mL AcF-RS; Bpy: 1.4 mg/mL BpyRS; 0.87 mg/mL HcoRS. The proteins were 
purified over a Ni-NTA column. The bands of the His-tagged RS enzymes were used as internal 
references for estimating the yield of the WNVpro mutants. The SDS-PAGE (15%) gel was stained 
with Coomassie blue for visualization.3.4. Incorporating trifluoromethyl-phenylalanine using a 
polyspecific RS. 
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 p-benzoyl-phenylalanine (Bpa) and p-azido-phenylalanine (AzF) produced full-length 
protein in relatively poor yields in the double-mutant of Fig. 2. In the case of Bpa, expression 
yields similar to wild-type were obtained by increasing the concentration of tRNACUA

opt, whereas 
the incorporation of AzF increased only little (Fig. 3A). This may be attributed to different 
activities of the respective RS mutants.  

 
 

Fig. 3. Optimization of tRNA 
concentration. The SDS-PAGE (15%, 
Coomassie blue stained) gels showing 
CECF-produced WNVpro and DnaB. 
A) Wild-type and mutant WNVpro 
produced in the presence of synthetase 
(either 0.54 mg/mL BpaRS or AzF-RS) 
and the matching UAA (1 mM Bpa or 
AzF). Left-most lane: wild-type 
WNVpro. All other lanes show the 
double-amber mutant WNVpro 
Glu101TAG/Lys104TAG (where TAG 
denotes the UAA). The concentrations 
of total tRNA containing tRNACUA or 
tRNACUA

opt are indicated at the top. FL: 
full-length protein. TR: truncation 
products resulting from the two amber 
stop codons. B) DnaB Phe166tfmF 
produced in the presence of CNF-RS 
(1.4 mg/mL), tfmF (1 mM) and varying 
amounts of total tRNA containing 
tRNACUA

opt as indicated at the top. 

 The yields of WNVpro Glu101Bpa/Lys104Bpa were maximal already at 350 µg/mL 
(Fig. 3A). In contrast, using twice as much tRNACUA

opt more than doubled the protein yield when 
L-4-trifluoromethyl-phenylalanine (tfmF) was incorporated into the Phe166TAG mutant of the 
E. coli DnaB helicase, using the polyspecific RS enzyme evolved for incorporation of p-cyano-
phenylalanine (CNF) [16] (Fig. 3B). To compensate for non-optimal activity with tfmF, the 
DnaB Phe166tfmF mutant was made in the presence of 2.6-fold more RS enzyme than the 
WNVpro double-amber mutant. Fig. 4 shows that over 2 mg/mL of DnaB F166tfmF could be 
produced at high RS and tRNACUA

opt concentrations, with virtually no premature truncation of the 
protein.  
 
4. Discussion 
 
Early experiments employed cell-free protein synthesis to demonstrate the possibility of site-
specific incorporation of UAAs into proteins following chemical loading of suppressor tRNA 
with the UAA [25]. Subsequent development of orthogonal tRNA/RS systems that achieve 
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specific and efficient loading of the suppressor tRNA with the UAA in vivo [1,2] shifted 
attention to in vivo systems.  

CECF protein synthesis adds distinct advantages to the orthogonal tRNA/RS systems for 
producing proteins with UAAs. (i) CF synthesis tends to produce significantly higher protein 
yields per amino acid than in vivo protein expression [8,9], which is important for expensive 
UAAs. (ii) The possibility to adjust the concentrations of suppressor tRNA and RS is critical for 
high protein yields, as optimal conditions depend on the sequence context of the amber codons 
and on the UAA. Adjusting the concentrations of tRNA and RS is much harder to achieve in 
vivo. For example, the present study demonstrates that the polyspecific CNF-RS [16] can 
efficiently incorporate tfmF into proteins, if CNF-RS is supplied at increased concentration. 
Similarly high concentrations of the RS enzyme would be difficult to achieve in vivo without 
impeding the expression of the target protein. (iii) We showed that two UAAs can readily be 
incorporated into the same protein without need to impair the activity of RF1, a feat that has 
previously been achieved only with heavily reengineered systems [13,26.28-30].  
 A tRNACUA/RS system [2] has been implemented earlier in a CF system operating in 
batch mode [3,4]. We prefer to use a CECF system because it produces more protein from a 
smaller reaction volume, reducing the amount of macromolecular reagents (S30 extract, DNA, 
tRNA and purified RS), which tend to be more costly than the UAAs. In the reported batch mode 
system, inactivation of the OmpT protease proved deleterious to protein yields [3]. In contrast, 
we obtain high yields from conventional T7 vectors using the S30 extract from the E. coli ompT 
strains BL21 Star (DE3) and Rosetta (DE3). 
 In principle, access to the reaction mixture in CF systems opens the possibility to 
inactivate the release factor RF1, ensuring that the amber stop codon is only recognized by 
tRNACUA. In our hands, however, preliminary experiments using anti-RF1 antibodies [31] or RF1 
aptamers [32] gave no improvements over the results shown in Fig. 2.  Notably, however, the 
performance of the CECF system described here already works reliably with different proteins 
and UAAs. As expected and demonstrated here, the system allows protein synthesis from linear 
PCR-amplified DNA [18] also with UAAs, making it easy to generate many different amber 
mutants as required for systematic mutation studies in a high-throughput approach [33]. 
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Appendix A 

Supplementary Material 

 
High-yield cell-free protein synthesis for site-specific incorporation of  

unnatural amino acids at multiple sites 
 

Kiyoshi Ozawa, Karin V. Loscha, Kekini V. Kuppan,  
Choy Theng Loh, Nicholas E. Dixon, Gottfried Otting 

 
Table S1.  PCR and mutagenesis primers used in this study1 

1131 5'-PO4-TTAGCTGGTCGATCCCGCGAAATTAATACG-3' (30-mer)  
1132 5'-PO4-CCAGCTAACAAAAAACCCCTCAAGACCCG-3' (29-mer) 
1133 5'-PO4-TCGATCCCGCGAAATTAATACG-3' (22-mer)  
1134 5'-PO4-CAAAAAACCCCTCAAGACCCG-3' (21-mer) 
1375 5’-TCGATCCCGCGAAATTAATACGACTCAC-3’ (28-mer) 
1376 5’-CAAAAAACCCCTCAAGACCCGTTTAGAG-3’ (28-mer) 
1398 5'-TTTTTTTTCATATGGACGAATTTGAAATG-3' (29-mer) 
1402 5'-TTTACGCGTTTATAATCTCTTTCTAATTGG-3' (30-mer) 
1447 5'-TTTTTTTTCATATGGACGAATTTGAAATGATAAAGAG-3' (37-mer)  
1448 5'-TTTGAATTCTTATAATCTCTTTCTAATTGGCTCTAAAATC-3' (40-mer) 
22302 5'-GATTGTCGTGTAGCCAGGGTAGAATGTGAAAAACGTC-3' (37-mer) 
22312 5'-GTTTTTCACATTCTACCCTGGCTACACGACAATCATTTG-3' (39-mer) 
25713 5’-GAATCCCGCGTCTAGAAAATTGCCGAAAG-3’ (29-mer) 
25723 5’-CTTTCGGCAATTTTCTAGACGCGGGATTC-3’ (29-mer)  

 1
Codons of mutated amino acids are underlined. Mutated bases are shown in bold.  2 
Forward and reverse primers to generate the Glu101TAG/Lys104TAG double mutant of  WNVpro. 3 
Forward and reverse primers to generate the Phe166TAG mutant of E. coli DnaB. 

 
Synthetic protocols 

Expression constructs of MjTyrRS, BpaRS, AzF-RS, AcF-RS, CNF-RS and HcoRS 

The wild-type MjTyrRS gene (about 1.1 kb) was amplified from the plasmid pSup-MjTyrRS-
6TRN using the primers 1398 and 1402, and cloned into the NdeI and MluI sites of pETMCSI 
[1].  The resulting T7-expression vector was termed pKO1377.  

The mutant MjTyrRS gene encoding BpaRS was amplified from the plasmid pSup-
BpaRS-6TRN using the primers 1447 and 1448, and cloned into the NdeI and EcoRI sites of 
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pETMCSIII [1], resulting in N-terminally His6-tagged BpaRS in the T7-expression vector 
pKO1349.   

The gene encoding AzF-RS was amplified from the plasmid pEVOL-AzF [2] using the 
primers 1398 and 1402, and cloned into the NdeI and MluI sites of pETMCSIII to yield the T7-
vector pKO1350. 

The gene encoding AcF-RS was amplified from pEVOL-AcF [2] using the primers 1447 
and 1448, and cloned into the NdeI and EcoRI sites of pETMCSIII to yield the T7-vector 
pKO1420.  

The CNF-RS gene was PCR-amplified from pEVOL-pCNF [2] using the primers 1398 
and 1402, and cloned into the NdeI and MluI sites of pETMCSIII, resulting in the T7-expression 
vector pCT1537. 

The gene encoding HcoRS (CouRS-D8 mutant) was excised with NdeI and EcoRI from 
pETMCSI-HcoRS [3], and cloned into the same sites of pETMCSIII to add an N-terminal His6-
tag, resulting in the T7-vector pETMCSIII-HcoRS. The enzyme corresponds to the CouRS-D8 
mutant described by Wang et al. [4]. 

Only the enzymes BpaRS, AzF-RS and HcoRS contained the D286R mutation that 
enhances the recognition of the tRNA by the RS enzymes [5].  

Expression and purification of RS enzymes 

The expression and purification of N-terminally His6-tagged BpyRS was described previously 
[6]. 

Wild-type MjTyrRS was produced by growing E. coli cells (BL21 (DE3)/pLysS) 
harbouring pKO1377 aerobically for two days at room temperature in an auto-induction medium 
[7] supplemented with 100 mg/L ampicillin and 34 mg/L chloramphenicol; 2 liters of cell culture 
yielded about 15.4 g of cells. The supernatant of the French press lysate was subjected to an 
ammonium sulfate (AS) precipitation (0.35 g AS per mL supernatant). The supernatant of the AS 
precipitation was dialyzed against DEAE buffer (50 mM Tris-HCl, pH 7.9, 1 mM EDTA, 1 mM 
dithiothreitol (DTT) and 10% glycerol) and subsequently loaded onto a DEAE-Toyopearl 650 M 
column (2.5 x 13 cm). Bound MjTyrRS was eluted with a gradient of 0–600 mM NaCl in the 
same buffer. The MjTyrRS containing fractions (analyzed by SDS-PAGE) were combined and 
dialyzed against P-buffer (10 mM sodium phosphate, pH 6.8, 1 mM EDTA and 1 mM DTT). 
The dialyzed sample was loaded onto a phosphocellulose column (2.5 x 4.3 cm) and bound 
MjTyrRS was eluted with a gradient of 0–1M NaCl in the same buffer, yielding about 3.1 mg 
MjTyrRS (>95% purity indicated by SDS-PAGE). 

His6-tagged BpaRS was produced by growing BL21 (DE3)/pLysS/pKO1349 aerobically 
at 30 ˚C in 1 L of LB medium supplemented with 25 mg/L thymine, 100 mg/L ampicillin and 34 
mg/L chloramphenicol.  Overexpression of BpaRS was induced by addition of 1 mM isopropyl-
β-D-1-thiogalactoside (IPTG) at A595 = 0.56 and the induced culture was grown to A595 = 1.23 (3 
h), yielding 3.55 g of cells. About 116 mg of purified BpaRS was obtained by loading the 
supernatant of the French press lysate onto a 5-mL column of Ni-NTA (Pharmacia, Uppsala, 
Sweden) in buffer N (50 mM HEPES–KOH buffer, pH 7.5, 300 mM NaCl, 20 mM imidazole, 
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5% (v/v) glycerol). The elution used a linear imidazole gradient (20 to 500 mM) in buffer N. The 
concentrated BpaRS (664 µM) was stored at –70 ˚C in storage buffer (50 mM Tris-HCl, 2 mM 
DTT, 100 mM NaCl) at pH 7.6. 

His6-tagged AzF-RS and AcF-RS were produced by aerobically growing E. coli cells 
(BL21 (DE3)/pLysS) harboring pKO1350 or pKO1420, respectively, for two days at room 
temperature in an auto-induction medium [7] supplemented with 100 mg/L ampicillin and 34 
mg/L chloramphenicol; 2 liters of cell culture yielded about 18 g and 26 g of cells, respectively. 
The supernatant of the French press lysate was loaded onto a 5-mL column of Ni-NTA resin in 
buffer N. The synthetases were eluted with a gradient of 20–500 mM imidazole in buffer N, 
yielding about 206 mg of AzF-RS and 197 mg of AcF-RS. Concentrated solutions of AzF-RS 
(1.18 mM) and AcF-RS (2.21 mM) were stored at –70 ˚C in storage buffer at pH 6.5 and pH 7.0, 
respectively. 

His6-tagged CNF-RS and HcoRS were produced by growing BL21 
(DE3)/pLysS/pCT1537 and BL21(DE3)/pLysS/pETMCSIII-HcoRS, respectively, using the 
same protocol as for AzF-RS. 

The concentrations of purified proteins were determined using calculated UV absorption 
coefficients [8]. 
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