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Abstract

In this work, we derive particle schemes, based on micro-macro decomposition, for linear
kinetic equations in the diffusion limit. Due to the particle approximation of the micro part,
a splitting between the transport and the collision part has to be performed, and the stiffness
of both these two parts prevents from uniform stability. To overcome this difficulty, the micro-
macro system is reformulated into a continuous PDE whose coefficients are no longer stiff, and
depend on the time step ∆t in a consistent way. This non-stiff reformulation of the micro-macro
system allows the use of standard particle approximations for the transport part, and extends the
work in [6] where a particle approximation has been applied using a micro-macro decomposition
on kinetic equations in the fluid scaling. Beyond the so-called asymptotic-preserving property
which is satisfied by our schemes, they significantly reduce the inherent noise of traditional
particle methods, and they have a computational cost which decreases as the system approaches
the diffusion limit.

1 Introduction

Particle systems appearing in plasma physics or radiative transfer can be described at different
scales. When the system is far from its thermodynamical equilibrium, a kinetic description is
necessary. Particles are then represented by a distribution function f which depends on time t ≥ 0,
position x ∈ R

d and velocity v ∈ V ⊂ R
d, d ≥ 1. The distribution f (t, x, v) satisfies a collisional

kinetic equation. Particle methods are often used for simulating kinetic problems, especially in
realistic 3-dimensional situations, d = 3. However, they are affected by numerical noise due to their
probabilistic character. A simple way to reduce this noise is to increase the number of particles, but
then the numerical cost increases as well. Other standard kinetic descriptions, as phase space grid
methods, may require too much memory in the two or three dimensional framework. Otherwise,
macroscopic descriptions depending only on t and x can be sufficient if the system stays near
its thermodynamical equilibrium, and are less expensive since their unknown does not depend on
the velocity variable anymore. Beside the noisy character of standard particle methods, there is
an additional difficulty in kinetic descriptions which is linked to the presence of various scales
in the system. Multi-scale phenomena may indeed appear in plasma devices or radiative transfer
applications, depending on some physical parameters as for example the mean free path of particles
or the Knudsen number denoted here by ε. This multi-scale character is often represented by stiff
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terms in the kinetic equation, and the general challenge is to construct efficient numerical methods
for these multiscale kinetic equations: this means that, without numerically resolving the stiffness,
the numerical method must solve accurately the kinetic regime, must have the right asymptotics in
the high-stiffness limit (the so-called asymptotic preserving property) and its computational cost
should decrease as the system approaches the equilibrium (a time diminishing property). Note that
direct numerical methods whose parameters resolve the smallest scale of size ε are impossible to
use, since they automatically involve an extremely high computational cost.

Several strategies have been proposed to overcome this strong constraint. Domain decompo-
sition methods can be applied when we have different regions with different values of the scaling
parameter, see [10, 14, 23, 26]. When the different scales are less clearly delimited, we have to
develop kinetic schemes that naturally reduce to good approximations of the macroscopic problem
when the system goes near its equilibrium, and overcome the stiffness. Such schemes are often
called Asymptotic-Preserving (AP), see [15, 18, 17, 13, 9, 19, 20, 21, 22, 16, 25, 4]. Mainly, the
numerical cost remains comparable to the one of the non-stiff kinetic problem, even when ε≪ 1.

Our goal is to design an efficient AP scheme, using particles, for the following kinetic radiative
transport equation (RTE) in the diffusion scaling

∂tf +
1

ε
v∂xf =

1

ε2
(ρM − f), f(t = 0, x, v) = f0(x, v), (1.1)

where x ∈ Ω ⊂ R, ρ(t, x) = 1
2

∫
V f(t, x, v)dv, V = [−1, 1], M(v) = 1 ∀v ∈ V and f0(x, v) is a given

initial condition. Periodic boundary conditions are considered. It is well-known (see [19, 12]) that
when ε goes to zero, the distribution function f(t, x, v) converges towards ρ̄(t, x)M(v), where ρ̄
satisfies the following diffusion equation

∂tρ̄−
1

3
∂xxρ̄ = 0, ρ̄(t = 0, x) =

1

2

∫

V
f0(x, v)dv. (1.2)

An extension to the Vlasov-Poisson-BGK case is presented in Section 5. The kinetic equation is
coupled to a Poisson equation for the electric field denoted by E(t, x). More precisely, we consider

∂tf +
1

ε
v∂xf +

1

ε
E∂vf =

1

ε2
(ρM − f), (1.3)

∂xE = ρ− 1, (1.4)

where x ∈ Ω ⊂ R, ρ(t, x) =
∫
V f(t, x, v)dv, V = R, M (v) = 1√

2π
exp

(
− v2

2

)
is the absolute

Maxwellian and we consider periodic boundary conditions. Note that an additional condition∫
Ω
Edx = 0 is imposed to obtain a well-posed problem. When ε goes to zero, the asymptotic model

is a drift-diffusion equation satisfied by ρ̄(t, x) (see [1])

∂tρ̄− ∂x(∂xρ̄− Ēρ̄) = 0, ρ̄(t = 0, x) =

∫

R

f0(x, v)dv, (1.5)

where Ē is linked to ρ̄ by the Poisson equation ∂xĒ = ρ̄− 1.
The strategy will be the use of the micro-macro decomposition (see [24, 22, 2, 9]). It consists

in writing the distribution function as the sum of the equilibrium part ρ(t, x)M(v) and a rest
g(t, x, v). One can then derive a system of two equations: a kinetic one for the rest g(t, x, v) and
a macroscopic one for the equilibrium ρ(t, x)M(v). AP micro-macro schemes for (1.1) have been
proposed in [22, 2, 9]. These schemes consist in a semi-implicit phase space grid method for the
kinetic part, coupled to a classical spatial grid method for the macro part. Our strategy in this
work follows the strategy of [6] in the case of a fluid scaling: we use particles to sample the kinetic
part whereas an Eulerian solver is used to discretize the macro unknown. The main motivation of
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this strategy lies in the fact that the micro part g converges to zero when ε goes to zero, so that very
few particles can sample it. As a consequence, in this regime, the cost of the global micro-macro
solver is almost the same as the cost of an asymptotic solver for (1.2).

In this work, we focus on a diffusion type scaling (as in (1.1) or (1.3)) so that an additional
scale is involved compared to the fluid scaling considered in [6]. In [22, 9], a diffusion scaling was
studied, but using a fully grid based solver. Hence, the stiffest term (of order 1/ε2) is considered
implicit in time in the micro equation, which enables to stabilize the transport term (of order 1/ε)
and then to derive an AP scheme for (1.1) and (1.3). The use of particles for the micro part
prevents from a similar strategy since a splitting between the transport term (of order 1/ε) and the
source term needs to be done. Then, a uniformly stable scheme is hard to obtain in this context.
To overcome this difficulty, a suitable formulation of the original model (1.1) is performed, so that
the stiff transport term (1/ε) v∂xg becomes (ε/∆t)(1− e−∆t/ε2)v∂xg where ∆t > 0 denotes a fixed
time step of a numerical time discretization, which will be used to solve this equation (see [7]).
This reformulation is correct up to ∆t2 (for fixed ε > 0) and ensures that the transport speed
remains finite even when ε → 0. This formulation is the starting point of the design of micro-
macro-particle based numerical schemes which enjoy the AP property and for which the numerical
cost diminishes as ε goes to zero. This approach is extended to the second-order (in time) and to
the Vlasov-Poisson-BGK case (1.3)-(1.4).

The sequel of the paper is organized as follows. In Section 2, we recall the formal derivation
of the asymptotic model of (1.3) and (1.1). The first-order (in time) reformulation of (1.1) is
presented in Subsection 3.1 and its Lagrangian discretization in Subsection 3.2. Its extension to a
second-order in time model is detailed in Section 4: the continuous model is presented in Subsection
4.1 and its discretization is developed in Subsection 4.2. Section 5 proposes an extension of our
strategy to the Vlasov-Poisson-BGK system. Finally, Section 6 is devoted to numerical simulations.

2 Diffusion asymptotics

In this section, we recall the main steps of the derivation of the model obtained from (1.1) when ε
goes to zero. To do so, we consider the micro-macro decomposition (see [22, 2, 24]) of f : f(t, x, v) =
ρ(t, x)M(v) + g(t, x, v), with ρ(t, x) = 〈f〉, M(v) = 1 and the rest g satisfies 〈g〉 = 0. Here
〈f〉 = 1

2

∫
V f(v)dv, with V = [−1, 1]. The following micro-macro model is equivalent to the original

model (1.1) 



∂tρ+
1

ε
∂x〈vg〉 = 0,

∂tg +
1

ε
(I − 〈·〉) [v∂x(ρM + g)] = − 1

ε2
g.

(2.1)

Since 〈vM〉 = 0, the micro equation can be rewritten as

∂tg +
1

ε
vM∂xρ+

1

ε
(I − 〈·〉)(v∂xg) = −

1

ε2
g. (2.2)

When ε goes to zero, one gets from (2.2), g = −ε(vM∂xρ)+O(ε2), which gives using 〈v2M〉 = 1/3
the following diffusion equation satisfied by the limit ρ̄

∂tρ̄−
1

3
∂xxρ̄ = 0.

The same calculations enable to derive the micro-macro model equivalent to (1.3)




∂tρ+
1

ε
∂x〈vg〉 = 0,

∂tg +
1

ε
(I − 〈·〉) [v∂x(ρM + g) + E∂v(ρM + g)] = − 1

ε2
g,

(2.3)
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where M(v) is now the Maxwellian equilibrium and 〈f〉 =
∫
V f(v)dv, with V = R. When ε goes

to zero, one gets g = −ε(vM∂xρ − vMEρ) + O(ε2), which gives, using 〈v2M〉 = 1 the following
drift-diffusion equation satisfied by the limit ρ̄

∂tρ̄− ∂xxρ̄+ ∂x(Ēρ̄) = 0, ∂xĒ = ρ̄− 1. (2.4)

3 First-order in time reformulation and its discretization

In this part, a first-order reformulation of the micro part is proposed, which enables to avoid the
stiff transport term in space. The strategy is presented in the case of the equation (1.1) and its
corresponding micro-macro model (2.1).

3.1 First-order in time reformulation.

We start with (1.1) (with periodic boundary condition in space) and consider the micro-macro
decomposition of f = ρ+ g (here M(v) = 1 for all v ∈ [−1, 1]) and the micro-macro model (2.1).

First, using the relation ∂t(e
t/ε2g) = et/ε

2

(g/ε2 + ∂tg), we rewrite the micro part (2.2) as

∂t(e
t/ε2g) = −et/ε

2

ε
F (ρ, g) , (3.1)

where F (ρ, g) is given by
F (ρ, g) = v∂xρ+ v∂xg − ∂x〈vg〉. (3.2)

We denote ∆t > 0 the time step, tn = n∆t with n ∈ N. Then, a second stage consists in integrating
(3.1) on [tn, tn+1] to get

g(tn+1) = e−∆t/ε2g(tn)− ε(1− e−∆t/ε2)F (ρ(tn), g(tn)) +O(∆t2).

To derive a continuous (in time) equation, we make appear a discrete time derivative on the left-
hand side

g(tn+1)− g(tn)

∆t
= −1− e−∆t/ε2

∆t
g(tn)− ε

1− e−∆t/ε2

∆t
F (ρ(tn), g(tn)) +O(∆t), (3.3)

which can be rewritten, up to terms of order O(∆t), as

∂tg(t
n) = −1− e−∆t/ε2

∆t
g(tn)− ε

1 − e−∆t/ε2

∆t
F (ρ(tn), g(tn)) , ∀n.

We finally obtain the first-order reformulation of (1.1)

∂tρ+
1

ε
∂x〈vg〉 = 0, (3.4)

∂tg = −1− e−∆t/ε2

∆t
g − ε

1− e−∆t/ε2

∆t
F (ρ, g) , (3.5)

with F (ρ, g) given by (3.2). We remark that the micro equation does not contain any stiff term
and satisfies the following property: for all fixed ε > 0, equation (3.5) is consistent with the initial
micro equation (2.2) as ∆t goes to zero. Then, it has a suitable form for a numerical discretization
using either a deterministic scheme (described in Appendix A) or a particle scheme. Note that the
main goal of the paper is to present an AP particle scheme, the cost of which decreases when ε→ 0,
but in the numerical tests, we will use the deterministic AP scheme based on (3.5) for comparison.
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3.2 Lagrangian discretization.

This subsection is devoted to the derivation of an AP-particle based numerical scheme for (3.4)-
(3.5).

We propose now a Lagrangian discretization of (3.5). More precisely, we adopt a weighted
particle method, see [3], and consider a set of Np ∈ N macro particles. The position of particle k,
1 ≤ k ≤ Np, is denoted by xk(t) ∈ Ω = [0, Lx], with Lx > 0, its velocity by vk(t) ∈ V = [−1, 1] and
its weight by ωk(t) ∈ R. Let Lv = |V | = 2. The function g is then assumed to be of the form

g (t, x, v) ≈
Np∑

k=1

ωk(t)δ(x − xk(t))δ(v − vk(t)), (3.6)

where δ denotes the Dirac mass function. Weights ωk(t) are related to the distribution function g
through

ωk(t) = g(t, xk(t), vk(t))
LxLv

Np
. (3.7)

Initially, particles are uniformly distributed in the phase-space domain [0, Lx]×V and their weights
are computed following (3.7). Note that another approach can also be chosen; for example (un-
weighted) Monte Carlo methods can also be used (see [8, 5]) and in this case, collisions are taken
into account through the change of particles velocities, whereas in our weighted particle method
collisions are taken into account through the variation of the weights ωk.

The density ρ is computed on a uniform spatial grid defined by xi = i∆x, i = 0, . . . , Nx,
Nx ∈ N

⋆ and ∆x = Lx/Nx. We denote by ρni the approximation at time tn = n∆t and position xi
of ρ(tn, xi), with ∆t > 0 the time step. Moreover, gn(x, v) ≈ g(tn, x, v), xnk ≈ xk(t

n), vnk ≈ vk(t
n)

and wn
k ≈ wk(t

n). Let us remark that v̇k = 0, so that the velocities vk(t) are constant in time and we
will note vnk = v0k =: vk for all n. Thus, the unknowns of the method are (ρni ), ∀i = 0, . . . , Nx, n > 0,
(xnk) and (ωn

k ), ∀k = 1, . . . , Np, n > 0.
Our goal is then to extend the particle discretization of [6] to diffusion scaling. Whereas the

hydrodynamic scaling is considered in [6], we have here an additional scale of order 1/ε in front
of the transport term. This scale is difficult to handle with a particle method, since it can not
be stabilized by the collision term of order 1/ε2. Moreover, a specific treatment of the macro flux
∂x〈vg〉 is required in the diffusion scaling to ensure the AP property, as we will see later. To deal
with the additional scale, we exploit the reformulation (3.5). As already said in [6], we have to
use a splitting procedure between the transport part and the source part. Then, the (first-order)
splitting writes

• start with an initial repartition of theNp particles (x
0
k, v

0
k), with ω0

k = g(t = 0, x0k, v
0
k)LxLv/Np,

• solve the transport part

∂tg = ε
1− e−∆t/ε2

∆t
v∂xg,

with the (non stiff) characteristics

ẋk = ε
1− e−∆t/ε2

∆t
vk, (3.8)

• solve the source part

∂tg = −1− e−∆t/ε2

∆t
g − ε

1− e−∆t/ε2

∆t
[v∂xρ− ∂x〈vg〉] ,
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using the equation satisfied by the weights

ω̇k = −1− e−∆t/ε2

∆t
ωk − ε

1− e−∆t/ε2

∆t
[vk∂xρ(xk)− ∂x〈vg〉(xk)]

LxLv

Np
. (3.9)

Remark 3.1 (Preservation of the micro-macro structure.). As detailed in subsection 4.2 in [6],
we have to correct the particle weights in order to preserve at the numerical level the micro-macro
structure. Indeed, the micro-macro decomposition technique uses the zero-mean property 〈g〉 = 0.
This property is preserved at the continuous level by the couple (3.8)-(3.9). But the splitting breaks
the operator (I − 〈·〉) and so this property. Thus, nothing guarantees that this property is satisfied
at the discrete level (on the weights ωk). That is why we have to correct the weights, by applying a
discrete approximation of the operator (I − 〈·〉) to the weights (ωk)k, which is consistent with the
continuous model. In the simpler case (that is by using a regularization of order ℓ = 0, see (3.12)
below), it consists in the following correction:

∀k ∈ Ii :=
{
k / xk ∈ [xi−1/2, xi+1/2]

}
, ωk ← ωk −∆x

〈g〉(xi)∑
k∈Ii pk

pk,

where pk := ρ(xk)M(vk)LxLv/Np is the weight associated to the Maxwellian and 〈g〉(xi) is computed
in the same way as 〈vg〉(xi) in (3.11).
For more details of this correction (called projection step in following algorithms), we refer the
reader to subsection 4.2 in [6].

Now, we detail the time discretization of the two steps. First, (3.8) is approximated by a simple
forward Euler scheme

xn+1

k = xnk + ε(1 − e−∆t/ε2)vk. (3.10)

Second, we compute the last term in (3.9). The term 〈vg〉 is approximated on the spatial grid xi
using

〈vg〉(xi) ≈
Np∑

k=1

ωn
kBℓ(xi − xn+1

k )vk, (3.11)

where Bℓ ≥ 0 is a B-spline function of order ℓ:

Bℓ(x) = (B0 ∗Bℓ−1)(x), with B0(x) =

{
1
∆x if |x| < ∆x/2,
0 else.

(3.12)

We then approximate the equation on the weights (3.9) using a first-order explicit integrator

ωn+1
k = e−∆t/ε2ωn

k − ε(1 − e−∆t/ε2) [αn
k + βn

k ] , (3.13)

with

αn
k = vk∂xρ

n(xn+1
k )

LxLv

Np
and βn

k = −∂x〈vg〉(xn+1
k )

LxLv

Np
. (3.14)

To compute αn
k (resp. βn

k ), since ρn (resp. 〈vg〉) is known on the spatial grid, we approximate
∂xρ

n (resp. ∂x〈vg〉) by centered finite differences and evaluate at xn+1

k using an interpolation with
B-spline functions, for example

∂xρ
n(xn+1

k ) ≈
Nx∑

i=1

ρni+1 − ρni−1

2∆x
Bℓ(xi − xn+1

k ).

Let us remark that in the limit ε → 0, the particles do not move anymore (see (3.10)) and their
weights ωk tend to zero (see (3.13)), as well as ω̇k.
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The macro equation (3.4) is advanced through

ρn+1
i = ρni −

∆t

ε

〈vgn+1〉i+1 − 〈vgn+1〉i−1

2∆x
, (3.15)

where 〈vgn+1〉i is computed using (3.11).
However, this discretization of the macro equation does not produce a time diminishing AP

scheme, since it is not accurate in the limits ε → 0 and Np → 0. Indeed, the error due to the
particle approximation of gn+1 is amplified by the factor 1/ε. To ensure this time diminishing
property, we perform a decomposition of (3.13) so that the macro flux becomes

〈vgn+1〉i =

Np∑

k=1

ωn+1

k Bℓ(xi − xn+1

k )vk,

=

Np∑

k=1

(
e−∆t/ε2ωn

k − ε(1− e−∆t/ε2)βn
k

)
Bℓ(xi − xn+1

k )vk

−ε(1− e−∆t/ε2)

Np∑

k=1

αn
kBℓ(xi − xn+1

k )vk,

= −ε(1− e−∆t/ε2)

Np∑

k=1

αn
kBℓ(xi − xn+1

k )vk + hni , (3.16)

with Bℓ given by (3.12) and

hni = e−∆t/ε2
Np∑

k=1

ωn
kBℓ(xi − xn+1

k )vk − ε(1− e−∆t/ε2)

Np∑

k=1

βn
kBℓ(xi − xn+1

k )vk. (3.17)

Since αn
k is the weight of v∂xρ

n (see (3.14)) and 〈v2〉 = 1/3, we can write

〈vgn+1〉i ≈ −ε(1− e−∆t/ε2)
1

3
∂xρ

n
i + hni ,

so that the macro scheme becomes

ρn+1
i = ρni +∆t(1− e−∆t/ε2)

1

3

ρ
n+1/2
i+1 − 2ρ

n+1/2
i + ρ

n+1/2
i−1

∆x2
− ∆t

ε

hni+1 − hni−1

2∆x
, (3.18)

where ρn+1/2 can be chosen equal to ρn or to ρn+1 depending on the desired asymptotic scheme
(explicit or implicit in time). Obviously, the choice of an implicit scheme (ρn+1/2 = ρn+1 in (3.18))
enables to get rid of the diffusion-type constraint: ∆t = O(∆x2). We can write the following
proposition.

Proposition 3.1. The scheme given by (3.10)-(3.13)-(3.18) enjoys the AP property, i.e. it satisfies
the following properties

• for fixed ε > 0, the scheme is a first-order (in time) approximation of the original model
(1.1),

• for fixed ∆t > 0, the scheme degenerates into an explicit or implicit first-order scheme of
(1.2) (according to the choice of ρn+1/2).
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Proof. The consistency follows directly from standard approximation. For the asymptotic behavior,
when ε goes to zero, we get immediately from (3.13) ωn+1

k = O(ε) ∀n ≥ 0. From (3.17), we deduce
that hni = O(ε2) ∀n ≥ 1. The macro equation (3.18) then reduces when ε → 0 to a consistent
discretization of (1.2).

The scheme is finally summarized in the following algorithm.

Algorithm 3.1.

• Initialize (x0k, v
0
k), ω

0
k and ρ0i .

At each time step:

• 1) Advance micro part:

– advance the characteristics with (3.10),

– compute 〈vg〉 with (3.11),

– advance the equation on the weights with (3.13).

• 2) Projection step: compute (I − 〈·〉)gn+1 using [6].

• 3) Advance macro part:

– compute hni with (3.17),

– compute ρn+1 with (3.18).

4 Second-order in time reformulation and its discretization

This section is devoted to the derivation of a second-order scheme for the micro-macro system (2.1).
As for the first-order scheme, we will first reformulate the microscopic equation (2.2) in order to
suppress stiff terms (see Subsection 3.1 for the first-order case), and then discretize the obtained
micro-macro model to get an AP efficient numerical scheme (see Subsection 3.2 for the first-order
case).

4.1 Second-order reformulation.

Let us start from the following (equivalent) reformulation of the micro part of (2.1)

∂t

(
et/ε

2

g
)
= −et/ε

2

ε
F (ρ(t), g(t)) ,

where F (ρ, g) is defined by (3.2). We now integrate with respect to t ∈ [tn, tn+1] and use a
second-order mid-point quadrature

g(tn+1) = e−∆t/ε2g(tn)− ∆te−∆t/2ε2

ε
F
(
ρ(tn+1/2), g(tn+1/2)

)
+O

(
∆t3

)
.

To derive a continuous (in time) equation, we make appear a discrete time derivative on the left-
hand side

g(tn+1)− g(tn)

∆t
=

e−∆t/ε2 − 1

∆t
g(tn)− e−∆t/2ε2

ε
F
(
ρ(tn+1/2), g(tn+1/2)

)
+O

(
∆t2

)
.
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We now look for a continuous (in time) equation for which the previous relation is a second-order
numerical scheme. To do so, we perform Taylor expansions of the different terms at tn+1/2

∂tg(t
n+1/2)=

e−∆t/ε2−1
∆t

(
g(tn+1/2)− ∆t

2
∂tg(t

n+1/2)

)

−e−∆t/2ε2

ε
F
(
ρ(tn+1/2), g(tn+1/2)

)
+O

(
∆t2

)
.

(4.1)

Finally, the microscopic equation of (2.1) is reformulated up to the second-order by

∂tg =
2

∆t

e−∆t/ε2 − 1

e−∆t/ε2 + 1
g − 2

ε

e−∆t/2ε2

e−∆t/ε2 + 1
F (ρ, g) ,

and we can now consider the second-order reformulated micro-macro system

∂tρ+
1

ε
∂x〈vg〉 = 0, (4.2)

∂tg =
2

∆t

e−∆t/ε2 − 1

e−∆t/ε2 + 1
g − 2

ε

e−∆t/2ε2

e−∆t/ε2 + 1
[v∂xρ+ v∂xg − ∂x〈vg〉] . (4.3)

4.2 Time discretization.

We are now interested in the construction of an AP scheme for system (4.2)-(4.3), based on a
second-order splitting method for the time discretization and a Lagrangian method for the phase
space discretization of the micro part.

In the sequel, we will use the same notations as in Subsection 3.2. The splitting method is
based on a prediction step on ∆t/2 (first-order) and a correction step on ∆t. Then, a second-order
(in time) scheme for (4.2)-(4.3) would read

Prediction step on ∆t/2

gn+1/2 =gn +
e−∆t/ε2 − 1

e−∆t/ε2 + 1
gn − ∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
F (ρn, gn) , (4.4)

ρn+1/2 =ρn − ∆t

2ε
∂x〈vgn+1/2〉, (4.5)

Correction step on ∆t

gn+1 =gn + 2
e−∆t/ε2 − 1

e−∆t/ε2 + 1
g̃ − 2∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
F
(
ρn+1/2, gn+1/2

)
, (4.6)

ρn+1 =ρn − ∆t

ε
∂x〈vgn+1/2〉. (4.7)

We still have to fix g̃ in (4.6) in order to get a second-order scheme and to ensure the convergence

of gn+1 to zero as ε goes to zero. It turns out the choice g̃ = gn+gn+1

2
ensures the two conditions.

Indeed, we get for the correction step of the micro part

gn+1 = e−∆t/ε2gn − ∆t

ε
e−∆t/2ε2F

(
ρn+1/2, gn+1/2

)
.

Note that g̃ = gn+1/2 ensures the second-order accuracy of the scheme but does not ensure the
convergence of gn+1 to zero as ε goes to zero (it gives gn+1 = gn).

Up to now, the micro part converges exponentially fast to zero (when ε goes to zero), so that
the asymptotic behavior of the scheme is ρn+1 = ρn. Hence, the last but not the least step consists
in modifying the macro flux ∂x〈vgn+1/2〉 in (4.7) to capture the correct asymptotic limit.
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As done in Section 3, we will modify the discretization of the macro flux in order to make
appear the diffusion term directly in the macro part (4.7). This allows us to take the diffusion term
implicit and thus to avoid a constraint of diffusion-type ∆t = O(∆x2) in the limit ε→ 0 (as done
in Section 3). However, the modification has to be of order ∆t3 for a fixed ε > 0 to not spoil the
second-order accuracy of the scheme. The correction we propose consists in computing ρn+1

i with
(4.7), in which we add a diffusion term (discretized with a second-order Crank-Nicolson scheme)
in front of which we added the coefficient ∆t(1− e−∆t/ε2)2. This coefficient is of order O(∆t3) for
fixed ε > 0 and degenerates to ∆t when ε goes to zero as required. We then obtain

ρn+1
i = ρni −

∆t

ε
∂x〈vgn+1/2〉i +∆t(1− e−∆t/ε2)2

1

3
∂xx

(
ρn+1
i + ρni

2

)
. (4.8)

Note that from (4.4), we see that gn+1/2 behaves like e−∆t/2ε2 when ε→ 0, and so the asymptotic
model derived from (4.4)-(4.7) reduces to ρn+1 = ρn, which is not the desired diffusion limit.

Therefore we added the term ∆t(1− e−∆t/ε2)2 1
3
∂xx

(
ρn+1

i
+ρni
2

)
in (4.8) in order to capture the right

asymptotic regime. This additional term is of order ∆t3, so we keep the second-order accuracy for
all fixed ε > 0. However when ε→ 0, this term is no longer negligible and provides in this limit the
right diffusion asymptotic limit. Of course other choices than the multiplicative factor (1−e−∆t/ε2)2

are possible. For example, we could have taken
(
1− 1

1+∆t/
√
ε

)2
, which gives second-order accuracy

for all fixed ε > 0 and the right asymptotic limit too.

4.3 Lagrangian discretization.

We consider the same notations as in Subsection 3.2 and detail here the Lagrangian discretization

of the micro-macro system (4.2)-(4.3). In the prediction step (4.4), we compute x
n+1/2
k with a

forward Euler integrator

x
n+1/2
k = xnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
vk, (4.9)

and advance the weights with

w
n+1/2
k =

2e−∆t/ε2

e−∆t/ε2 + 1
wn
k −

∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
[vk∂xρ

n(xnk )− ∂x〈vkgn(xnk)〉]
LxLv

Np
. (4.10)

We end this prediction step by computing the flux 〈vgn+1/2〉 with (3.11) to get the density

ρ
n+1/2
i = ρni −

∆t

2ε
∂x〈vgn+1/2〉i. (4.11)

Now in the correction step, we compute the position at tn+1 with

xn+1
k = xnk +

∆t

ε
e−∆t/2ε2vk, (4.12)

then the weights are given by

wn+1
k = e−∆t/ε2wn

k −
∆t

ε
e−∆t/2ε2

[
vk∂xρ

n+1/2(x
n+1/2
k )− ∂x〈vkgn+1/2(x

n+1/2
k )〉

] LxLv

Np
. (4.13)

Now, using (4.8) in the last step, we have

ρn+1
i = ρni −

∆t

ε
∂x〈vgn+1/2〉i +∆t(1− e−∆t/ε2)2

1

3
∂xx

(
ρn+1
i + ρni

2

)
, (4.14)
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where 〈vgn+1/2〉i is computed using (3.11). The previous scheme is a semi-discrete and second-order
approximation in time of the original equation (2.1). To get a fully discretized scheme, the space
derivatives are approximated exactly in the same way as in Subsection 3.2.

We finally have the following result.

Proposition 4.1. The scheme given by (4.9)-(4.10)-(4.11)-(4.12)-(4.13)-(4.14) enjoys the AP prop-
erty, i.e. it satisfies the following properties

• for fixed ε > 0, the scheme is a second-order (in time) approximation of the original model
(1.1),

• for fixed ∆t > 0, the scheme degenerates into an implicit second-order (in time) scheme of
(1.2).

Proof. When ε → 0, we get from (4.10) w
n+1/2
k → 0 exponentially fast and then 〈vgn+1/2〉i → 0.

By injecting it in the macro equation (4.14), we have at the limit ρn+1
i = ρni + ∆t

3
∂xx

(
ρn+1

i
+ρni
2

)
,

which is a Crank-Nicolson discretization of the diffusion equation (1.2).

Remark 4.1. Let us emphasize that the moments 〈·〉 have to be computed with B-spline functions
of order ℓ ≥ 1 in order to obtain a second-order in time scheme. Taking ℓ = 0 would lead to space
discontinuities preventing the time scheme to be of second-order.

The scheme is finally summarized in the following algorithm.

Algorithm 4.1.

• Initialization of (x0k, v
0
k), ω

0
k and ρ0i .

At each time step:

Prediction step: from tn to tn+1/2.

• 1) Advance micro part:

– advance the characteristics with (4.9),

– compute 〈vg〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– advance the equation on the weights with (4.10).

• 2) Projection step: compute (I − 〈·〉)gn+1/2 using [6].

• 3) Advance macro part:

– compute 〈vgn+1/2〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– compute the density with (4.11).

Correction step: from tn to tn+1.

• 4) Advance micro part:

– advance the characteristics with (4.12),

– compute 〈vg〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– advance the equation on the weights with (4.13).

• 5) Advance macro part with (4.14).
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5 Extension to the Vlasov-Poisson-BGK case

This section is devoted to the extension of our method to kinetic equation making appear an electric
field in the velocity direction. We consider the Vlasov-Poisson-BGK system in the diffusion scaling

∂tf +
1

ε
v∂xf +

1

ε
E∂vf =

1

ε2
(ρM − f), (5.1)

∂xE = ρ− 1, (5.2)∫

Ω

Edx = 0, ∀t ≥ 0, (5.3)

where x ∈ Ω = [0, Lx] ⊂ R, ρ(t, x) =
∫
R
f(t, x, v)dv and M (v) = 1√

2π
exp

(
− v2

2

)
is the absolute

Maxwellian. Let f0 (x, v) = f (t = 0, x, v) the initial distribution function and let consider periodic
boundary conditions in x: f (t, 0, v) = f (t, Lx, v), ∀ v ∈ V , E (t, 0) = E (t, Lx) ∀t ≥ 0.

We can extend our schemes to this problem by adapting the computations of Subsections 4.1
and 4.2. We do not give all the details of the computations but insist on difficulties coming from
the electric field term and write the resulting schemes.

The second-order reformulated micro-macro system corresponding to (1.3) is

∂tρ+
1

ε
∂x〈vg〉 = 0, (5.4)

∂tg =
2

∆t

e−∆t/ε2 − 1

e−∆t/ε2 + 1
g − 2

ε

e−∆t/2ε2

e−∆t/ε2 + 1
[vM∂xρ+ v∂xg − ∂x〈vg〉M − vMEρ+ E∂vg] . (5.5)

The limit model is here the drift-diffusion equation coupled to Poisson equation (2.4).
Equipped with this system (5.4)-(5.5), we construct the following Lagrangian, second-order in

time scheme for (5.1)-(5.2)-(5.3). In the prediction step, characteristics are solved through

x
n+1/2
k = xnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
vnk , v

n+1/2
k = vnk +

∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
En(xnk ), (5.6)

the weights evolve with

w
n+1/2
k =

2e−∆t/ε2

e−∆t/ε2 + 1
wn
k −

∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
[vnkM(vnk )∂xρ

n(xnk)− ∂x〈vnk gn(xnk )〉M(vnk )

−vnkM(vnk )E
n(xnk )ρ

n(xnk)]
LxLv

Np

(5.7)

and the macro equation is advanced with

ρ
n+1/2
i = ρni −

∆t

2ε
∂x〈vgn+1/2〉i +

∆t

2
(1− e−∆t/ε2)∂x

(
∂x

(
ρ
n+1/2
i + ρni

2

)
− En

i ρ
n
i

)
. (5.8)

In the correction step, characteristics are solved through

xn+1
k = xnk +

2∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
v
n+1/2
k , vn+1

k = vnk +
2∆t

ε

e−∆t/2ε2

e−∆t/ε2 + 1
En+1/2(x

n+1/2
k ), (5.9)

the weights evolve with

wn+1
k = e−∆t/ε2wn

k −
∆t

ε
e−∆t/2ε2

[
v
n+1/2
k M(v

n+1/2
k )∂xρ

n+1/2(x
n+1/2
k )

−∂x〈vn+1/2
k gn+1/2(x

n+1/2
k )〉M(v

n+1/2
k )

−vn+1/2
k M(v

n+1/2
k )En+1/2(x

n+1/2
k )ρn+1/2(x

n+1/2
k )

] LxLv

Np
.

(5.10)
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and the macro equation is advanced with

ρn+1
i = ρni −

∆t

ε
∂x〈vgn+1/2〉i +∆t(1− e−∆t/ε2)2∂x

(
∂x

(
ρn+1
i + ρni

2

)
−E

n+1/2
i ρ

n+1/2
i

)
. (5.11)

The limit has been directly written in the macroscopic equation and the diffusion term is
managed by a Crank-Nicolson method, in the prediction as well as in the correction step. The
previous scheme is a semi-discrete and second-order approximation in time of the original equation
(2.3). To get a fully discretized scheme, the space derivatives are approximated exactly in the same
way as in Subsection 3.2.

We have the following proposition.

Proposition 5.1. The scheme given by (5.6)-(5.7)-(5.8)-(5.9)-(5.10)-(5.11) enjoys the AP property,
i.e. it satisfies the following properties

• for fixed ε > 0, the scheme is a second-order (in time) approximation of the original model
(1.3),

• for fixed ∆t > 0, the scheme degenerates into a second-order (in time) scheme of (1.5).

The scheme is finally summarized in the following algorithm.

Algorithm 5.1.

• Initialize (x0k, v
0
k), ω

0
k, and ρ0i .

• Compute E0
i thanks to FFT or finite differences.

At each time step:

Prediction step: from tn to tn+1/2.

• 1) Advance micro part:

– advance the characteristics with (5.6),

– compute 〈vg〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– advance the equation on the weights with (5.7).

• 2) Projection step: compute (I − 〈·〉)gn+1/2 using [6].

• 3) Advance macro part:

– compute 〈vgn+1/2〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– compute ρ
n+1/2
i with (5.8),

– compute E
n+1/2
i thanks to FFT or finite differences.

Correction step: from tn to tn+1.

• 4) Advance micro part:

– advance the characteristics with (5.9),

– compute 〈vg〉 with (3.11) and B-spline functions of order ℓ ≥ 1,

– advance the equation on the weights with (5.10).

• 5) Advance macro part:
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– compute ρn+1
i with (5.11),

– compute En+1
i thanks to FFT or finite differences.

Remark 5.1. We propose to use an upwind discretization of the derivative ∂x

(
E

n+1/2
i ρ

n+1/2
i

)
:

∂x

(
E

n+1/2
i ρ

n+1/2
i

)
≈

E
n+1/2,+
i ρ

n+1/2
i + E

n+1/2,−
i ρ

n+1/2
i+1

∆x

−
E

n+1/2,+
i−1 ρ

n+1/2
i−1 + E

n+1/2,−
i−1 ρ

n+1/2
i

∆x
,

where the standard notations u+ = max(u, 0) and u− = min(u, 0) are used. The same discretization
is done for ∂x (E

n
i ρ

n
i ) in the prediction step.

6 Numerical results

This section is devoted to some numerical experiments comparing the here designed micro-macro
model with particles (denoted by MiMa-Part-1 for the first-order scheme and by MiMa-Part-2 for
the second-order scheme) to the micro-macro Eulerian model (denoted by MiMa-Grid), the moment
guided method (denoted by Moment G.) and (i) the Full PIC method in kinetic regimes (ε of order
1) or (ii) the limit scheme in diffusion regime (ε≪ 1). MiMa-Part-1 corresponds to Proposition 3.1
and MiMa-Part-2 corresponds to Proposition 4.1. The micro-macro Eulerian scheme is presented
in Appendix A. The moment guided method was first presented in [11] and is adapted to our
context in Appendix B. The Full PIC method [3] consists in applying the particle representation
(3.6) to the whole function f (and not only to the perturbation g) and to solve the characteristics
and the equations on weights coming from equation (1.1) or (1.3).

In the sequel, we consider three families of test cases: radiative transport equation (RTE) test
cases with periodic boundary conditions (see equation (1.1)) in Subsection 6.1, Vlasov-Poisson-BGK
test cases (see equations (1.3)-(1.4)) of Landau damping type in Subsection 6.2 and two-stream
instability (TSI) test cases in Subsection 6.3.

6.1 RTE with periodic boundary conditions.

We consider the RTE test case given by the initial condition

f (t = 0, x, v) = 1 + cos

(
2π

(
x+

1

2

))
, x ∈ [0, 1] , v ∈ [−1, 1] , (6.1)

with M (v) = 1, ∀v ∈ [−1, 1], and periodic boundary conditions in x.
We propose here to verify numerically the convergence of MiMa-Part-2 (presented in Subsection

4.3), Lagrangian in space, of second-order in time and with an implicit treatment of the diffusion
term (see Algorithm 4.1). In Figure 1, we plot the error in L∞ norm of the density ρ at time
T = 0.1 as a function of ∆t (from 10−4 to 0.1) for the following parameters: Nx = 16, Np = 1000.
For ε ≥ 10−3, the reference solution is computed with MiMa-Part-2 using the same parameters
but with ∆t = 10−7. Whereas for ε < 10−3, the reference is a numerical solution of the diffusion
equation (computed on a space grid, with Nx = 16 and ∆t = 10−7). In Figure 2, the error in L∞

norm is now represented as a function of ε for different values of ∆t: 10−1, 10−2, 10−3 and 10−4.
The reference solution is computed as previously.
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Figure 1: Error in L∞ norm of ρ at time T = 0.1
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Figure 2: Error in L∞ norm of ρ at time T = 0.1
as a function of ε for Nx = 16, Np = 1000,
∆t = 10−1, 10−2, 10−3 and 10−4.

These plots confirm the fact that MiMa-Part-2 is second-order accurate in time for any fixed
ε > 0, and also when ε → 0. However, for intermediate regimes (for instance ε = 0.1 and
ε = 10−3), order reduction is observed. This is a classical observation for AP schemes. Note that
similar behaviour is obtained with L2 norm.

In Figure 3, we verify the AP property of the MiMa-Part-2 scheme and plot the density ρ(T =
0.1, x) as a function of x for different values of ε: 1, 0.25, 10−2 and 10−6. We take fixed parameters:
Nx = 64, ∆t = 10−3 and Np = 104. We compare the solutions obtained by MiMa-Part-2 to
a numerical solution of the diffusion equation (computed on a space grid, with Nx = 512 and
∆t = ∆x2) and see that the ε-dependent solutions come closer to the diffusion one when ε decreases.

Moreover, we illustrate in Figure 4 the fact that the cost of our method is very small at the
limit. For that, we plot the density ρ(T = 0.1, x) as a function of x for ε = 10−6 (Nx = 64 and
∆t = 10−2) and see that Np = 100 is sufficient to represent in a good way (without noise) the
density. The numerical cost is then very close to the one of the asymptotic model.
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6.2 Landau damping.

In this subsection, we present Landau damping test cases in both regimes (kinetic when ε =
O(1) and diffusive when ε → 0). This test is known to be relevant to check the accuracy of
the numerical method. In particular, conventional PIC methods have difficulties to capture the
long-time behaviour due to the statistical noise. The initial distribution function is given by

f (t = 0, x, v) =
1√
2π

exp

(
−v2

2

)
(1 + α cos (kx)) , x ∈

[
0,

2π

k

]
, v ∈ R, (6.2)

with the wave number k = 0.5 and α = 0.05. For the micro-macro model (1.3), the initial condition
is ρ (t = 0, x) = 1 + α cos (kx) and g (t = 0, x, v) = 0. For the limit drift-diffusion equation (1.5),
we have ρ (t = 0, x) = 1 + α cos (kx).

We first verify the order in time of the MiMa-Part-2 scheme detailed in Section 5 and plot in
Figure 5 the error in L∞ norm of the density ρ at time T = 0.1 as a function of ∆t (from 10−4

to 0.1) for the following parameters: Nx = 16, Np = 1000. For ε ≥ 10−3, the reference solution is
computed with MiMa-Part-2 using the same parameters but with ∆t = 10−7. Whereas for ε = 10−6

the reference is a numerical solution of the drift-diffusion equation (computed on a space grid, with
Nx = 16 and ∆t = 10−7).

Results are similar to the RTE case: the second-order in time is preserved for big and small
values of ε but not for intermediate regimes.

We are now interested in more qualitative tests by considering the time history of the electric

energy E (t) =
√∫ Lx

0
E (t, x)2 dx in semi-logarithmic scale for different values of ε. We compare

the results obtained by MiMa-Part-2 (detailed in Algorithm 5.1) to other schemes: MiMa-part-1,
Moment G. and Full PIC (for ε of order 1) or the scheme for the drift-diffusion model (for small
values of ε).

We expect that the number of particles that is necessary to represent in a good way the per-
turbation g in MiMa-Part methods decreases when ε diminishes and consider Np = 105 if ε ≥ 0.5,
Np = 104 if ε = 0.1 and Np = 102 if ε = 10−4. For comparison, we take the same Np for moment
guided and Full PIC methods.

Results for ε = 10 are given in Figure 6. For the four particle methods, we take ∆t = 0.1, and
Nx = 128. With the same parameters, results for ε = 1 are presented in Figure 7. For ε = 0.5,
we consider ∆t = 0.01 and Nx = 256 for the four particle methods. Results are given in Figure
8. For these three values of ε, the reference is given by MiMa-Grid with Nx = Nv = 512 and
∆t = ∆x2 ≈ 6 × 10−4. First, we note that the behaviour of the electric energy is well described
during time by micro-macro schemes (MiMa-Part and MiMa-Grid). As observed in [6], the Full PIC
method suffers from numerical noise. This is due to the probabilistic character of particle methods
(for instance the random initialization of particles). To reduce this noise, we should consider more
particles, which would increase the numerical cost. As expected, the moment guided method gives
better results than the Full PIC one, but suffers however also from this noise. In MiMa-Part
schemes, only the perturbation g is represented by particles (not the whole distribution function
f), that is why for the same Np, the noise is lower, which enables to capture the reference solution
for large times. In addition, MiMa-Part-2 is closer to the reference MiMa-Grid than the first-order
version MiMa-Part-1.

For smaller values of ε, we compare the four AP schemes (MiMa-Part-1, MiMa-Part-2, MiMa-
Grid and Moment G.) to the limit scheme. Results for ε = 0.1 are given in Figure 9. Parameters
are the following: ∆t = 10−3 and Nx = 128 for particle methods, ∆t = 0.1∆x2 ≈ 3.5 × 10−3 and
Nx = Nv = 64 for MiMa-Grid. We observe that MiMa-Part-2 is the best method since it almost
coincides with the reference MiMa-Grid method. Finally, results for ε = 10−4 are given in Figure

16



10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-4

10
-3

10
-2

10
-1

E
rr

o
r 

o
n
 ρ

 i
n
 L

∞
 n

o
rm

∆t

Landau damping, convergence

ε=1

ε=0.5

ε=0.1

ε=10
-3

ε=10
-6

Slope 2

Figure 5: Error in L∞ norm of ρ at time T = 0.1
as a function of ∆t for Nx = 16, Np = 1000,
ε = 1, 0.5, 0.1, 10−3 and 10−6.

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  50  100  150  200  250  300

lo
g
(E

)

εt

Landau damping, ε=10

MiMa-Part-2

MiMa-Part-1

Moment G.

Full PIC

MiMa-Grid

Figure 6: Time history of the electric energy,
ε = 10. ∆t = 0.1, Nx = 128 and Np = 105 for
the four particle methods.

-25

-20

-15

-10

-5

 0

 0  5  10  15  20  25  30

lo
g
(E

)

t

Landau damping, ε=1

MiMa-Part-2

MiMa-Part-1

Moment G.

Full PIC

MiMa-Grid

Figure 7: Time history of the electric energy,
ε = 1. ∆t = 0.1, Nx = 128 and Np = 105 for
the four particle methods.

-25

-20

-15

-10

-5

 0

 5

 0  5  10  15  20  25  30

lo
g
(E

)

t

Landau damping, ε=0.5

MiMa-Part-2

MiMa-Part-1

Moment G.

Full PIC

MiMa-Grid

Figure 8: Time history of the electric energy,
ε = 0.5. ∆t = 0.01, Nx = 256 and Np = 105 for
the four particle methods.

10, where we have ∆t = 10−2 and Nx = 128 for particle methods, ∆t = 0.1∆x2 ≈ 3.5 × 10−3 and
Nx = Nv = 64 for MiMa-Grid. The asymptotic regime is well recovered by all these AP methods.
As in [6], we remark that few particles are sufficient in the particle-micro-macro schemes to describe
in a good way the solution when ε is small. The cost is then reduced at the limit.

In Figures 11 and 12, we plot the spatial dependency of the densities (at T = 1) obtained by
MiMa-Part-2 and Full PIC methods for different numbers of particles for ∆t = 0.1, Nx = 128
and ε = 1. The statistical error observed for MiMa-Part-2 is lower than the one observed for Full
PIC when Np = 105 is fixed. As expected, when Np increases (Np = 106), the noise decreases for
both methods. Even with Np = 104, MiMa-Part-2 gives rise to satisfactory results, whereas the
corresponding Full PIC density would be not acceptable (not plotted on Figure 12).

6.3 Two stream instability.

We propose now a study in which the perturbation g is not zero initially and consider the Two-
Stream Instability (TSI) test case in both regimes (kinetic and diffusive). The initial distribution
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function is given by

f (t = 0, x, v) =
1√
2π

v2exp

(
−v2

2

)
(1 + α cos (kx)) , x ∈

[
0,

2π

k

]
, v ∈ R, (6.3)

with the wave number k = 0.5 and α = 0.05. The initial condition for the micro-macro model
(1.3) is ρ (t = 0, x) = 1 + α cos (kx) and g (t = 0, x, v) = 1√

2π

(
v2 − 1

)
exp

(
− v2

2

)
(1 + α cos (kx)).

For the limit drift-diffusion equation (1.5), we have as in the Landau damping case ρ (t = 0, x) =
1 + α cos (kx).

We first verify the order in time of the MiMa-Part-2 scheme detailed in Section 5 and plot in
Figure 13 the error in L∞ norm of the density ρ at time T = 0.1 as a function of ∆t (from 10−4

to 0.1) for the following parameters: Nx = 16, Np = 1000. For ε ≥ 10−3, the reference solution
is computed with MiMa-Part-2 using the same parameters but with ∆t = 10−7. Whereas for
ε = 10−6, the reference is a numerical solution of the drift-diffusion equation (computed on a space
grid, with Nx = 16 and ∆t = 10−7).

As for the RTE and the Landau damping cases, the second-order in time is preserved for big
and small values of ε but not for intermediate regimes.
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We are now interested in the time evolution of the electric energy E (t) =
√∫ Lx

0
E (t, x)2 dx in

all regimes.
Results for ε = 10 are given in Figure 14. For the four particle methods, we take Np = 106,

∆t = 0.1, and Nx = 128. By taking Np = 105, ∆t = 0.1, and Nx = 128 for particle methods, we
obtain results for ε = 1 presented in Figure 15. For ε = 0.5, we consider Np = 105, ∆t = 0.01 and
Nx = 256 for the four particle methods. Results are given in Figure 16. For these three values
of ε, the reference is given by MiMa-Grid with Nx = Nv = 512 and ∆t = ∆x2 ≈ 6 × 10−4. The
behaviour of the electric energy is well described during time by micro-macro schemes (MiMa-Part
and MiMa-Grid). As previously, the Full PIC method, as well as moment guided method suffer
from numerical noise.
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To illustrate the efficiency of the method, we plot f(T = 5, x, v) obtained by the reference
MiMa-Grid, by MiMa-Part-2 and by Full PIC for ε = 10 on Figure 17 and for ε = 0.5 on Figure 18.
For MiMa-Grid and MiMa-Part-2, f is reconstructed from g, ρ and M , whereas the approximation
of f is directly given by the Full PIC scheme. The numerical parameters are the same as previously

19



(see comments on Figures 14 and 16). On Figure 17, we observe that the result obtained by MiMa-
Part-2 and Full PIC are in good agreement with MiMa-Grid; however, some numerical noise can
be distinguished on f obtained by the Full PIC method. On Figure 18 (ε = 0.5), we can see clearly
that the level of the noise is higher for Full PIC, which prevents it from giving good results. On the
contrary, MiMa-Part-2 produces good results compared to MiMa-Grid, since the noise only affects
the micro part g, which is small in this regime.
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Figure 17: Representation of f(T = 5, x, v), ε = 10. Distribution function f reconstructed from
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 0
 2

 4
 6

 8
 10

 12
 14-10 -5  0  5  10

 0

 0.1

 0.2

 0.3

 0.4

TSI, ε=0.5, T=5, f, MiMa-Grid

x

v

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0
 2

 4
 6

 8
 10

 12
 14-10 -5  0  5  10

 0

 0.1

 0.2

 0.3

 0.4

TSI, ε=0.5, T=5, f, MiMa-Part-2

x

v

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0
 2

 4
 6

 8
 10

 12
 14-10 -5  0  5  10

 0
 0.2
 0.4
 0.6
 0.8

 1

TSI, ε=0.5, T=5, f, Full PIC

x

v

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1
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For smaller values of ε, we compare the four AP schemes (MiMa-Part-1, MiMa-Part-2, MiMa-
Grid and Moment G.) to the limit scheme. Results for ε = 10−1 are given in Figure 19. Parameters
are the following: ∆t = 10−3 , Nx = 128 and Np = 104 for particle methods, ∆t = 0.1∆x2 ≈
3.5 × 10−3 and Nx = Nv = 64 for MiMa-Grid. As in the Landau damping case, MiMa-Part-2
gives the best result comparing to the reference MiMa-Grid. Finally, results for ε = 10−4 are
given in Figure 20, where we have ∆t = 10−2, Nx = 128 and Np = 100 for particle methods,
∆t = 0.1∆x2 ≈ 3.5 × 10−3 and Nx = Nv = 64 for MiMa-Grid. The asymptotic regime is well
recovered by all these AP methods.
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Figure 20: Time history of the electric energy,
ε = 10−4. ∆t = 0.01, Nx = 128 and Np = 100
for the four particle methods.

7 Conclusion

In this paper, we have presented new micro-macro models for the kinetic radiative transport equa-
tion (RTE), as well as for the Vlasov-Poisson-BGK system, in the diffusion scaling with periodic
boundary conditions. First-order in time and second-order in time models are derived, and their La-
grangian discretizations are detailed. The obtained schemes are proved to degenerate into implicit
discretizations of the limit model (the diffusion equation in the RTE case and the drift-diffusion
equation in the Vlasov-Poisson-BGK case) when ε→ 0. This asymptotic property is shown in the
numerical results too.

Moreover, thanks to the use of particle methods for the microscopic equation, the numerical cost
is reduced when ε diminishes. Finally, compared to a standard PIC method (where f is represented
by particles, and not g), the numerical noise is reduced.

In future works, we would like to extend the present approach to high-dimensional Vlasov-
Maxwell-BGK case on the one side. On the other side, we would like to combine our approach
to Monte Carlo ones to handle diffusion or drift-diffusion limits, in the spirit of what has been
proposed for the hydrodynamic limit of Vlasov-BGK in [8]. Indeed, this would enable us to adapt
automatically the number of particles with respect to ε which is of great importance in applications
(recall that in the present work, Np has to be fixed at the beginning). The main idea is to replace
the equation of the weights ωk by an equation on the velocities vk to take into account the source
part (see [8] for more details), as usual in Monte Carlo PIC methods.

A Time discretization for Eulerian schemes

We present the time discretization of (2.1) having in spirit a Eulerian discretization of the phase
space. Obviously, the numerical scheme proposed in [2, 9, 22] works well. Now, (3.5) also provides
a numerical scheme that we will exploit in this appendix.

Let us consider staggered grids in the phase-space domain and adopt the following notations:
xi = i∆x and xi+1/2 = i∆x+∆x/2, i ∈ N, define two grids in space and vj = j∆v, j ∈ N, defines
a grid in velocity, where ∆x (resp. ∆v) is the step in space (resp. in velocity). Time is also
discretized with a time step ∆t and we note tn = n∆t, n ∈ N. The density ρ is discretized on the
first space grid: ρni approximates ρ(tn, xi), whereas the perturbation g is discretized on the second
one: gni+1/2,j approximates g(tn, xi+1/2, vj).
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Let an approximation D of the spatial derivative, the numerical scheme we propose consists in
computing gn+1

i+1/2,j with

gn+1

i+1/2,j = e−∆t/ε2gn+1

i+1/2,j − ε(1− e−∆t/ε2)

[
vj
ρni+1 − ρni

∆x

+(I − 〈·〉)
(
v+j (D

−
x g

n)i+1/2,j + v−j (D
+
x g

n)i+1/2,j

)]
,

(A.1)

where 〈h〉i+1/2,j = (
∑

j hi+1/2,j∆v), and then to compute ρn+1
i with

ρn+1
i = ρni −

∆t

ε

∑

j

(
vj

gn+1

i+1/2,j − gn+1

i−1/2,j

∆x

)
∆v. (A.2)

Proposition A.1. The scheme given by (A.1)-(A.2) enjoys the AP property, i.e. it satisfies the
following properties

• for fixed ε > 0, the scheme is a first-order (in time) approximation of the original model
(1.1),

• for fixed ∆t > 0, the scheme degenerates into an explicit first-order (in time) scheme of (1.2).

Proof. We observe easily that when ε goes to zero, (A.1) gives

gn+1

i+1/2,j = −εvj
ρni+1 − ρni

∆x
+O(ε2),

which, injected in the time discretization (A.2) for ρ, gives up to terms of order O(ε2)

ρn+1
i = ρni +∆t



∑

j

v2j∆v


 ρni+1 − 2ρni + ρni−1

∆x2
.

Since
∑

j v
2
j∆v is an approximation of

∫ 1

−1
v2dv = 1/3, we obtain a consistent discretization of the

diffusion equation.

Proposition A.1 is of big interest for impliciting the diffusion term ∂xxρ. Indeed, let us rewrite
(A.1) as follows

gn+1

i+1/2,j = −ε(1− e−∆t/ε2)vj
ρni+1 − ρni

∆x
+ hi+1/2,j ,

with

hi+1/2,j = e−∆t/ε2gn+1

i+1/2,j − ε(1− e−∆t/ε2)
[
(I − 〈·〉)

(
v+j (D

−
x g

n)i+1/2,j

+v−j (D
+
x g

n)i+1/2,j

)]
.

Injecting this relation into the macro part, we get

ρn+1
i = ρni +∆t(1− e−∆t/ε2)

∑

j

(v2j )∆v
ρni+1 − 2ρni + ρni−1

∆x2

−∆t

ε

∑

j

(
vj

hi+1/2,j − hi−1/2,j

∆x

)
∆v.

(A.3)
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Since hi+1/2,j = O(ε2) as ε goes to zero after two iterations, the asymptotic preserving property is
ensured. Moreover, the diffusion term can now be chosen as implicit, so that the macro equation
becomes

ρn+1
i = ρni +∆t(1− e−∆t/ε2)

∑

j

(v2j )∆v
ρn+1
i+1 − 2ρn+1

i + ρn+1
i−1

∆x2

−∆t

ε

∑

j

(
vj

hi+1/2,j − hi−1/2,j

∆x

)
∆v,

(A.4)

and the scheme is now free from the usual diffusion condition on the time step.
The algorithm finally writes

Algorithm A.1.

• Initialize g0i+1/2,j and ρ0i .

At each time step:

• Advance micro part with (A.1).

• Advance macro part with (A.4).

And we have the following result.

Proposition A.2. The scheme given by (A.1)-(A.4) enjoys the AP property, i.e. it satisfies the
following properties

• for fixed ε > 0, the scheme is a first-order (in time) approximation of the original model
(1.1),

• for fixed ∆t > 0, the scheme degenerates into an implicit first-order (in time) scheme of
(1.2).

We do not present here the extension to the Vlasov-Poisson-BGK case, but it is straightforward.

B Moment guided

In this section, we present the adaptation of the moment guided particle method proposed in [11]
to our context. For the sake of simplicity, we present it in the RTE case but note that these
computations can also be extended to the Vlasov-Poisson-BGK case, without difficulty.

The kinetic equation on f has to be reformulated to avoid the singularity linked to the transport
term. To do that, we proceed as previously, but from (1.1). Indeed, we rewrite equation (1.1) as

∂t(e
t/ε2f) =

et/ε
2

ε

[
−v∂xf +

1

ε
ρ

]
,

and we integrate between tn and tn+1 to get

f(tn+1) = e−∆t/ε2f(tn)− e−tn+1/ε2

ε

∫ tn+1

tn
et/ε

2

[
v∂xf −

1

ε
ρ

]
dt.
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We make the following approximation

fn+1 = e−∆t/ε2fn − ε(1 − e−∆t/ε2)

[
v∂xf

n − 1

ε
ρn
]
,

where fn ≈ f(tn) and ρn ≈ ρ(tn), ∀n.
Making appear the discrete time derivative enables to write

fn+1 − fn

∆t
=

e−∆t/ε2 − 1

∆t
fn − ε

1− e−∆t/ε2

∆t

[
v∂xf

n − 1

ε
ρn
]
,

which we approximate by

∂tf =
e−∆t/ε2 − 1

∆t
f − ε

1− e−∆t/ε2

∆t

[
v∂xf −

1

ε
ρ

]
. (B.1)

Following the spirit of the moment guided method (see [11]), this equation is coupled with the
macro one, that is

∂tρ+
1

ε
∂x〈vf〉 = 0,

∂tf + ε
1− e−∆t/ε2

∆t
v∂xf =

e−∆t/ε2 − 1

∆t
f +

1− e−∆t/ε2

∆t
ρ.

To derive an AP scheme for this latter system satisfied by (ρ, f), we adapt the strategy presented
in [11] to our diffusion framework. To do so, we first remark that 〈vf〉 = 〈vg〉 and using the
expression of g obtained by (3.5), we get the following approximation for the macro flux (considered
implicit in time)

1

ε
∂x〈vgn+1〉 = −(1− e−∆t/ε2)∂xxρ

n +
1

ε
e−∆t/ε2∂x〈vgn〉.

Then, we get the following scheme for ρ

ρn+1 = ρn +∆t(1− e−∆t/ε2)∂xxρ
n − ∆t

ε
e−∆t/ε2∂x〈vfn〉. (B.2)

A Lagrangian method can be used to approximate the equation on f . As for the micro-macro
scheme, we use a splitting procedure

• solve ∂tf + ε
1− e−∆t/ε2

∆t
v∂xf = 0

• solve ∂tf = −1− e−∆t/ε2∆t

f
+

1− e−∆t/ε2

∆t
ρ.

To do that, the transport part is solved with the (non stiff) characteristics

ẋk(t) = ε
1− e−∆t/ε2

∆t
vk(t). (B.3)

The source part is solved using the equation satisfied by the weights

ω̇k(t) = −
1− e−∆t/ε2

∆t
ωk(t) +

1− e−∆t/ε2

∆t
ρ(t, xk(t)). (B.4)

24



The last step consists in matching the moment of fn+1 obtained by the particle method with
ρn+1 obtained with (B.2). This can be done using the techniques proposed in [6]. Indeed, consid-
ering the function g = f − ρ, its weight can be written as

γk = ωk − βk, with βk = ρ(xk)
LxLv

Np
.

Then, we apply the discrete version of (I − 〈·〉) to the weights γk as in [6]

ωnew
k = βk + (I − 〈·〉)(ωk − βk).
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