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Abstract The traditional quadratic programming approach to port-
folio optimisation is difficult to implement when there are cardinality
constraints. Recent approaches to resolving this have used heuristic al-
gorithms to search for points on the cardinality constrained frontier.
However, these can be computationally expensive when the practitioner
does not know a priori exactly how many assets they may desire in a
portfolio, or what level of return/risk they wish to be exposed to without
recourse to analysing the actual trade-off frontier.
This study introduces a parallel solution to this problem. By extending
techniques developed in the multi-objective evolutionary optimisation
domain, a set of portfolios representing estimates of all possible cardin-
ality constrained frontiers can be found in a single search process, for a
range of portfolio sizes and constraints. Empirical results are provided
on emerging markets and US asset data, and compared to unconstrained
frontiers found by quadratic programming.

1 Introduction

Given constraints on the number of stocks to hold in a portfolio, due to the costs
of monitoring and portfolio re-weighting, the question arises as to how to choose
the ‘best’ portfolio given particular risk/return preferences and these cardinality
constraints. The number of stocks needed to achieve a particular diversification
gain depends on the correlation among stock returns; the lower the correlation,
the more stocks are needed. Campbell et al. [1] show that although overall market
volatility has not increased in recent years, individual stock returns have become
less correlated with each other. Consequently, more stocks are thought to be
needed in a portfolio than in the period studied by [2] (1926-1965).

Markowitz [3] defined the set of optimal portfolios that are on the efficient
frontier, based on estimated moments of the sampled distribution. Ignoring the
uncertainty inherent in the underlying probability model, the portfolio that max-
imizes expected return, through to the one which minimises risk, is in this set.
This approach reduces the task of choosing an optimal portfolio to choosing a
portfolio from this efficient frontier.

When there are no cardinality constraints, quadratic programming (QP) can
be effectively used to determine an optimal portfolio’s weights, given ‘a’ dif-
ferent assets. With µi being the expected return of the ith asset, and Vi,j the
covariance between assets i and j, this takes the general form: min{σP }, where
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σP =
√

Σa
i=1Σ

a
i=1wiwjVi,j , subject to Σa

j wiµi = r∗P and Σa
i wi = 1, where wi

is the portfolio weight of the ith asset, and r∗P is the desired expected return
of the portfolio. In more formal notation, expected return of a portfolio (rP )
equals µ

T w and risk (σP ) equals wT V w. Commonly there is also a no short
selling constraint 0 ≤ wi ≤ 1. However, when realistic cardinality constraints are
imposed QP cannot be applied to find optimal subsets.

We introduce a heuristic model to search for all the cardinality constrained
(CC) efficient portfolio frontiers available for any set of assets. We illustrate the
differences that arise in the shape of this efficient frontier when such constraints
are present, and test for significant difference between these frontiers and the
unconstrained efficient (UC) frontier found using quadratic programming.

2 Heuristic search methods

Heuristic search approaches addressing the portfolio search problem when car-
dinality constraints are imposed have recently been developed [4,5] . These have
taken the form of optimising a composite weighting of σP and rP , typically
max{λrP − (1 − λ)σP }, where 0 ≤ λ ≤ 1. Problematic however is that the car-
dinality to be searched needs to be defined a priori, and a separate run is needed
for each portfolio to be optimised. If a range of cardinalities need to be compared
then obviously this increases the computational cost further.

Multi-objective evolutionary algorithms (MOEAs) represent a popular ap-
proach to confronting these types of problem by using evolutionary search tech-
niques [6]. Here we investigate the use of a modified MOEA to optimise CC
portfolio frontiers in parallel (optimising all plausible values of k in a single pro-
cess). Novel search processes are incorporated in this algorithm to enable it to
maintain these disparate frontier sets and efficiently compare new portfolios dur-
ing the search process. Prior to this however the concepts of Pareto optimality
(central to modern MOEAs) and non-dominance will be briefly described.

2.1 Pareto optimality

The multi-objective optimisation problem seeks to simultaneously extremise D
objectives: yi = fi (w), where i = 1, . . . , D and where each objective depends
upon a vector w of n parameters or decision variables. The parameters may also
be subject to the m constraints: ej (w) ≥ 0 where j = 1, . . . , m. In the context
of portfolio optimisation, these may be constraints on the maximum/minimum
proportion of a portfolio that can be derived from a particular market or sector,
or a minimum/maximum weight an asset can have in a portfolio.

Without loss of generality it is assumed that these objectives are to be min-
imised (minimising −1×rP is analogous to maximising rP ), as such the problem
can be stated as: minimise y = f (w) = (f1 (w) , f2 (w) , . . . , fD (w)), subject
to e (w) = (e1(w) , e2 (w) , . . . , em (w)). A decision vector u is said to strictly

dominate another v (denoted u ≺ v) if fi (u) ≤ fi (v) ∀i = 1, . . . , D and fi (u)
< fi (v) for some i. A set of M decision vectors is said to be a non-dominated set



Algorithm 1 Algorithmic description of the multi-objective optimiser.

g, maximum number of algorithm iterations

H, Set of sets of portfolios defining the c different estimated frontiers

1: t := 0, Ht
k = ∅ ∀k = 1, . . . , a

2: Ht
k,1 := random portfolio(k) ∀k = 1, . . . , a

3: while (t < g)
4: k = U(1, a)
5: w := select (Ht, k)
6: w := adjust(w)
7: y := evaluate(w)
8: H

t+1 = check insert remove(Ht,w,y)
9: t := t + 1

10: end

(an estimated Pareto front) if no member of the set is dominated by any other
member. The true Pareto front is the non-dominated set of solutions which are
not dominated by any feasible solution. In the context of portfolio optimisation,
the efficient frontier can be seen as an example of a Pareto optimal set.

2.2 The proposed model

If we are not concerned with constraints other than cardinality, then cardin-
ality can be incorporated as a third objective to be minimised, therefore aim-
ing to find the 3-dimensional surface defining the trade-off between risk, return
and cardinality minimisation. We can then extract the 2-dimensional cardinality
constrained frontier for any particular k. According to finance theory for higher
cardinality levels (more assets) the CC front extracted will be short, as identical
risk/return levels may be available at a lower cardinality for high rP and σP .
With no other constraints this is not a problem as the lower cardinality port-
folios are equivalent to higher cardinality portfolios with some weights equal to
zero. If however there are other constraints (as mentioned in Section 2.1), this
transformation may no longer be possible. As such CC portfolio optimisation
with MOEAs is interesting, as we need to maintain a separate estimated Pareto
set for each cardinality, k. (NB, in the empirical results shown here there are
no additional constraints, so the cardinality constraint is effectively a maximum
one).

One solution would be to run separate 2-objective MOEAs for each k, (ex-
tending the approach used previously in [7] for UC optimisation). However, al-
though more computationally efficient than the existing heuristic methods used
in the application domain, this may still be computationally expensive for a large
number of k. Instead here we search for each k constrained front in parallel, and
constructively use information from each of these fronts to improve the search
process of the others. The decision vector w here consists of the weights of the
a different available assets. A description of the MOEA used, based on a simple
(1+1)-evolution strategy [8] is provided in Algorithm 1.
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Figure 1. Left : EM UC frontier found exactly using QP and the first 5 optimised CC
fronts. Right : All 40 optimised EM CC fronts and the UC frontier.

The algorithm maintains a set of sets H of the a different CC efficient fron-
tiers. Each of these Hk cardinality sets is initialised with a random portfolio
(line 2), with random non-negative wis, where Σa

i=1wi = 1 and the number of
non-zero wi equals k. The algorithm proceeds at each iteration by first randomly
selecting an archive with cardinality k at that generation t, Ht

k, and copying a
portfolio from it (using partitioned quasi-random selection [8]). This copied port-
folio w is then adjusted (line 6); this takes the form of weight adjustment 50%
of the time, otherwise a weight adjustment plus dimensionality change. When
only weights are adjusted w :∼ Dir(bw), where Dir denotes the Dirichlet dis-
tribution. By sampling a Dirichlet with parameters equal to the current weights,
and a large enough multiplying constant b (set at 400 here), the new weights
will be close to the original values [9]. In addition, sampling from a Dirichlet
ensures Σa

i=1wi = 1, wi ≥ 0, and any wi that were previously zero will remain
zero. When dimensionality change is also implemented either a non-zero value
in w set to zero (asset removal) or a zero valued wi is assigned a value drawn
from U(0, 1/k) (where U denotes the Uniform distribution and k is the number
of active assets in the new portfolio). In both cases new weights are then drawn
from Dir(bw). The new portfolio w is evaluated on line 7, rP and σP are then
assigned to y. Using y the new portfolio can be compared to the relevant Ht

k

(line 8), to see if it is non-dominated, and if so, any dominated portfolios are
removed when it is inserted into Ht+1

k .

3 Empirical results

Empirical evaluation of this new method is provided here on weekly stock data
from the US S&P 100 index and emerging markets (EM) stock. Both sets were
obtained from Datastream and were those stocks within the index that persisted
from January 1992 to December 2003. Using the first 500 points of the returns
data, Algorithm 1 was run for 107 portfolio evaluations.

Figure 1 shows the CC frontiers found by the MOEA on the EM asset set, the
CC frontiers rapidly approaching the UC frontier (also shown) as k is increased.
Using the methodology described in [10], coupled with methods developed in the



Table 1. Cardinality for which the CC is not significantly better than the UC segment.

Partition (low risk to high risk) 1 2 3 4 5 6 7 8 9 10

EM opt. CC level when no sig difference to UC - 8 5 4 4 3 3 2 2 2

S&P opt. CC level when no sig difference to UC - 9 6 5 4 3 3 3 2 2

Table 2. Ex ante performance of minimum variance CC portfolios (k = 10).

EM S&P

t (weeks) 4 12 26 52 104 4 12 26 52 104

σP of opt. CC portfolio 0.93 3.26 2.58 2.42 2.20 0.55 2.86 2.35 2.98 3.34

Mean of bootstrap CCs σP 2.13 3.39 3.05 2.77 2.55 1.44 2.98 2.63 3.08 3.33

Rank of opt CC (/1001) 279 414 120 134 96 45 481 307 579 623

MOEA community, we can test if the optimised CC frontiers are significantly
different from the UC frontier. We do this by sampling means and covariances
from the posterior distribution of the S&P and EM data, and evaluating the
optimised portfolios with respect to these. The UC frontier is sliced into 10 evenly
spaced segments (with respect to σP ). The portfolios lying in each segment, and
those on the CC frontier defined by the σP bounds of the relevant UC segment are
then re-evaluated with new covariances and means sampled from the posterior
distribution of the stocks. The resultant sets of points are then compared by
calculating the proportion of points y in each set which are strictly dominated
by those in the other set [8]. This is performed for 1000 different samples from
the posterior, and the difference in the respective proportions assessed as to
whether they are statistically different from 0. Table 1 shows that for both
asset sets, apart from the lowest risk levels, the optimised UC portfolios are not
significantly different from the CC frontier except for a relatively small k.

The previous analysis has shown that it is possible to replicate closely the
mean and variance of an efficient portfolio with a portfolio composed of a relat-
ively small number of stocks. The analysis is however ex post and might be of
little help to portfolio managers concerned with choosing investment positions
ex ante. Thus while we have shown that optimising a (CC) portfolio could take
us close to the UC frontier, it might be that the benefits that we know exist ex

post are impossible to realise ex ante. In the preliminary proof of concept study
here, we solely concentrate on the global minimum variance portfolio. This frees
us from the difficulty of having to estimate expected returns on the portfolio
[10]. To actually evaluate the performance of our historically optimal CC port-
folio we use a bootstrapping technique. We draw without replacement k random
integers, all between 1 and a. The global MV portfolio formed from stocks in
our dataset corresponding to the k integers is then calculated using QP. The
standard deviation of the weekly returns for the portfolio is derived, beginning
with week 501 for a period of t weeks, t = 4, 12, 26, 52, 104. This is repeated
1000 times. Descriptive statistics are reported in Table 2 for k = 10.



In both asset sets the largest reduction in volatility, compared to the mean
bootstrapped CC portfolio, is in the shortest period (t=4) after portfolio form-
ation. After this, performance is mixed with the US data showing only a small
or no improvement for longer horizons, while the EM ex ante optimal portfolio
does offer 14.7% risk reduction at the 104 week horizon. The short term result
does appear consistent with ARCH type modelling of volatility movements.

4 Discussion

A new approach to discovering cardinality constrained portfolios has been de-
scribed here, using MOEAs to search for and maintain a number of different
CC frontiers. Empirical results show that ex post with a relatively small car-
dinality level one can attain performance that is not significantly different than
the unconstrained frontier and ex ante there is some level of persistence in the
portfolio weights found. The authors are currently applying the methodology to
both within and across markets, with additional constraints recommended by
fund managers. In addition the authors are investigating non-Markovitz formu-
lations of risk, and the use of higher moments within the general framework.
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