42 research outputs found

    Force Field Simulation Based Laser Scan Alignment

    Get PDF

    Metabolomics-based Sleepiness Markers for Risk Prevention and Traffic Safety (ME-SMART): a monocentric, controlled, randomized, crossover trial

    Full text link
    Background: Too little sleep and the consequences thereof are a heavy burden in modern societies. In contrast to alcohol or illicit drug use, there are no quick roadside or workplace tests for objective biomarkers for sleepiness. We hypothesize that changes in physiological functions (such as sleep–wake regulation) are reflected in changes of endogenous metabolism and should therefore be detectable as a change in metabolic profiles. This study will allow for creating a reliable and objective panel of candidate biomarkers being indicative for sleepiness and its behavioral outcomes. Methods: This is a monocentric, controlled, randomized, crossover, clinical study to detect potential biomarkers. Each of the anticipated 24 participants will be allocated in randomized order to each of the three study arms (control, sleep restriction, and sleep deprivation). These only differ in the amount of hours slept per night. In the control condition, participants will adhere to a 16/8 h wake/sleep regime. In both sleep restriction and sleep deprivation conditions, participants will accumulate a total sleep deficit of 8 h, achieved by different wake/sleep regimes that simulate real-life scenarios. The primary outcome is changes in the metabolic profile (i.e., metabolome) in oral fluid. Secondary outcome measures will include driving performance, psychomotor vigilance test, d2 Test of Attention, visual attention test, subjective (situational) sleepiness, electroencephalographic changes, behavioral markers of sleepiness, changes in metabolite concentrations in exhaled breath and finger sweat, and correlation of metabolic changes among biological matrices. Discussion: This is the first trial of its kind that investigates complete metabolic profiles combined with performance monitoring in humans over a multi-day period involving different sleep–wake schedules. Hereby, we aim to establish a candidate biomarker panel being indicative for sleepiness and its behavioral outcomes. To date, there are no robust and easily accessible biomarkers for the detection of sleepiness, even though the vast damage on society is well known. Thus, our findings will be of high value for many related disciplines. Trial registration: ClinicalTrials.gov Identifier NCT05585515, released on 18.10.2022; Swiss National Clinical Trial Portal SNCTP000005089, registered on 12 August 2022

    Correspondences between parts of shapes with particle filters

    No full text
    Given two shapes, the correspondence between distinct visual features is the basis for most alignment processes and shape similarity measures. This paper presents an approach introducing particle filters to establish perceptually correct correspondences between point sets representing shapes. Local shape feature descriptors are used to establish correspondence probabilities. The global correspondence structure is calculated using additional constraints based on domain knowledge. Domain knowledge is characterized as prior distributions expressing hypotheses about the global relationships between shapes. These hypotheses are generated during the iterative particle filtering process. Experiments using standard alignment techniques, based on the given correspondence relationships, demonstrate the advantages of this approach. 1. Introduction and Relate

    Incremental multi-robot mapping

    No full text
    Abstract — The purpose of this paper is to present a technique to create a global map of robots ’ surroundings by converting the raw data acquired from a scanning sensor to a compact map composed of just a few generalized polylines (polygonal curves). We propose a new approach to merging robots ’ maps that is composed of a local geometric process of merging similar line segments (termed Discrete Segment Evolution) with a global statistical control process. In the case of single robot, we are able to incrementally build a map showing the environment the robot has traveled through by merging its polygonal map with actual scans. In the case of a robot team, we are able to identify common parts of their partial maps and if common parts are present construct a joint map of the explored environment
    corecore