142 research outputs found

    LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models

    Full text link
    Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots, such as scalable simulation, scene manipulation, and sparse-to-dense completion of LiDAR point clouds. Existing approaches have shown the feasibility of image-based LiDAR data generation using deep generative models while still struggling with the fidelity of generated data and training instability. In this work, we present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds based on the image representation of range and reflectance intensity. Our method is based on the denoising diffusion probabilistic models (DDPMs), which have demonstrated impressive results among generative model frameworks and have been significantly progressing in recent years. To effectively train DDPMs on the LiDAR domain, we first conduct an in-depth analysis regarding data representation, training objective, and spatial inductive bias. Based on our designed model R2DM, we also introduce a flexible LiDAR completion pipeline using the powerful properties of DDPMs. We demonstrate that our method outperforms the baselines on the generation task of KITTI-360 and KITTI-Raw datasets and the upsampling task of KITTI-360 datasets. Our code and pre-trained weights will be available at https://github.com/kazuto1011/r2dm

    Tracing commodities in indoor environments for service robotics

    Get PDF
    Daily life assistance for elderly people is one of the most promising scenarios for service robots in the the near future. In particular, the go-and-fetch task will be one of the most demanding tasks in these cases. In this paper, we present an informationally structured room that supports a service robot in the task of daily object fetching. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is send to a centralized management system which process the data and make it available to a service robot which is assisting people in the room. We additionally present the first steps of an intelligent framework used to maintain information about locations of commodities in our informationally structured room. This information will be used by the service robot to find objects under people requests. One of the main goal of our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activity of people, and to reduce as much as possible invasion of their privacy. In order to compensate this limited available sensor information, our framework aims to exploit knowledge about people's activity and interaction with objects, to infer reliable information about the location of commodities. This paper presents simulated results that demonstrate the suitability of this framework to be applied to a service robotic environment equipped with limited sensors. In addition we discuss some preliminary experiments using our real environment and robot

    Dual Arm Coordination in Space Free-Flying Robot

    Get PDF
    Proceedings of the 1991 IEEE Intematid Conference on Robotics and Automation Sacramento, California - April 199

    Dynamic graph-based search in unknown environments

    Get PDF
    A novel graph-based approach to search in unknown environments is presented. A virtual geometric structure is imposed on the environment represented in computer memory by a graph. Algorithms use this representation to coordinate a team of robots (or entities). Local discovery of environmental features cause dynamic expansion of the graph resulting in global exploration of the unknown environment. The algorithm is shown to have O(k.nH) time complexity, where nH is the number of vertices of the discovered environment and 1 <= k <= nH. A maximum bound on the length of the resulting walk is given

    Indoor place categorization using co-occurrences of LBPs in gray and depth images from RGB-D sensors

    Get PDF
    Indoor place categorization is an important capability for service robots working and interacting in human environments. This paper presents a new place categorization method which uses information about the spatial correlation between the different image modalities provided by RGB-D sensors. Our approach applies co-occurrence histograms of local binary patterns (LBPs) from gray and depth images that correspond to the same indoor scene. The resulting histograms are used as feature vectors in a supervised classifier. Our experimental results show the effectiveness of our method to categorize indoor places using RGB-D cameras

    The intelligent room for elderly care

    Get PDF
    Daily life assistance for elderly is one of the most promising and interesting scenarios for advanced technologies in the present and near future. Improving the quality of life of elderly is also some of the first priorities in modern countries and societies where the percentage of elder people is rapidly increasing due mainly to great improvements in medicine during the last decades. In this paper, we present an overview of our informationally structured room that supports daily life activities of elderly. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is sent to a centralized management system which processes the data and makes it available to a service robot which assists the people in the room. One important restriction in our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activities of people and to reduce as much as possible the invasion of their privacy. In addition we discuss some experiments using our real environment and robot

    Application of Active Self-landmarking to Camera Calibration

    Full text link

    Modeling of hyper-adaptability: from motor coordination to rehabilitation

    Get PDF
    Hyper-adaptability is an ability of humans and animals to adapt to large-scale changes in the nervous system or the musculoskeletal system, such as strokes and spinal cord injuries. Although this adaptation may involve similar neural processes with normal adaptation to usual environmental and body changes in daily lives, it can be fundamentally different because it requires ‘construction’ of the neural structure itself and ‘reconstitution’ of sensorimotor control rules to compensate for the changes in the nervous system. In this survey paper, we aimed to provide an overview on how the brain structure changes after brain injury and recovers through rehabilitation. Next, we demonstrated the recent approaches used to apply computational and neural network modeling to recapitulate motor control and motor learning processes. Finally, we discussed future directions to bridge the gap between conventional physiological and modeling approaches to understand the neural and computational mechanisms of hyper-adaptability and its applications to clinical rehabilitation
    corecore