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Abstract: Daily life assistance for elderly people is one of the most promising scenarios for
service robots in the near future. In particular, the go-and-fetch task will be one of the most
demanding tasks in these cases. In this paper, we present an informationally structured room
that supports a service robot in the task of daily object fetching. Our environment contains
different distributed sensors including a floor sensing system and several intelligent cabinets.
Sensor information is sent to a centralized management system which processes the data and
makes it available to a service robot which is assisting people in the room. We additionally
present the first steps of an intelligent framework used to maintain information about locations
of commodities in our informationally structured room. This information will be used by the
service robot to find objects under request. One of the main goal of our intelligent environment
is to maintain a small number of sensors to avoid interfering with the daily activity of people
and to reduce as much as possible the invasion of their privacy. In order to compensate this
limited available sensor information our framework aims to exploit knowledge about people’s
activity and their interaction with objects to infer reliable information about the location of
commodities. This paper presents simulated results that demonstrate the suitability of this
framework to be applied to a service robotic environment equipped with limited sensors. In
addition we discuss some preliminary experiments using our real environment and robot.

Keywords: Mobile Robots; Artificial Intelligence; Sensor Systems; Probabilities Integration;
Sensor Fusion; Systems Design

1. INTRODUCTION

Inside the many applications of advanced service robotics,
elderly care is one of the most promising ones both in social
and economic terms. It is expected that service robots will
soon be playing a role of companion to elderly people,
or a role of assistant to humans with special needs at
home (Kawamura and Iskarous (1994), Roy et al. (2000),
Kim et al. (2009)). In these scenarios, one of the most
demanding tasks by the users will be the go-and-fetch
of objects that are needed for their everyday activities
(Srinivasa et al. (2010), Dario et al. (1999)). There is a
variant of this task that is of special interest in cases
of people with special memory loss problems such as
Alzheimer patients. This particular task is the retrieval
of commodities that are lost by people, i.e. people forgot
the location of these objects at some point in time. Finding
these lost (or forgotten) objects is a challenging task for
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a service robot, and it needs an indoor object tracking
system that can provide information about the possible
positions of objects at any time.

Several approaches to the indoor object-tracking problem
have been presented before. For example Fukui et al.
(2008) proposed to attach a RFID reader to a cabinet so
as to keep track of what is being stored inside. However,
the object cannot be tracked when it is out of the cabinet.
For tracking objects outside furniture, some solutions have
used ultrasonic tags attached to objects combined with
receivers on the ceiling (Nishida et al. (2003)), or direc-
tional RFID signal reception (Deyle et al. (2009)). The
first previous case has the inconvenience of high cost and
big size of the tags, whilst in the second case the position
resolution is very low. An alternative is to use a vision
system that monitors the whole environment. Nelson and
Green (2002) present a system to track objects by visual
recognition using cameras that monitor specific locations
in the home. However, fixed cameras in the environment
have the problem of being frequently occluded by people.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/17353891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Moreover, environments that are monitored by cameras
constitute a significant invasion of people’s privacy.

The previous systems often assume that objects are trace-
able at any time. This assumption is not valid in our sce-
nario since we aim for a limited sensor installation which
results in possible loss of information about the position
of objects during undefined periods of time. Furthermore,
with our limited set of sensors we aim to achieve a subtle,
non-invasive human support system.

In this paper, we present an informationally structured
room that supports a humanoid service robot in the task of
daily object fetching. Our environment contains different
distributed sensors including several intelligent cabinets,
and a floor sensing system. The intelligent cabinets are
provided with RFID sensors allowing the detection and
recognition of tagged objects with high precision. The floor
sensor systems is equipped with a laser range finder and
it is used for people detection and tracking. Information
from both sensor modalities is processed by a centralized
management system which evaluates the data and provides
information about possible locations for objects. This is
done through a probabilistic framework which provides
maps with possible location of objects at any time. In ad-
dition, the framework makes use of punctual observations
made by the service robot to reduce the uncertainty in the
maps.

One of the main objectives of our system is to avoid
interfering with the daily activity of people, and to reduce
as much as possible invasion of their privacy. For these
reasons we do not use static cameras in our environment.
Moreover, we keep the number of distributed sensors small
and restricted to very particular places like for example
cabinets. In order to compensate this limited available sen-
sor information our framework aims to exploit knowledge
about affordances of places and objects in the environ-
ment, together with people’s activity and interaction with
objects, to infer reliable information about the location of
objects.

2. INFORMATIONALLY STRUCTURED ROOM

This section briefly describes the different components of
our informationally structured environment. In particular,
our scenario represents a room in a house as shown in
Figure 1. The room contains two cabinets, a bed, and a
desk with a chair.

The cabinets installed in this room are equipped with
RFID readers which are used to detect and recognize
tagged objects. Tag IDs are used to access the attributes of
the objects in the data management system. An example
detection of objects in one intelligent cabinet is shown in
Fig. 2. Further details about our intelligent cabinets can
be found in Murakami et al. (2010).

In addition to the intelligent cabinets, the room is
equipped with a floor sensing system used to detect people
and objects on the floor (Nohara et al. (2010), Murakami
et al. (2010)). This system is composed of a laser range
finder and it is extended with a lateral mirror. This con-
figuration allows a reduction of dead angles of the LRF
and it is more robust against occlusions.

Fig. 1. Room used as scenario in our experiments. It
contains two cabinets, one bed, and one desk with
a chair.

Fig. 2. Information about objects provided by the in-
telligent cabinet. Squares in the screen indicate the
position of the different objects together with their
description.

Fig. 3. Assistive humanoid robot SmartPal equipped with
RFID readers.

Finally, the person acting in the room is assisted by a
SmartPal humanoid robot (Fig. 3) from Yaskawa Electric
Corporation. This robot will be responsible for fetching
objects or pointing to them. The robot is composed of
a mobile platform, two arms with seven joints, and one-
joint grippers used as hands. Additional RFID readers are
situated on the hands and front of the robot as shown in
Fig. 3.

The previous sensing system and the robot itself are
connected to a central database management system which
processes sensor information and provides it under request
(Murakami et al. (2009)). The flow of information in this
system is shown in Fig. 4.



Fig. 4. Information management system.

3. PROBABILISTIC FRAMEWORK FOR OBJECT
TRACING

Based on the intelligent room previously presented we
now propose initial ideas of a framework for an intelligent
tracing of objects with the aim of supporting a service
robot. This framework uses information about activity of
people and their interaction with objects, together with
the sensor information, to generate hypotheses about the
positions of the commodities in the environment. This
hypotheses will be used by the service robot to find objects
in the environment under people’s requests.

The framework starts by dividing the elements contained
in the environment into three classes. The first class con-
tains the commodities to be traced by the system. Exam-
ples of such objects are books, keys, or bottles. We refer to
these objects as target objects. The elements of the second
class are called hot-spots. A hot-spot constitutes place
which contains some sensor able to detect and recognize
a target object with high reliability. In our room scenario
these elements are constituted by intelligent cabinets. The
rest of places in the environment are classified as open
space. Moreover, we assume there exits a people tracking
system that can provide hypotheses about the position
of the person in the environment. Finally, we also make
the assumption that the service robot is able to recognize
target objects with high reliability when it is located
sufficiently close to them. When this is the case we refer
to the robot as a mobile hot-spot.

We have created a simulated environment with the pre-
vious characteristics and elements. This environment is
shown in Fig. 5. The space is discretized into cells x1...xN

where each xn = (i, j) represents the 2D-coordinates of the
cell. In this scenario hot-spots represent a fridge, a shelf
and a key cabinet (green cells). Open space is formed by
the floor (white cells) and furniture without sensors (blue
cells). The target objects used in this scenario are a bottle,
a key and a book (yellow circles).

Initially objects are located at some storage hotspot. When
an object disappears from its hotspot, we assume that the
nearest human has taken it. We then associate the object’s
position to the carrier’s position. We consider that at each
instant, the object can be dropped by the person, either
accidentally, e.g. on the floor; or intentionally, e.g. placed
on a desk. In this first system we don’t consider the option

Fig. 5. Simulated environment used in our experiments.
Green rectangles indicate hot-spots, yellow circles
represent objects, blue rectangles indicate furniture
with no sensors, and finally white squares depict the
floor. The environment is discretized into cells.

that an object could be picked up later after having been
dropped outside the initial storage hotspot.

3.1 Object Usage Maps

Whenever a person is assigned an object and moves
around the room the object presence probability is spread
over the cells of the environment, progressively increasing
information entropy. We assume that the probability that
the human will drop the object at their current position
is a function of the time since the object was last picked
up, and the position of the human carrier (some objects
are dropped in some places more often than others).
These probabilities are represented by Object Usage Maps
describing a cycle that necessarily starts at a storage
hotspot and end once the object has been dropped, either
at a storage hotspot or on open space.

There are two kinds of Usage Maps: one map is over time
(within a certain range), and the other is over space. Each
map is object-specific, i.e., each object contains two Usage
Maps: one over time (Temporal Usage Map) and one over
space (Spatial Usage Map).

Usage Maps are calculated by averaging over observations
made about the time and place of occurrences of object
drops in the environment. In our implementation, these
maps are obtained by summing Gaussians centered on
data points gathered from observations. If we know that
in the past the object has been dropped at cells x1...xN at
times t1...tN , the Spatial Usage Map is then the normalized
sum of N Gaussians centered around the points xi, and
the Temporal Usage Map is the normalized sum of N
Gaussians centered around the points ti. The variance of
these Gaussians is function of the incertitude range of the
observations obtained by each sensor. In our experiments
these variances were set by hand depending on the simu-
lated sensor.

Usage maps are learned using the information provided
by the hot-spots and the people tracker. In our system the
human’s behavior is modeled through a set of different ac-
tivities. Each activity is represented by a sizeable Markov
automaton where states are sub-steps of the activities.
At each step there is a certain probability of changed
the behavior (for example, forgetting what he was doing),
dropping an object accidentally, or leaving an object on



some place. Repeating different behaviors several times we
obtain Spatial and Temporal Usage maps for each target
object. Examples of such maps are shown in Fig. 6 and
Fig. 7. Each usage map is additionally assigned a trust
index TI which quantifies how reliable the information is.
The idea behind these indexes is to give more weight to
usage maps with little entropy.

Alternatively, usage maps can be established a priory
using the semantic knowledge and affordances in the
environment. For example, desks and cabinets are places
where people have higher probability of leaving objects.
In a similar way we can establish prior probabilities for
dropping different objects along time.

3.2 Presence Maps

Presence maps provides the service robot with hypotheses
about possible locations of target objects in the envi-
ronment. Presence maps are constructed using the infor-
mation provided by Usage Maps combined with human
position tracking information.

Each time the human carrying a target object o passes
through a cell x, we augment the probability of finding o
in x based on the probability that the human just dropped
the object on x. This probability results from the fusion
of the data from the Spatial and Temporal Usage Maps.
In our initial design we decided for a normalized weighted
sum using the trust indexes of each usage map

P o
drop(x, ta, tb) =

TIotime

∫ tb
ta

Uo
time(t

′)dt′ + TIospaceU
o
space(x)

TIotime + TIospace

(1)

where P o
drop(x, ta, tb) represents the probability that object

o is dropped at cell x between times ta and tb, Uo
time

and Uo
space indicate the temporal and space usage maps

respectively for object o, and TIotime and TIospace are the
trust indexes for temporal and space usage maps.

3.3 Activating Observations from a Mobile Hot-Spot

As previously explained, our framework uses a mobile hot-
spot (the service robot in our case) to deliver observations
in case the uncertainty of the presence map is high. In
our approach we measure the uncertainty Q by using the
following expression

Q =
H(P o)

Hmax(P o)
, (2)

where P o represents the presence map of object o, and H(.)
is its entropy. The maximum entropy is obtained when
the presence probability is homogeneous over the space
considered. When Q is above a threshold, we send the
service robot to make an observation in the environment.
If the object is found at position x then the presence map
becomes entirely determined, with a probability of 1 of
finding the object at x. If the object is not found at the
observe position x this position gets a value of 0 and its
previous probability value is spread along the map.

The mobile hot-spot is initially sent to the cell where
the probability of finding the object is higher. In our

Table 1. Possible activities and dropping places
for each type of object.

Activity Object Places

Opening the door key Key cabinet, door
Drinking Bottle fridge, table, bin
Reading Book shelf, table

simulation results, we found that this can be done merely
at the cost of occasional observations once the usage maps
are well established (see Sect. 4).

4. EXPERIMENTS

In this section we present experiments to evaluate our
informationally structured room. First we describe exper-
iments in which we simulate our framework for object
tracing. We also describe experiments using our real en-
vironment in which we applied an approach that do not
take into consideration the movement of the person or
the temporal usage information (Murakami et al. (2012)).
In the future we aim to combine both approaches into a
common framework.

4.1 Simulations

We implemented a Matlab simulation modeling the one-
room environment of Fig. 5. Three activities are possible
in this environment, each one related to one object, and to
a number of preferred places for object storage and usage.
This information is shown in Table 1.

Based on this simulated environment, we obtained the
usage maps of Figures 6 and 7, illustrating how the
usage of each object follows characteristic spatio-temporal
patterns. These figures are generated from approximately
10 successful observations for each object.

The resulting presence map for each object proves to be
accurate, with the object being on average at the most
likely location 69.2% of the time, and at one of the top 10
most likely locations (and thus easily retrievable) 94.1%
of the time (with a normalized entropy threshold of 0.2).
Checks by the mobile hot-spot (robot) are very frequent
when the system is still lacking appropriate usage data. At
this stage, the typical system behavior pattern as shown in
Fig. 8. When the usage maps are well established (typically
after more than 5 successful object discoveries), place
checks stabilize at about one per 5 minutes of non-static
object use. This is illustrated in Fig. 9.

4.2 Experiments in the Real Environment

In addition to the previous simulation, in this section we
want to present an alternative approach in which we are
currently working to track objects using Sequential Impor-
tance Resampling (SIR) particle filters (Murakami et al.
(2012)). We plan to integrate this system into our pre-
sented framework to take advantages of both approaches.

This experiment used a slightly modified setup in our room
as shown Fig. 10. There are 20 objects in total although
we only move 6 of them: OBJ0,...,OBJ5. Each object can
be in one of the following states: in the cabinet, hold by
the person, hold by the robot, on the desk, or on the floor.
In the last case we restricted to 4 different positions on



Fig. 6. Spatial usage maps for a key (top), and a bottle
(bottom) after simulating the activities of Table 1.

Fig. 7. Temporal usage maps for a key (top), and a bottle
(bottom) after simulating the activities of Table 1.

the floor P1,...,P4. At the beginning of the experiment
all objects are located on the cabinets. Then the person
starts taking them and putting them on different positions
on the floor. Eventually he also gives some objects to the
robot. The sequence of positions of the objects during the
experiment is shown in Table 2. For example, OBJ4 is in
the cabinet A until it is taken by the person at step 5,
then the person gives the object to the robot which keeps
it during steps 6 and 7. In step 8 the robot puts OBJ4 on
the desk.

Fig. 8. System behavior when no prior data is available.

Fig. 9. System behavior when sufficient data is available.

Fig. 10. Second setup for our experiments.

Table 2. Position of the objects at each step.

Examples of the tracking system at different steps are
shown in Fig. 11 and Fig. 12. In this figures the left
image shows the measured positions of the objects. A
colored circle indicates the position of an object stored
in an intelligent cabinet. A colored triangle indicates the
position of an object held by the robot. A colored square
with a label (P1,...,P4) indicates a position on the floor.



Fig. 11. States of the objects in the tracking system at step
6.

Fig. 12. States of the objects in the tracking system at step
7.

The right image in each figure shows the probability
distribution over possible object locations. Numbers 0 to
19 indicate the IDs of the objects. In this first experiment
we only move objects OBJ0 to OBJ5. The ratio of colors in
each bar graph indicates the probability that an object is
related to each position in the environment. Each position
has its own color. The color corresponding to the person
is white. Note that at step 6 (Fig. 11) the uncertainty is
high for objects OBJ0 to OBJ3. In step 7 the robot checks
the ID of the object located at P3. After this check the
uncertainty reduces drastically as we can see in Fig. 12.

5. CONCLUSION

In this paper we have presented an informationally struc-
tured room whose goal is to support a service robot in
go-and-fetch tasks. The information of the sensors is used
as input for a framework that provides possible locations
of objects inside the environment. This information is
aimed to be used by the service robot to find objects. The
framework presented in this paper presents preliminary
results in simulations together with ongoing work on real
scenarios.

As discussed in Section 3.1, spatial and temporal maps can
be learned by observing the human behavior during certain
time. However, it is clear that in home environments we
can exploit more the semantic information about objects
and places. For example there exist a higher probability
of putting a book on the desk than inside the fridge. Our
approach allows us to include this information as priors in
the usage maps.

As future work we also want to study different options to
fuse temporal and space information about objects usage.
We further have to study the impact of the mobile hot-
spot in real situations when a human is living in the
room. A possibility can be to send the robot when the

human activity is low (maybe at night). Finally we want to
integrate and test the framework in our real environment.
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