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Abstract 

This paper presents the control problem of multiple ma- 

nipulators installed on a free-flying space robot. Firstly, 

kinematics and dynamics are studied and the General- 

ized Jacobian Matrix is formulated for the motion con- 

trol of multi-arm system. Then, individual and coor- 

dinated control of dual manipulators is discussed. For 

the coordinated operation, a new method to control 

two arms simultaneously: one arm traces a given path,  

while the other a rm works both to keep the satellite at- 

titude and to  optimize a total operation torque of the 

system, is developed. By means of i t ,  an interesting 
torque optimum behaviour is observed and a practi- 

cal target capture operation is exhibited by computer 

simulation. 

1 Introduction 

Space robotics is a new field. For a successful develop- 

ment of space projects, robotics and automation should 

be a key technology. Autonomous and dexterous space 

robots could reduce the workload of astronauts and in- 

crease operational efficiency in many missions. One 

major characteristic of space robots, which clearly dis- 

tinguishes them from ground-operated ones, is the lack 

of a fixed base. Any motion of the manipulator arm 

will induce reaction forces and moments in the base, 

which disturb its position and attitude. 

In order to  compensate the reaction and keep the 

satellite attitude, on-board Reaction Wheels (RW) or 

Control Moment Gyros (CMG) will be generally used 
[ l ,2] .  Also, manipulators with redundant joints could 

be useful €or this purpose [3,4]. However, compensation 

capability of such devices is limited. To cope with it,  

dual arm coordination is considerd to  be effective. 

This papers treats the control problem of multiple 

manipulators installed on a space robot. Firstly, the 

Generalized Jacobian Matrix (GJM) which guarantees 

proper motion control of free-flying manipulators, is 

formulated for the multi-arm system. Then, individual 

and coordinated motion control of dual manipulators 

for target capture operation is discussed. For the coor- 

dinated motion, anew control method of two arms: one 

arm traces a given path,  while the other arm is oper- 

ated both to  keep the satellite att i tude and to  optimize 

a total operation torque, is developed on the basis of 

redundancy resolution technique. Torque optimization 
is essential to space robots, in which the size of actua- 

tors and electric power supply is limited. By means of 

it,  a practical target capture scheme is proposed and its 

availability is examined through computer simulation. 

2 Kiiieinat ics and Dyiiaiiiics 

2.1 Modeling of Space nee-Flying 
Robot with Multiple Arms 

This paper deals with a mechanical link system which 

comprises a base satellite and a plural number of robot 

manipulators. The system freely flies in the inertial 

space, on which no external iorces or moments are ex- 
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erted. The linear and angular momentum is conserved 

in it. 
Let us suppose the system has 1 pieces of arms, which 

are numbered from 1 to  1. Each link of the k-th arm 

are assumed to  be rigid and numbered from a satellite 

side 1 to nk. The i-th joint is between the i-th link 

and the ( i  - 1)-th link. Angle of the j - t h  joint of the 

k-th arm is described as q5:, with upper-right suffix to  

indicate arm number and lower-right suffix for joint or 
link number. 

Let us define the joint variables coordinates as 

d = ( @ : , . . I  &., & , I . . ,  &.., $1,)’. (l) 

The system is operated by the torque applied at each 

joint. 

I T  z = ( T i  I . . ,  r k l ,  r :  ,.., r : 2  ,.., z: ,.., r n , )  (2) 
Other symbols are defined as follows: 

rf E R3 : position vector of the mass center of link ik 

rg E R3 : position vector of the mass center of the 

whole system 

p: E R3 : position vector of joint jk 

pf E R3 : position vector of the k-th hand 

kr E R3 : unit vector indicating a rotational axis of 

joint jk 

vo E R3 : linear velocity of the base satellite (E i o )  

v: E R3 : linear velocity of the manipulator hand (E 

Pf ) 

wf” E R3 : angular velocity of link i k  

mf” : mass of link i k  

w : total mass of the system 

If E R 3 x 3  : inertia tensor of link ik with respect to i ts  

mass center 

E E R3x3 : 3 x 3 identity matrix 

where i = 0, l , . .  . , n , j  = 1 , 2 ,  ..., n and k = 1 , 2  ,... ,1. 
All vectors are described with respect to  the inertial 

coordinate system. 

2.2 The Generalized Jacobian Matrix 

The Generalized Jacobian Matrix (GJM) concept 

was established for the motion control of space free- 
flying single-arm system [5,6]. This paper applies the 

GJM concept t o  the multi-arm system. 

The linear velocity of hand of the k-th arm vf is 

represented by 

VI = vo + W O  x (p: - ro) + C{k$ x (pf - p f ) } i f .  
n k  

i = l  

(3) 

The angular velocity of hand of the k-th arm ~f is 

also represented by 

nli 

wf = w o + x k f i t .  i = l  (4) 

From eqs.(3) and (4), the task variables coordinates 

of hand a t  velocity-level vk = (vfT,  ~ f ~ ) ~  is described 

with the variables VO, W O  and 9 as follows. 

vk = Js [ vo ] + J L i  
WO 

where 

(5 )  

O . . . O  kf x (pf - p i )  kk x (pf - p i )  
J ~ E  [ 

o . . . o  k:: kk 

... k: o . . . o  ] (7 )  

... ka x (p: -pk) O . . . O  

and an operator F for a vector r = (5, y, z ) ~  is defined 

as 
0 -2  y 

r E  ( 8 )  

- B -;I. 
Here, Ja E R6x6  and Jf E R G x m  are Jacobian ma- 

trixes for satellite motion and manipulator motion, re- 

spectively. On the other hand, the total linear and 

angular momentum of the system P, L is represented 

as follows. 
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where 

I 11 L 

These equations are rewritten with the variables 

V 0 , W O  and 4 ,  

WE -wEog 

H , [  : I ] i H , i  
where 

Jki [O,. . . , O ,  kt x (r; - pf),  k i  x (r; - p;), . .. , 

. . . , k! x (r! - p!),O,. . . , 0 ]  

J i i  3 [O,. . . ,0, kf , kk,, . . . , kf , 0 ,  . . . , O ]  

I n  

I, Z(I!Jki + mi k - k  ri JTi) .  k 
k=l i= l  

Now assuming that no external forces or moments 

exert on the system, the linear and angular momentum 

is conserved respectively. Providing total momentum 

is zero: (PT,LT)T = 0,  eq . ( l l )  can be solved for vo 
and W O ,  

I, E R3x3 and I, E R3xn are inertia matrixes of the 
satellite and manipulators, respectively. 

Eliminating vo and W O  from ( 5 )  by substituting (18) 

and (19), the task coordinates vis directly related to 

the  joint coordinates 4 .  
r i  

L J 
J * k i  (22) 

is Generalized Jacobian Matrix of the 

k-th arm, which is an extended definition of the GJM 

in refs. [5,6] for multiple arm systems. 

J*k  E ~ 6 x n  

In the above discussion, an att i tude control devices 
for the satellite is not considered, however such on- 

board devices generating inner moment as RW or CMG 
can be dealt as one of the installed arms. 

2.3 Equation of Motion 

The equation of motion of free-flying systems with 

no external forces or moments is formulated in previous 

works [7,8], which can be applied to multi-arm systems. 

where H" E Rnxn is a generalized inertia matrix and 

C* is a centrifugal and Coriolis term. 

3 Motion Control 

As for the discussion of motion control, a two-arm robot 

model as show in Fig.1 is considered. Each arm having 

6 Degrees-Of-Freedom, same in size and configuration, 

are symmetrically installed on the base satellite. Three 
axes Reaction Wheels are also installed on the base, 
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which are numbered as the 3rd to  5th arm, respectively. 

As a total, the model has 15 DOF: the joint variables 

coordinates are 

little bit 

ertheless, 

paths by 

In the following discussions, capture operation of a 
target, which is floating a t  still in a working area of the 

robot, will be demonstrated by the simulation. Where, 

the authors focus on the motion before grasping the 

target, but no attentions are paid for collision problem 

between the hand and the target or closed-loop kine- 
matics that  two manipulators hold the same object. 

3.1 Resolved Acceleration Control of 
Each Arm 

Let us consider a simultaneous but independent path 

tracking control of both hands, while att i tude of the 

base satellite is maintained. Resolved Acceleration 
Control scheme is applied on the assumption that  paths 

of both hands in the task space xf ,vf  and b i  (k = 1 , 2 )  

are prescribed. From eqs.( 19) and (22), hand accelera- 

tion are resolved into joint space as 

i=  [ ;U:]-1 1 U : - J  .:-J;:; 9 j 
WOd - J U  '$ 

(25) - - J * - l ( b d  - J* i) 
where 

* 1  

J* = j * 2  E ~ 1 5 x 1 5  , b d =  [ !i ] E R15x1. i:: 1 W0d 

For this case J* is a 15 x 15 square matrix, so its 

inversion always exists except a t  the singular configu- 
rations. Required torque for 12 manipulator joints and 

3 wheels to follow the prescribed paths are calculated 

through the dynamic equation (23). 

A simulated motion of individual path tracking for 

target capture is shown in Fig.2. Two arms are con- 

trolled to  reach the target respectively, while the satel- 
lite att i tude is maintained. The  base is translated a 

by the reaction of the arm operation, nev- 

both hands trace exactly on the prescribed 
means of the GJM. 

2 6 

Fig.1 Model of two-arm space robot 

F i g 2  Individual dual arm operation 

3.2 Torque Optimization through Dual 
Arm Coordination 

In this section, the authors develop a dual arm coor- 

dination control that  one arm traces a given path while 

the other arm is operated to  minimize a total operation 

torque of the system. The control method is based on 

the redundancy resolution technique with local torque 

optimization [9]. 

Phase I : Firstly, suppose that  only Arm 1 is con- 

trolled to  the target: the position and att i tude of the 

hand is given as vi = (+:z ,Wk$)T and the satel- 
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lite att i tude is also controlled for b o d  = 0, however 
Arm 2 works just  for hand orientation maintenance as 

wEd = 0 . Here, 12 task variables are specified against 

15 of the system DOF, so there is a 3 DOF redundancy. 

The  general solution of inverse kinematics at accelera- 

tion is represented as follows. 

= J * # ( b d  - J*&) + (I - J*#J*) f: (26) 

Where J*# is a pseudoinverse of J* and f: E R15x1 
is an arbitrary vector. Our objective is to minimize the 

norm of joint torque 

II r II (27) 

by means of the redundancy resolution. 
By substituting the equations (23)  and (26) into (27), 

the following expression is obtained. 

11 r 1 1  = IIH*J*#(bd - J * i )  

+H*(I - J*#J*) r + C*( 4 ,  i ) l l  (28) 

where rank (H*(I - J*#J*)) = 3 > 0. The  problem 

finding to minimize (23) in a least squares sense can 

be solved also by the  generalized inverse, yielding 

f: = -[H*(I-J*#J*)]#{H*J*#(i/d-J* i )+C*(  4 ,  i)}. 
(29) 

Substituting f: into (26), the desired joint accelera- 

tion for the torque optimum control is given by 

+ d  = J*#(i/d - J* i) - [H*(I - J*#J*)]# 

{H*J*#(i/d - j* i) + c*( 4 ,  i)}. (30) 

Also the desired operation torque for this control is 

obtained by substituting q5d into (23). 

z = H * i d + C * ( 4 , i )  
= {I - H*[H*(I - J*#J*)]#} 

{H*J*#(i/d - j* i) + C*( 4 ,  i)} 
= {I - H*[H*(I - J*#J*)]#} z (31) 

where r o  is a torque vector in case r = 0: this is 
an "acceleration-minimum" solution in a least square 

sense. Through eq.(30), r o  is optimized into r in a 

"torque-minimum" sense. 

Fig.3 (a) shows one of simulatations of torque op- 

timum behaviour with satellite att i tude maintenance 

obtained by eq.(31). We can find an interesting char- 

acteristic that  one hand is operated to the target in 
front of the robot, at the same time, the other hand 

also moves automatically toward the target as a result 

of the torque optimization: a kind of symmetry in the 

motion of two arms is observed with respect to  the cen- 

ter plane of the base satellite. 

Fig.3 (a) Coordinated dual arm operation (phasel)  

Fig.3 (b) Coordinated dual arm operation (phase2) 
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Phase I1 : Then, consider the operation of Arm 2 t o  

the target after Arm 1 has reached. In  this phase, Arm 
2 is not necessary t o  operate with respect t o  the inertial 

frame but it's enough with respect t o  the error vector 

between t h a  hand and a grasping point: e E pi - pp. 

Then, the RAC scheme becomes as follows, 

- I ,  , ,  .. ; : 
< '  

. * ,  
1 +/ \,j i 

Where J;" is the GJM for the grasping point on the 

target object held by Arm 1, in which inertia prop- 
erty of the object is included. We can get the torque- 

minimum solution for this problem through the same 

procedure as  eqs.(28)-(31). 

Fig.3 (b) shows a simulation of t h e  phase 2. Both 

arms work in cordination so as t o  minimize the opera- 

tion torques. 

- I ,  , ,  .. ; : 
< '  

. * ,  
1 +/ \,j i 

4 Discussion 

The  comparison of the norm of torque 1 1  r 11 between 

the operation of Fig2  and Fig.3, is shown in  Fig.4. 
Where, the individual path tracking is presented by a 

dotted line for 9.0 seconds and the coordinated control 
is by a solid line from the beginning t o  12.0 sec. for 

phase 1 and from 12.0 t o  21.0 sec. for phase 2. 

The  normal torque of the coordinated control in 

phase 1 is always smaller than the individual control. 

In addition, the total energy consumption J( 7 .  #)dt of 

the coordinated control including phase 2 is calculated 

as only one-third of the  individual control, nevertheless 

the coordinated control takes longer operation time. 

The  simulation s tudy shows the effectiveness of the 
proposed control method for dual  arm coordination, in 

the sense of minimizing the joint torque at each in- 
stance and also saving the total  energy consumption 

throughout the operation. 

References 

[l] K.Yamada, K.Tsuchiya, S.Tadakawa: "Modeling and 
Control of a Space Manipulator", Proc. of 13th lnt. 
Symp. on Space Technology and Science, pp.993-998, 
1982. 

[2] R.Longman, R.Lindberg, M.F.Zedd: "Satellite- 
Mounted Robot Manipulators - New Kinematics and 
Reaction Moment Compensation", lnt. J. of Robotics 
Research, vo1.6, No.3, pp.87-103, 1987. 
D.Nenchev, K.Yoshida, Y.Umetani: "Introduction of 
Redundant Arms for Manipulation in Space", Proc. of 
1988 IEEE lnt. Workshop on Intelligent Robots and 
Systems, Tokyo, Japan, pp.679-684, 1988. 

[4] D.Nenchev, K.Yoshida, Y.Umetani: "Analysis of a 
Redundant Free-Flying Spacecraft/Manipulator Sys- 
tem'', (submitted for the publication in IEEE Trans. 
on Robotics and Automation) 
Y.Umetani, K.Yoshida: "Continuous Path Control of 
Space Manipulator Mounted on OMV" , Acta Astro- 
nautica, ~01.15, No.12, pp.981-986, 1987. 
Y.Umetani, K.Yoshida: "Resolved Motion Rate Con- 
trol of Space Manipulators with Generalized Jacobian 
Matrix", IEEE Trans. on Robotics and Automation, 
vo1.5, No.3, pp.303-314, 1989. 
Y.Masutani, F.Miyazaki, S.Arimoto: "Modeling and 
Sensory Feedback Control for Space Manipulators", 
Proc. of NASA Conference on Space Telerobotics, 
vo1.3, pp.287-296, 1989. 

[d] E.Papadopoulos, S.Dubowsky: "On the Nature of 
Control Algorithms for Space Manipulators", Proc. 
1990 IEEE lnt. Conf. on Robotics and Automation, 

[9] Hollerbach, Suh: "Redundancy Resolution of Ma- 
nipulators through Torque Optimizaiton" , IEEE J. of 
Roboticcs and Automation, vo1.3, No.4, 1987. 

[3] 

[5] 

[6] 

[7] 

pp.1102-1108, 1990. 

:: I ; ', ] 
' ...___, - 1  ,, 

_,.' 

0 5 10 15 20 25 
Time ( sec ) 

0 

Fig.4 Comparison of the required torque 

2521 

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on April 07,2010 at 03:54:22 EDT from IEEE Xplore.  Restrictions apply. 


