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Abstract. In this paper, a new codification of Local Binary Patterns
(LBP) is given using graph pyramids. The LBP code characterizes the
topological category (local max, min, slope, saddle) of the gray level
landscape around the center region. Given a 2D grayscale image I, our
goal is to obtain a simplified image which can be seen as “minimal”
representation in terms of topological characterization of I. For this, a
method is developed based on merging regions and Minimum Contrast
Algorithm.
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1 Introduction

Given a grayscale digital image I, the Local Binary Pattern LBP (I) [12,13] is
a grayscale digital image used to represent the texture element at each pixel
in I. This is currently the most frequently used texture descriptor [18] with
outstanding results in applications ranging from segmentation and classification
[15], object detection [11] to gender classification [16]. Typically the LBP opera-
tor is applied to all 3×3 image windows of the considered texture (region). Then
the histogram provides the characteristic features of the texture. After training
the feature space with the textures of interest new textures can be classified with
very good discrimination.

While the LBP code of a 3 × 3 window needs 8 bits for a single code, larger
windows need more bits or even a varying number of bits if a multiresolution
approach is chosen. The new encoding overcomes this drawback by transferring
the code from the pixels to the neighbor relations (edges of the neighborhood
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graph). We propose a new equivalent encoding using one bit per edge of the
graph.

It is known that the LBP encodes the basic topological categories of a dig-
ital image’s landscape, e.g. extrema, saddle points, plateaus and slopes. After
the contraction of all plateaus, these categories can be identified by simple local
detectors except for the saddle points. In a discrete image a saddle can be either
an identified pixel or a 2×2 non-well composed configuration. As the first major
novelty introduced in this paper, we show a way to handle also such situa-
tions. We further propose a repetitive contraction process leading to hierarchy
of successively smaller graphs, a graph pyramid, preserving the basic topological
categories in a substantially smaller graph structure.

The second novelty in this paper is the definition of a minimum contrast
representative (MCR) image. It stands for the large class of all possible images
that produce the same LBP codes and, consequently, also the same LBP his-
tograms. This may allow to understand the trained classifiers since it defines the
equivalence class of images of the trained class.

The paper is organized as follows: In Section 2, the topological category
of the gray level landscape around a pixel c characterized by its LBP code, is
defined. Section 3 recalls irregular graph pyramids. In Section 4, we introduce the
notion of well-composed images and explain how any image can be made well-
composed by inserting a few dummy regions. The goal of the rest of the sections
is to obtain a “minimal” representation of a given image in terms of topological
characterization. Our idea is to merge pixels (or regions, in general) that provide
redundant information, to create the pyramid. The first step in the process is
to remove the asymmetry caused by the sign function (see Eq. (1)). For this, in
Section 5, we merge regions with same gray value (plateaus). After merging all
plateaus, we define the notion of structurally redundant edges that should be
removed to reach our goal. In Section 6, we define the topological category of a
region. Section 7 is devoted to a particular topological category named singular
slope that can be merged without changing the topological category of the rest of
the regions. Finally, in Section 8, we adapt Minimum Contrast Algorithm given
in [17] to be applied to our pyramid in order to obtain a “minimal” representation
of the image. Section 9 is devoted to conclusions, experiments and future works.

2 Local Binary Patterns (LBP)

The intensity of a pixel p = (x, y), denoted by g(p), is expressed within a given
range between a minimum and a maximum, inclusive. Without loss of generality
we will work with 8 bits, i.e., we will suppose that the range is [0, 255].

The standard LBP code [12] is computed for a (center) pixel as in Eq. (1)
where P is the number of neighbors, R is the distance between the center pixel
and the neighbors (we assume 1 here), c is the center pixel of the operator and
p is the local neighbor indexed by p. The basic operator uses the sign function
s(x) = 1 if x ≥ 0 and s(x) = 0 otherwise.
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LBPP,R =
P−1∑

p=0

s(g(p) − g(c))2p . (1)

In this paper, the 4 neighbors (on its top, bottom, right, left) of each pixel
are considered for comparison. That is, follow the 4 pixels along a circle (for
example, clockwise). Where the center pixel’s gray value is greater than the
neighbor’s gray value, write 0. Otherwise, write 1. Example:

113 240 23
20 25 12
15 30 40

⇒
1

0 25 0
1

⇒ 0101 ⇒ 9

The 4-neighbor LBP codification has been used in the past for solving prob-
lems in Image Processing and Analysis such as, for example, face detection and
recognition [6], or iris extraction [5].

The LBP code characterizes the topological category of the gray level land-
scape around the center pixel. A pixel is a local maximum if the LBP code is
composed just by 0s. A local minimum produces an LBP code only with 1s.
Notice however that a local minimum can also be created by a plateau (a region
composed by neighboring pixels sharing the same gray value) due to the asym-
metry of the sign function s. It is a slope if there is exactly one transition from
0s to 1s or 1s to 0s in its LBP code. Otherwise, it is a saddle.

3 LBP Codes and Irregular Graph Pyramids

A region adjacency graph (RAG) encodes the adjacency of regions in a partition.
A vertex v is associated to each region r. Vertices of neighboring regions are
connected by edges. Classical RAGs do not contain any self-loops or parallel
edges. An extended region adjacency graph (eRAG) is a RAG that contains the
so-called pseudo edges, which are self-loops and parallel edges used to encode
neighborhood relations to a region completely enclosed by one or more other
regions [7].

The dual graph of an eRAG G is denoted by Ḡ (G is said to be the primal
graph of Ḡ). The edges of Ḡ represent the boundaries (borders) of the regions
encoded by G, and the vertices of Ḡ represent points where boundary segments
meet. G and Ḡ are planar graphs if they represent a 2D decomposition into
regions. There is a one-to-one correspondence between the edges of G and the
edges of Ḡ, which induces a one-to-one correspondence between the vertices
of G and the 2D cells (regions) of Ḡ. The dual of Ḡ is again G. The following
operations are equivalent: edge contraction in G with edge removal in Ḡ, and edge
removal in G with edge contraction in Ḡ. Edge removal preserves the topology
(i.e., regions are always homeomorphic to disks) [3].

A (dual) irregular graph pyramid [7,8] is a stack of successively reduced
planar graphs P = {(G0, Ḡ0), . . . , (Gn, Ḡn)}. Each level (Gk, Ḡk), 0 < k ≤ n is
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(a) grayscale image (b) well-composed (c) merged plateaus (d) MCR

Fig. 1. An 8-bit grayscale image (highlighted grayscale values) is (b) made well-
composed. (c) Plateaus are merged (for color legend see Fig. 3(c)) and (d) Minimum
Contrast Algorithm produces the minimum contrast representative (MCR in Section 8).

obtained by first contracting edges in Gk−1 (removal in Ḡk−1), if the correspond-
ing regions should be merged, and then removing edges in Gk−1 (contraction in
Ḡk−1) to simplify the structure.

In this paper, pixels are considered unit-square regions, 4-neighborhood is
used for constructing the RAG and each vertex v of the RAG associated to each
region r is labeled with the gray value of the region, i.e., g(v) := g(r).

4 Creating Well-Composed Images

A 2D image is well-composed [9] if it does not contain the following non-well
composed configuration (modulo reflection and 90-degree rotation):

a b
c d

where g(a) < g(b), g(a) < g(c), g(d) < g(b) and g(d) < g(c). (2)

Lemma 1. If the image is well-composed, then the topological category provided
by LBP4,1 is the same as LBP8,1.

Proof. Consider the following 3×3 block
a d x
b e h
c f i

. The topological class of e using

LBP4,1 is given by b, d, f , and h. LBP8,1 is additionally given by a, c, x, and
i. The topological category of LBP8,1 is the same as LBP4,1, if by adding the
diagonal 8-neighbors to LBP4,1 the number of transitions from 0s to 1s or 1s to
0s does not change. In the following we show that any addition of a diagonal
element, which would change the topological class, causes the image to become
non-well composed (modulo reflection and 90-degree rotation):

– Local minimum (resp. maximum) is defined by g(e) < g(p) (resp. g(e) >
g(p)) for p = b, d, f, h. If g(e) > g(q) (resp. g(e) < g(q)) for q = a, c, x or i,
the image becomes non-well composed.

– Slope is defined by either:
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(a) input (b) merged plateau (c) removed edges

Fig. 2. The plateaus of an image with highlighted values are first merged and then
structurally redundant edges are removed.

• g(e) > g(b), g(f), g(h) and g(e) < g(d) (resp. g(e) < g(b), g(f), g(h)
and g(e) > g(d)). If g(e) < g(c) or g(e) < g(i) (resp. g(e) > g(c) or
g(e) > g(i)) the image becomes not well-composed. Here, g(a) and g(x)
are irrelevant.

• g(e) < g(b), g(d) and g(e) > g(f), g(h). If g(e) > g(a) or g(e) < g(i) the
image becomes not well-composed. Here, g(c) and g(x) are irrelevant.

– Saddle (resp. plateaus) is defined by g(e) > g(b), g(h) and g(e) < g(d), g(f)
(resp. g(e) = g(b) = g(d) = g(h)). Here g(a), g(c), g(x), and g(i) are irrele-
vant. ��

The main problem in a non-well composed configuration like Eq. (2), is that
the relation between a and d (resp. b and c) cannot be deduced from the relation
of 4-adjacent regions. To solve this, we insert a new “dummy” region r in the

center of the non-well composed configuration:
a b

r
c d

.

The new region r with a new gray value g(r) reflects the relations between
a, b, c, d and in a way that the 8-connectivity LBP code can be deduced from
the LBP code of the modified configuration. Without loss of generality, suppose
that g(a) ≤ g(d) < g(b) ≤ g(c). Following cases can occur:

1. g(a) = g(d) < g(b) = g(c) (resp. g(a) < g(d) < g(b) < g(c)). In this case,
the vertex v represents a saddle. Set g(r) = g(d)+g(b)

2 . We have that g(a) =
g(d) < g(b)+g(d)

2 < g(b) = g(c) (resp. g(a) < g(d) < g(b)+g(d)
2 < g(b) < g(c)).

Therefore, the LBP code of r is 0101 which is a saddle and all three new
vertices have degree 3 and, hence, are well-composed.

2. g(a) = g(d) < g(b) < g(c) (resp. g(a) < g(d) < g(b) = g(c)). Set g(r) = g(d)
(resp. g(r) = g(b)). In our process, regions a, r, d (resp. b, r, c) form a plateau.
See Fig. 1(a) and 1(b).

5 Merging Plateaus and Removing Edges

The first step in our process to obtain a simplified image with the same topolog-
ical information as the original, is to merge plateaus. This way, by contracting
adjacent vertices with same value in the primal graph (i.e., merging neighboring
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(a) after merging plateaus (b) after removing edges

�

�

�

�

�

�

minima

maxima

doubly-singular slopes

singular slopes

other slopes

saddles

(c) vertex colors

Fig. 3. Removing structurally redundant edges from the primal graph.

regions with same value in the dual), we remove the asymmetry caused by the
sign function. See Fig. 2(b).

After merging all plateaus, a direction can be associated to each non-self-loop
edge between different vertices of the primal graph G:

(u, v) ∈ E has direction u → v iff g(u) > g(v).

Proposition 1. After merging plateaus, G\{self-loops} is a directed graph such
that: (a) G does not contain directed cycles. (b) Vertices in Ḡ do not increase
degrees.

Proof. (a) Suppose that G has a directed cycle u0 → u1 → · · · → un = u0. Then
u0 > u1 > · · · > un = u0, which is a contradiction. (b) Merging plateaus in G
consists of removing edges and merging vertices of degree ≤ 2 in Ḡ. Therefore,
vertices in Ḡ have degree 3 or 4. ��

An oriented edge (u, v) ∈ E is considered ”structurally redundant” if there
exists a dual vertex w ∈ V bounded by (u, v) and a directed path p(u, v) from u
to v. Structurally redundant edges can be removed in G (see Fig.2(c) and 3(b)).

Finally, the notion of well-composed configurations can be extended to
regions in Ḡ due to Prop. 1(b).

6 Topological Category of Regions

After merging plateaus, in the same way as for pixels, we can define the topologi-
cal category of a vertex v of G by considering the edges incident to v. See Fig. 1(c)
and 3(a). Following the edges incident to v:

– v is a local minimum if it is the head of all the edges incident to it.
– v is a local maximum if it is the tail of all the edges incident to it.
– v is a doubly-singular slope if it has degree two and it is the tail of one of

the edges incident to it and the head of the other.
– v is a singular slope if it has degree greater than two and it is the tail (resp.

head) of exactly one edge incident to it and the head (resp. tail) of the others.
– v is a slope if v is the tail of the first edges incident to it and the head of the

others, clockwise or counter-clockwise.
– v is a saddle otherwise.
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(a) graph -plateaus (b) -redundant edges (c) -singular slopes (d) minimal graph

Fig. 4. The primal graph G is successively reduced by merging plateaus and (doubly)-
singular slopes. Merge operations and removal of structurally redundant edges are
applied in an alternating fashion. The last image is considered “minimal”.

Proposition 2. After removing redundant edges, the topological category of the
vertices of G may be simplified: singular slopes may change to doubly-singular
slopes, and slopes to singular slopes (see Fig. 2(c), 3(b) and 4(b)). Nevertheless,
local maxima, minima and saddles are always preserved in the primal graph.

Proof. For each structurally redundant edge e = (u, v) ∈ E there exists a mono-
tonic path connecting u to v. Therefore the removal would not disconnect an
extremum. And since it is monotonic, the extremum remains extremum.

Assume the endpoint v of a structurally redundant edge e = (u, v) is a saddle.
The last directed edge q = (vk, v) of the alternative path p(u, v) = (u, x0, . . . , q)
must have the same orientation as (u, v) due to the monotonicity of the path.
Since the bounded dual cell w does not contain any hole both e and q succeed
each other at the saddle v. Since they both are either below or above the saddle
the removal of e would not change the property of the saddle. ��

7 Merging Singular Slopes

After merging plateaus, a direction is associated to the edges of the primal graph
and a topological category to its vertices. Structurally redundant edges are then
removed and the topological category of the vertices is updated.

Further steps in our process to obtain a simplified image with same topo-
logical information as the original, should remove topologically redundant infor-
mation by merging regions. In general, a region obtained after merging slopes
around a local maximum (resp. minimum) is not a local maximum (resp. min-
imum). Singular slopes make an exception. Merging singular slopes propagates
well around local extrema since a local extremum in the surrounding regions
often is or becomes a singular slope. However non-well composed configurations
(corresponding to saddles in the dual graph) can block propagation. This is why
we insert dummy regions in non-well composed configurations.

Prop. 3 asserts that contracting a singular slope p to a vertex q in the primal
graph, does not change the topological category of q.
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Proposition 3. Consider a vertex p which is a singular slope in the primal
graph. Let E be the set of edges incident to p. Let p be the head (resp. tail) of
exactly one edge e ∈ E and it is the tail of the rest. Let q be the tail (resp. head)
of e. Then the vertex obtained after contracting p to q (i.e., after merging the
two associated regions in the dual graph) inherits the topological category of the
region q, i.e. local max, min, saddle or slope.

Proof. After contracting p to q, the edge e is replaced by the set of edges E \e in
such a way that q is the tail (resp. head) of all these edges. Since q was the tail
(resp. head) of e, then, the topological category of q does not change. There is
no inconsistency in the new graph: Let w be the head (resp. tail) of one edge in
E\e. Then g(w) < g(p) < g(q) (resp. g(w) > g(p) > g(q)), therefore g(w) < g(q)
(resp. g(w) > g(q)), e.g. no new oriented cycle has been generated. ��
Conjecture 1. The result of merging all singular slopes does not depend on the
order we merge.

Observe that no new singular slopes can appear after merging singular slopes,
since the topological category of the rest of the vertices remains invariant. But,
new structurally redundant edges can appear. Therefore, the removal of struc-
turally redundant edges and merging singular slopes can be repeated until no
more reductions are possible. Finally, surviving slopes are merged to saddles.
This way, we obtain an irregular graph pyramid. On the top of the pyramid,
only local maxima, minima and saddles can appear. Besides, the number of
local maxima, minima and saddles of the original and reduced image coincide
(see Fig. 4).

Note that after merging a singular slope p, no “corner” adjacent regions
with same gray values could become adjacent later since it would mean that p
would have at least two 0s in its LBP code. Besides, as a result after contracting
plateaus, the reconstructed LBP code is defined for regions thus having as many
bits as adjacent regions. Moreover, after merging all plateaus, the LBP codes
are symmetric, and, the operations “image complement” and “LBP code” for
regions are commutative. Finally, observe that after merging all singular slopes,
each slope has at least two 1s and two 0s in its LBP code.

8 Reconstruction - Representative Image

In [17] and much earlier in [10], the authors leverage an inverse problem approach
to show that it is possible to directly reconstruct the image content from Local
Binary Patterns. For this aim, ascending and descending monotonic paths are
considered. Their algorithm, MCA1 assumes a minimum contrast of one between
two successive pixels; and reconstructs some of the contrast lost in the LBP
process. Fig. 5(b) illustrates MCA: after initializing the result with 0, neighbors
which should be higher (red >) are repeatedly incremented until all inequalities

1 Minimum Contrast Algorithm.
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(a) (b) MCA converts a digital image to a MCR.

Fig. 5. (a) A monotonic ascending path with same inequalities than a minimum con-
trast path. (b) A naive illustration of MCA.

are satisfied. This problem of reconstructing images from features is also dealt in
[1] in which the image is encoded using LBD (Local Binary Descriptors) codes
which are related but different to LBP codes.

After merging plateaus and singular slopes and removing structurally redun-
dant edges, our image is decomposed in not-necessarily squared regions. In this
section we show that the method explained in [17] can be translated in terms
of primal and dual graphs. The key is that LBP categories of the MCR2 must
be equal to those of original image. For this, longest monotonically increasing
(decreasing) paths from local minima (maxima) are computed.

Definition 1. Given an image I, a monotonic ascending path is a sequence
p1, p2, . . . , pn of regions such that: (1) pi is adjacent3 to pi−1 and (2) g(pi−1) <
g(pi), for 1 < i ≤ n. Whenever g(pi−1) > g(pi), for 1 < i ≤ n, the path is called
monotonic descending (see Fig. 5(a)).

To simulate MCA on our graph after contracting plateaus we initialize all
vertices with 0. We then repeat following update operation for every oriented
edge (u, v): replace g(v) by the maximum of g(v) and g(u) + 1 until no further
change occurs. When starting with maxima we initialize with 255 and repeatedly
replace g(u) by the minimum of g(u) and g(v) − 1. In Fig. 1(d) a naive example
of the application of MCA is given.

This process opens a door to what we call representative image. Let I be
an image and LBP (I) its associated image of LBP codes. There is a whole set
of images ρ(I) for which the LBP codification is identical. Let LBP−1

min(I) be
the image obtained after applying MCA on all monotonic ascending paths, and
LBP−1

max(I) be the image obtained from all monotonic descending paths. Then
both LBP−1

min(I) and LBP−1
max(I) can be used to represent ρ(I). In particular

LBP−1
min(I) ∈ ρ(I) and it is the smallest LBP−1

min(I) ≤ J for all J ∈ ρ(I).
Analogously, LBP−1

max(I) ∈ ρ(I) and it is the largest LBP−1
max(I) ≥ J for all

J ∈ ρ(I). Fig. 6 shows the original image I and the two representative images.
Notice, how visually different these images from the same LBP class may look.

Proposition 4. For any two images I, J ∈ ρ(I), I 	= J the property
LBP−1

min(I) = LBP−1
min(J) and LBP−1

max(I) = LBP−1
max(J) holds.

2 Minimal Contrast Representative.
3 In the image we assume 4-adjacency while edges encode adjacency in the graph.
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Fig. 6. From left to right: The original image; Reconstructed image by MCA on mono-
tonic ascending paths; Reconstructed image by MCA on monotonic descending paths.

Fig. 7. Image A on the left is an output of the current MCA. Image B on the right
has the property LBP (B) = LBP (A), and also has a lower total contrast than A.

Proof. The direction of each edge (u, v) remains the same during the com-
putation process of the representative images. Starting points for generating
LBP−1

min(I) and LBP−1
max(I) are well defined, namely all local minima and all

local maxima. The minimum contrast value of each region is defined by the
longest distance from any reachable starting point, from which follows that the
order of propagation of the minimum contrast values does not matter. ��

9 Conclusion, Experiments and Future Works

In this paper, a new codification of Local Binary Pattern is given using graph
pyramids. For well-composed images, we demonstrate that from 4 neighbors’
topological information, we can obtain 8 neighbors topological information what
makes classical 8-neighbor LBP topologically redundant. By inserting a few
dummy regions every image can be made well-composed! A sequence of merg-
ing regions and removal of edges obtains a “minimal” image I with the same
topological information as the original. MCA is adapted4 to obtain a minimum
contrast image from I.

In Fig. 8, the whole process on two grayscale images is shown. After merging
plateaus and removing redundant edges, (doubly-)singular slopes are merged
successively. After each merging, redundant edges are removed. Finally, if slopes
survive, they are merged with saddles. Therefore, only local maxima, minima
and saddles survive on the top of the pyramid.

4 A preliminary version of Section 8 was presented in [4].
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(a) original image (b) -plateaus (c) -redundant edges (d) minimal graph

(e) original image (f) -plateaus (g) -redundant edges (h) minimal graph

Image caption maxima minima saddles slopes singular slopes doubly-singular slopes

(b) 109 103 179 625 693 7
(c) 109 103 179 196 971 158
(d) 109 103 179 0 0 0

(f) 134 131 224 359 361 6
(g) 134 131 224 108 404 214
(h) 134 131 224 0 0 0

Fig. 8. The original images are reduced first by merging plateaus and second by remov-
ing structurally redundant edges. After removing all (doubly-)singular slopes, regular
slopes are merged with saddles. Finally, only local maxima, minima and saddles survive.

“Truly” Minimum Contrast Image. The MCA can be improved to minimize
the total contrast

∑
(u,v)∈E g(u) − g(v). See, for example, Fig. 7. This approach

may start by initializing the absolute minimum to 0 or an arbitrary vertex to an
arbitrary value, and subsequently use the sign of the contrast associated at the
edges to compute the minimal contrast representative.
Image Segmentation. Modifications made to the proposed approach in form
of attributed vertices and weighted edges allow the definition of texture aware
image segmentation algorithms. A first attempt made in this direction was pre-
sented in [19].
Towards 3D. Several researchers have been trying to extend the LBP codi-
fication from 2D plane to 3D volume (see, for example, [2,14]); however, it is
not so straightforward as it appears at first glance. In our case the notion of
well-composed images and irregular graph pyramids also works for 3D images.
Characterizations of pixels using LBP codes not only depend on the number of
connected components but also on the number of holes (1-dimensional homology
classes).
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Shape LBP. Textures have particular shapes. The idea is to label the darts as
0 or 1 in the dual graph depending on concavity-convexity of the boundary of a
region. Computing LBP codification using concavity-convexity rule could help
to recognize shapes.
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