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Abstract. This paper first proposes a new graphical model for decision making
under uncertainty based on min-based possibilistic networks. A decision problem
under uncertainty is described by means of two distinct min-based possibilistic
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networks: the first one expresses agent’s knowledge while the second one encodes
agent’s preferences representing a qualitative utility. We then propose an efficient
algorithm for computing optimistic optimal decisions using our new model for rep-
resenting possibilistic decision making under uncertainty. We show that the com-
putation of optimal decisions comes down to compute a normalization degree of the
junction tree associated with the graph resulting from the fusion of agent’s beliefs
and preferences. This paper also proposes an alternative way for computing optimal
optimistic decisions. The idea is to transform the two possibilistic networks into two
equivalent possibilistic logic knowledge bases, one representing agent’s knowledge
and the other represents agent’s preferences. We show that computing an optimal
optimistic decision comes down to compute the inconsistency degree of the union
of the two possibilistic bases augmented with a given decision.

Keywords: Decision theory, optimistic criteria, possibilistic networks, possibilistic
logic

1 INTRODUCTION

Decision making under uncertainty [19, 1] plays an important role in artificial intelli-
gence (AI) [13]. Several decision making tools [33, 10] have been developed to assist
decision makers in their tasks: simulation techniques, dynamic programming [34],
logical decision models [18] and graphical decision models [36, 24].

This paper focuses on graphical decision models which provide efficient decision
tools and a compact representation of decision problems under uncertainty. Most of
decision graphical models are based on Influence Diagrams (IDs) [27, 36] for repre-
senting decision maker’s beliefs and preferences. In many applications, it is easier to
express uncertainty in a qualitative way by ranking different states of the world. Sim-
ilarly, it is easier to provide a preference relation between different consequences. In
these situations, possibility theory [21] is an appropriate framework for representing
uncertain knowledge and preferences. A qualitative possibilistic decision model [2]
allows a gradual expression of both agent’s preferences and knowledge. Few works
exist on decision making using possibilistic networks. In [24], the authors proposed
a possibilistic counterpart of standard IDs. Uncertainty is expressed by possibility
degrees and preferences are considered as satisfaction degrees. In [18], the authors
proposed a compact representation of a qualitative decision problem based on pos-
sibilistic logic [20, 35]. This logical-based approach [18, 5] allows to express agent’s
knowledge and preferences by means of valued logical formulas.

This paper proposes a new model for representing decision making under uncer-
tainty based on the use of min-based possibilistic networks. When agent’s knowledge
and preferences are expressed in a qualitative way, we suggest representing them by
two distinct min-based possibilistic networks. The first one encodes a joint possi-
bility distribution representing available knowledge and the second one encodes the
qualitative utility. The qualitative possibilistic decision process will be viewed as
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a data fusion of these two particular possibility distributions (or two min-based pos-
sibilistic networks). Using our new model, we present a unified way for computing
optimal optimistic decisions using inference process based on the junction tree as-
sociated with the fusion of agent’s beliefs and preference-based networks. We show
that computing optimal decisions comes down to computing a normalization degree
of this junction tree. The second part of this paper explores an alternative way for
computing optimal optimistic decisions. This alternative method is useful when it
is impossible to construct the junction tree associated with agent’s knowledge and
preferences. The idea is to transform the two possibilistic networks into two possi-
bilistic logical bases. We show that computing optimal optimistic decisions comes
down to computing the inconsistency degree of the two posibilistic knowledge bases
representing the fusion of agent’s beliefs and agent’s preferences.

This paper is an extended and a revised version of the conference paper [9].
The rest of this paper is organized as follows: next section briefly recalls ba-

sic concepts of possibility theory, possibilistic logic and min-based possibilistic net-
works. Section 3 describes the proposed model for encoding decision problems based
on min-based possibilistic networks. Section 4 describes how the propagation pro-
cess in a junction tree can be efficiently adapted for computing optimal optimistic
decisions. In Section 5, we deal with an alternative way for computing optimistic
decisions based on equivalent transformations between possibilistic knowledge bases
and possibilistic networks. Section 6 gives related works and Section 7 concludes
the paper. All proofs of propositions of this paper are provided in the Appendix.

2 BACKGROUNDS

This section gives a brief refresher on the possibility theory [21, 28].
Let V = {X1, . . . , XN} be a set of variables. We denote by DXi

= {xi1, . . . , xin}
the domain associated with the variable Xi. xij denotes the jth instance of Xi. The
universe of discourse is denoted by Ω = ×Xi∈VDXi

, which is the cartesian product
of all variables’ domain in V . Each element ω ∈ Ω is called an interpretation which
represents a possible state of Ω. It is denoted by ω = (x1i, . . . , xNj). φ, ψ, . . .
represent subsets of Ω.

One of basic elements in the possibility theory is the notion of a possibility
distribution π which corresponds to mapping from Ω to the scale [0, 1]. π(ω) = 1
means that ω is completely possible and π(ω) = 0 means that it is impossible for ω
to represent the real world. A possibility distribution π is said to be α−normalized,
if its normalization degree, denoted by h(π), is equal to α, namely:

h(π) = max
ω∈Ω

π(ω) = α. (1)

If α = 1, then π is said to be normalized. Given a distribution π two dual mea-
sures are defined: possibility measure Π(φ) = maxω∈Ω{π(ω) : ω ∈ φ} and necessity
measure N(φ) = 1 − Π(φ). The first one evaluates to what extent φ is consistent
with the knowledge encoded by π. The second one evaluates at which level φ is
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implied by the knowledge represented by π. Possibilistic conditioning [15] consists
in revising of the initial knowledge, encoded by π, by the arrival of a new certain
information φ ⊆ Ω. In this paper, we only focus on min-based conditioning defined
by:

π(ω | φ) =

 1 If π(ω) = Π(φ) and ω ∈ φ
π(ω) If π(ω) < Π(φ) and ω ∈ φ
0 otherwise.

(2)

2.1 Possibilistic Logic

A possibilistic knowledge base is a finite set of weighted formulas [20]: Σ = {(φi, αi),
i = 1..n}, where φi is a propositional formula and αi ∈]0, 1] represents the certainty
level of φi. Each piece of information (φi, αi) of a possibilistic knowledge base can
be viewed as a constraint that restricts possibility degrees associated with interpre-
tations. If an interpretation ω satisfies φi then its possibility degree is equal to 1 (ω
is completely compatible with the belief φi), otherwise it is equal 1 − αi (the more
φi is certain, the less ω is possible). Hence, the possibility distribution associated
with one weighted formula (φi, αi) is:

∀ω ∈ Ω, π(φi,αi)(ω) =

{
1− αi If ω 6∈ φi
1 otherwise.

(3)

More generally, the possibility distribution associated with Σ is the result of com-
bining possibility distributions associated with each formula (φi, αi) of Σ:

∀ω ∈ Ω, πΣ(ω) = min
{
π(φi,αi)(ω), (φi, αi) ∈ Σ

}
. (4)

Let Σ1 and Σ2 be two possibilistic bases and π1, π2 be their associated possibility
distributions. The syntactic counterpart Σmin of the fusion of two possibility distri-
butions using min operator, defined by πmin(ω) = min(π1(ω), π2(ω)), is [11, 30]:

Σmin = Σ1 ∪ Σ2. (5)

Now, we briefly review logical-based models for modelling possibilistic decision prob-
lems. A qualitative decision problem [25] is modeled by a finite set of possible states
of the world X , a finite set of consequences C, a set of decisions D, such that each
decision di : X → C associates for each possible state a consequence. Preferences
among consequences are encoded by a utility function µ : C → U , where U is an
ordinal scale. The uncertainty on X is expressed by a normalized distribution π
mapping a set of state variables values into [0, 1]. Agent’s preferences are repre-
sented by means of another distribution µ mapping a set of consequences into [0, 1].
A decision is represented by a function d from X to C. The consequence d(x) ∈ C
associated with a decision d on the state x can be evaluated by combining possi-
bility degrees π(x) and utilities µ(d(x)) for all possible states. In [18], the authors
proposed a compact representation of a qualitative decision problem by means of
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valued logical formulas. Besides, in [8, 7], two algorithms for computing optimal
decisions using syntactic possibilistic fusion have been proposed.

2.2 Min-Based Possibilistic Networks

A min-based network ΠGmin = (G, π) [5] over a set V is characterized by:

1. A graphical component: which is represented by a directed acyclic graph (DAG),
where nodes correspond to variables and arcs represent dependence relations
between variables.

2. Numerical components: they quantify different links in the DAG using local
possibility distributions for each node X in the context of its parents, denoted by
Par(X). More precisely, uncertainty is represented by the conditional possibility
degree π(x | uX) for each instance x ∈ DX and for any instance uX ∈ DPar(X),
such that maxx∈Ω π(x | uX) = 1, for any uX .

The set of a priori and conditional possibility degrees induces a unique joint
possibility distribution πmin defined by:

πmin(X1, . . . , XN) = min
i=1..N

π(Xi | Ui). (6)

Computing posteriori distributions is known to be a hard problem except for singly
connected graphs which ensure the propagation in polynomial time [23]. One of
well-known propagation algorithm is the so-called junction tree algorithm [4, 16].
More recent works are based on compilation process [16, 3] of parameters.

Let ΠGmin = (G, π) and ΠG′min = (G′, π′) be two min-based possibilistic net-
works. The result of merging ΠGmin and ΠG′min is the min-based network ΠG⊕ =
(G⊕, π⊕) [12] πG⊕ defined by:

∀ω ∈ Ω, πG⊕(ω) = min (πG(ω), π′G′(ω)) . (7)

In [12], the authors proposed two classes for merging possibilistic networks:

1. Fusion of same-structure networks: namely when G = G′. In this case:

• The resulting network ΠG⊕ keeps the same structure: G⊕ = G′ = G,

• For each variable X, π⊕(X | UX) = min(π(X | UX), π′(X | UX)).

2. Fusion of networks with different structures: when the two networks have dif-
ferent structures and their union is acyclic, ΠGmin and ΠG′min are expanded to
a same structure (their union) by adding variables or arcs as follows:

(a) Adding variables: The extension of ΠGmin = (G, π) by adding a new variable
X 6∈ V provides a new min-based possibilistic network ΠGX = (GX , πX)
which induces a joint possibility distribution πGX

, such that:

• GX = G ∪ {X},
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• the additional node X will represent the total ignorance: ∀x ∈ DX ,
πX(x) = 1,
• the remaining variables preserve the same possibility distributions, ∀Y ∈
V , Y 6= X, πX(Y | UY ) = π(Y | UY ).

(b) Adding arcs (links): The extension of ΠGmin = (G, π) by adding a link
from X to Y (X 6∈ Par(Y )) provides a new min-based possibilistic network
ΠGL = (GL, πL) which induces a joint possibility distribution πGL

, such that:

• ∀y ∈ DY , x ∈ DX , uY ∈ DPar(Y ) πL(y | uY x) = π(y | uY );
• ∀Z,Z 6= Y, ∀z ∈ DZ , uZ ∈ DPar(Z), πL(z | uZ) = π(z | uZ).

Since, both initial min-based possibilistic networks have now the same struc-
ture, then the fusion of same-structure networks is applied. For more details
on the fusion of possibilistic networks see [12].

3 NEW GRAPHICAL MODEL FOR POSSIBILISTIC DECISION
PROBLEMS: PROBLEM DESCRIPTION

Our starting point is a possibility distribution π and a utility function µ which
represent respectively an uncertainty on possible states of the world and agent’s
preferences.

We propose to compactly encode these two possibility distributions (uncertainty
and utility) using two distinct min-based possibilistic networks: one representing
agent’s beliefs and the second representing the qualitative utility. The first min-
based possibilistic network, denoted by ΠKmin = (GK , π), represents agent’s know-
ledge and induces a unique possibility distribution πK = π using Equation (6). The
second min-based possibilistic network, denoted by ΠPmin = (GP , µ), defines agent’s
preferences and induces a unique qualitative utility µP = µ using also Equation (6).
As in logical-based approach [18], the graphical components GK and Gp of the
two min-based possibilistic networks ΠKmin and ΠPmin are defined on two types of
variables: decision variables denoted byD = {d1, . . . , dp} and state variables denoted
by X = {X1, . . . , Xn}. Making a decision comes down to choosing a decision d which
maximises the following qualitative utility given by [25]:

Optimistic utility: u∗(d) = maxω∈Ω min(πd(ω), µ(ω)).

Example 1. Let us consider a simple decision problem to illustrate our proposed
model.

1. Agent’s knowledge ΠKmin = (GK , π): its graphical component GK is given by
Figure 1. It contains four possible state variables {X1, X2, X3, X4} and one
decision variable {D}. Initial conditional distributions of ΠKmin are given by
Tables 1 and 2. We assume that all variables are binary. Using the min-based
chain rule (Equation (6)), we obtain the joint distribution given in Table 3.
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Figure 1. Min-based possibilistic network representing available knowledge

X1 π(X1) X2 π(X2) X3 X1 π(X3 | X1) X3 X1 π(X3 | X1)

x1 .5 x2 .8 x3 x1 .5 ¬x3 x1 1
¬x1 1 ¬x2 1 x3 ¬x1 .6 ¬x3 ¬x1 1

Table 1. Initial possibility distributions ΠKmin on X1, X2 and X3 given X1

2. Agent’s preferences: they are expressed by another min-based possibilistic net-
work ΠPmin = (GP , µ), where its DAG is given by Figure 2. Initial conditional
possibility distributions associated with ΠPmin are given in Table 4.

Using the min-based chain rule (Equation (6)), we obtain the joint qualitative
utility given in Table 5.

4 ON THE COMPUTATION OF OPTIMISTIC DECISIONS USING
MIN-BASED FUSION OF POSSIBILISTIC NETWORKS

Given the graphical model for representing decision making under uncertainty, we
propose in this section an algorithm for dealing with decision evaluations. We recall
that each set of decision d induces a possibility distribution πKd

as follows [25]:

πKd
(ω) = min(πK(ω), πd(ω)), (8)

where

πd(ω) =

{
1 If ω |= d
0 otherwise,

(9)

and ω |= d means that the value of D in ω is equal to d.

D X1 X2 π(D|X1X2) D X1 X2 π(D|X1X2) X4 D X2 π(X4|DX2) X4 D X2 π(X4|DX2)

d x1 x2 .1 ¬d x1 x2 1 x4 d x2 .1 ¬x4 d x2 1
d x1 ¬x2 .6 ¬d x1 ¬x2 1 x4 d ¬x2 .9 ¬x4 d ¬x2 1
d ¬x1 x2 .7 ¬d ¬x1 x2 1 x4 ¬d x2 .2 ¬x4 ¬d x2 1
d ¬x1 ¬x2 .4 ¬d ¬x1 ¬x2 1 x4 ¬d ¬x2 1 ¬x4 ¬d ¬x2 .2

Table 2. Initial possibility distributions ΠKmin on D given X1X2 and X4 given DX2
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X1 X2 X3 X4 D πK X1 X2 X3 X4 D πK
x1 x2 x3 x4 d .1 ¬x1 x2 x3 x4 d .1
x1 x2 x3 x4 ¬d .2 ¬x1 x2 x3 x4 ¬d .2
x1 x2 x3 ¬x4 d .1 ¬x1 x2 x3 ¬x4 d .6
x1 x2 x3 ¬x4 ¬d .5 ¬x1 x2 x3 ¬x4 ¬d .6
x1 x2 ¬x3 x4 d .1 ¬x1 x2 ¬x3 x4 d .1
x1 x2 ¬x3 x4 ¬d .2 ¬x1 x2 ¬x3 x4 ¬d .2
x1 x2 ¬x3 ¬x4 d .1 ¬x1 x2 ¬x3 ¬x4 d .7
x1 x2 ¬x3 ¬x4 ¬d .5 ¬x1 x2 ¬x3 ¬x4 ¬d .8
x1 ¬x2 x3 x4 d .5 ¬x1 ¬x2 x3 x4 d .4
x1 ¬x2 x3 x4 ¬d .2 ¬x1 ¬x2 x3 x4 ¬d .6
x1 ¬x2 x3 ¬x4 d .5 ¬x1 ¬x2 x3 ¬x4 d .4
x1 ¬x2 x3 ¬x4 ¬d .2 ¬x1 ¬x2 x3 ¬x4 ¬d .2
x1 ¬x2 ¬x3 x4 d .5 ¬x1 ¬x2 ¬x3 x4 d .4
x1 ¬x2 ¬x3 x4 ¬d .5 ¬x1 ¬x2 ¬x3 x4 ¬d 1
x1 ¬x2 ¬x3 ¬x4 d .5 ¬x1 ¬x2 ¬x3 ¬x4 d .4
x1 ¬x2 ¬x3 ¬x4 ¬d .2 ¬x1 ¬x2 ¬x3 ¬x4 ¬d .2

Table 3. The joint possibility distribution ΠKmin on X1, X2, X3, X4, D

Figure 2. A min-based possibilistic network representing agent’s preferences

X3 D X4 µ(X3|DX4) X3 D X4 µ(X3|DX4) D µ(D) X4 µ(X4)

x3 d x4 1 ¬x3 d x4 .7 d .1 x4 1
x3 d ¬x4 .6 ¬x3 d ¬x4 1 ¬d 1 ¬x4 .3
x3 ¬d x4 .8 ¬x3 ¬d x4 1
x3 ¬d ¬x4 .2 ¬x3 ¬d ¬x4 1

Table 4. Initial possibility distributions ΠPmin on X3 given DX4, D and X4

X3 D X4 µP X3 D X4 µP
x3 d x4 .1 ¬x3 d x4 .1
x3 d ¬x4 .1 ¬x3 d ¬x4 .1
x3 ¬d x4 .8 ¬x3 ¬d x4 1
x3 ¬d ¬x4 .2 ¬x3 ¬d ¬x4 .3

Table 5. The joint qualitative utility ΠPmin on DX3X4
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4.1 Optimistic Decisions as a Fusion Process

An optimal optimistic decision d is defined by the assignment of variables of D that
maximizes the expression:

u∗(d) = max
ω∈Ω

min(πKd
(ω), µP (ω)). (10)

Using Equation (8), the optimistic utility decision u∗(d) becomes:

u∗(d) = max
ω∈Ω

min(min(πK(ω), µP (ω)), πd(ω)). (11)

Merging two min-based possibilistic networks (Equation (7)), Equation (11) comes
down to:

u∗(d) = max
ω∈Ω

min(πG⊕(ω), πd(ω)). (12)

where πG⊕(ω) = min(πK(ω), µP (ω)). Besides, in Section 2 we recalled how to com-
pute the syntactic counterpart of min(π, π′) described in [12]. Let ΠG⊕ = (G⊕, π⊕)
be the syntactic counterpart of min(πK(ω), µP (ω)), where its structure G⊕ is built
depending whether the initial graphs are identical or not. The resulted min-based
possibilistic network ΠG⊕ induces the unique possibility distribution πG⊕ .

Example 2. Let us consider the two DAGs (GK and GP ) given in Example 1
(Figure 1 and Figure 2). They have different structures but their union is free
of cycles. The result of merging ΠKmin and ΠPmin is the min-based possibilistic
network ΠG⊕ = (G⊕, π⊕), where G⊕ is given in Figure 3. G⊕ is simply the union
of the two graphs of Figure 1 and Figure 2. The resulted min-based possibilistic
network ΠG⊕ induces a unique possibility distribution πG⊕ using Equation (6).

Figure 3. The DAG G⊕

Initial conditional possibility distributions associated with the merged network
ΠG⊕ are given by Tables 6 and 7, which are obtained using the minimum of local
possibility distributions ΠKmin and ΠPmin.

Using min-based chain rule (Equation (6)), we obtain the joint possibility dis-
tribution given in Table 8.
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D X1 X2 π⊕(D|X1X2) D X1 X2 π⊕(D|X1X2) X4 D X2 π⊕(X4|DX2) X4 D X2 π⊕(X4|DX2)

d x1 x2 .1 ¬d x1 x2 1 x4 d x2 .1 ¬x4 d x2 .3
d x1 ¬x2 .1 ¬d x1 ¬x2 1 x4 d ¬x2 .9 ¬x4 d ¬x2 .3
d ¬x1 x2 .1 ¬d¬x1 x2 1 ¬x4 ¬d x2 .2 ¬x4 ¬d x2 .3
d ¬x1 ¬x2 .1 ¬d¬x1 ¬x2 1 ¬x4 ¬d¬x2 1 ¬x4 ¬d¬x2 .2

Table 6. Initial possibility distributions ΠG⊕ on D given X1X2 and X4 given DX2

X3 X1 D X4 π⊕(X3|X1DX4) X3 X1 D X4 π⊕(X3|X1DX4) X1 π⊕(X1) X2 π⊕(X2)

x3 x1 d x4 .5 ¬x3 x1 d x4 .7 x1 .5 x2 .8
x3 x1 d ¬x4 .5 ¬x3 x1 d ¬x4 1 ¬x1 1 ¬x2 1
x3 x1 ¬d x4 .5 ¬x3 x1 ¬d x4 1
x3 x1 ¬d ¬x4 .2 ¬x3 x1 ¬d ¬x4 1
x3 ¬x1 d x4 .6 ¬x3 ¬x1 d x4 .7
x3 ¬x1 d ¬x4 .6 ¬x3 ¬x1 d ¬x4 1
x3 ¬x1 ¬d x4 .6 ¬x3 ¬x1 ¬d x4 1
x3 ¬x1 ¬d ¬x4 .2 ¬x3 ¬x1 ¬d ¬x4 1

Table 7. Initial possibility distributions ΠG⊕ on X3 given X1DX4, X1 and X2

We can check that the joint possibility distribution πG⊕ induced by ΠG⊕ is equal
to the minimum of the joint possibility distributions πK and µP induced by ΠKmin

and ΠPmin, respectively.

X1 X2 X3 X4 D πG⊕ X1 X2 X3 X4 D πG⊕
x1 x2 x3 x4 d .1 ¬x1 x2 x3 x4 d .1
x1 x2 x3 x4 ¬d .2 ¬x1 x2 x3 x4 ¬d .2
x1 x2 x3 ¬x4 d .1 ¬x1 x2 x3 ¬x4 d .1
x1 x2 x3 ¬x4 ¬d .2 ¬x1 x2 x3 ¬x4 ¬d .2
x1 x2 ¬x3 x4 d .1 ¬x1 x2 ¬x3 x4 d .1
x1 x2 ¬x3 x4 ¬d .2 ¬x1 x2 ¬x3 x4 ¬d .2
x1 x2 ¬x3 ¬x4 d .1 ¬x1 x2 ¬x3 ¬x4 d .1
x1 x2 ¬x3 ¬x4 ¬d .3 ¬x1 x2 ¬x3 ¬x4 ¬d .3
x1 ¬x2 x3 x4 d .1 ¬x1 ¬x2 x3 x4 d .1
x1 ¬x2 x3 x4 ¬d .5 ¬x1 ¬x2 x3 x4 ¬d .6
x1 ¬x2 x3 ¬x4 d .1 ¬x1 ¬x2 x3 ¬x4 d .1
x1 ¬x2 x3 ¬x4 ¬d .2 ¬x1 ¬x2 x3 ¬x4 ¬d .2
x1 ¬x2 ¬x3 x4 d .1 ¬x1 ¬x2 ¬x3 x4 d .1
x1 ¬x2 ¬x3 x4 ¬d .5 ¬x1 ¬x2 ¬x3 x4 ¬d 1
x1 ¬x2 ¬x3 ¬x4 d .1 ¬x1 ¬x2 ¬x3 ¬x4 d .1
x1 ¬x2 ¬x3 ¬x4 ¬d .2 ¬x1 ¬x2 ¬x3 ¬x4 ¬d .2

Table 8. The joint possibility distributions ΠG⊕ on X1, X2, X3, X4, D
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4.2 Computing Optimal Optimistic Decisions Using Junction Trees

In this section, we present the propagation process based on junction tree to com-
pute optimal decisions. The computation of min(πG⊕(ω), πd(ω)) is performed using
junction tree algorithm on ΠG⊕ with an additional step in the initialization process.
The main difference with standard possibilistic propagation algorithms is that our
junction tree is parameterized by some decision d. The parameter d makes a dif-
ference between a propagation algorithm from a possibilistic network representing
only agent’s knowledge and the one representing knowledge and preferences. Note
that the construction of junction tree is only done once. However, the propagation
and the initialization (which are both polynomial) are repeated for each possible
decision. The following provides main steps of our algorithm:

1. Building junction tree J T : Min-based propagation algorithms begin by trans-
forming the initial graph G⊕ into a secondary structure corresponding to a junc-
tion tree by eliminating existing loops. This is done in three steps [16]:

• Moralization of the initial graph G⊕: It consists of creating an undirected
graph from the initial one by adding links between the parents of each vari-
able, and replacing directed arcs by undirected ones.

• Triangulation of the moral graph: It allows to identify sets of variables that
can be gathered as clusters or cliques denoted by Ci.

• Construction of a junction tree J T : A junction tree is built by connecting
the clusters, representing cliques of the triangulated graph, identified in the
previous step. Once adjacent clusters have been identified, between each pair
of clusters Ci and Cj, a separator Sij containing their common variables, is
inserted.

2. Initialization for a given decision d: The idea is to transform initial conditional
distributions into local joint distributions attached to clusters and separators
taking into account the decision d. A potential πtCi

(resp. πtSij
) is assigned to

each cluster Ci (resp. separator Sij) of the junction tree J T , where t is relative
to the propagation step. The initialization step is done as follows:

(a) For each cluster Ci (resp. Sij), π
I
Ci
← 1 (resp. πISij

← 1).

(b) For each variable Xi, select a cluster Ci containing {Xi} ∪ Par(Xi),

πICi
← min(πICi

, π⊕(Xi | Ui)).

(c) Encode the evidence D = d as a likelihood ΛD(d):

ΛD(d) =

 1 If D is instantiated as d
0 If D is instantiated by a value

different from d
(13)
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(d) Identify a cluster Ci containing D, and update Ci as follows:

πICi
← min(πICi

,ΛD). (14)

Note, that Equations (13) and (14) do not appear in standard initialization of
junction trees. It is proper to the possibilistic decision problem. These two steps
are added for computing optimal optimistic possibilistic decisions. By entering
the fact D = d, the junction tree J T encodes πJT (ω) = min(πG⊕(ω) , πd(ω)),
where πJT can be redefined from J T as follows:

πJT = min
i=1..m

πCi
, (15)

where m is the number of clusters in J T . Then the qualitative utility associated
with a decision d is summarized by the following proposition:

Proposition 1. Let ΠKmin = (GK , π) and ΠPmin = (GP , µ) be two min-based
networks representing agent’s beliefs and preferences. Let ΠG⊕ = (G⊕, π⊕) be
the result of merging ΠKmin and ΠPmin using the min operator. Let J T be the
junction tree associated with ΠG⊕ presented above. Then,

u∗(d) = h(πJT ) = max
ω∈Ω

πJT (ω), (16)

where u∗(d) is given in Equation (12).

Hence, after the initialization step, the junction tree encodes the possibilistic
optimistic decision. Algorithm 1 summarizes the initialization step which is
performed by a call to the function Init(JT , d). This function has two pa-
rameters: the junction tree J T having m clusters and issued from ΠG⊕, and
a decision d which will parameterize J T .

3. Global propagation: the global propagation is performed in order to make it
globally consistent, namely: maxCi\Sij

πtCi
= πtSij

= maxCj\Sij
πtCj

. When a clus-
ter Ci sends its potential to one of its adjacent cluster Cj, then the potential
of Cj and their separator Sij are updated as follows:

(a) Update the potential of Sij : πt+1
Sij
← maxCi\Sij

πtCi
.

(b) Update the potential of Cj : πt+1
Cj
← min

(
πtCj

, πt+1
Sij

)
.

Steps (a)–(b) are repeated until no modifications appear in the potentials of
clusters. Once stability is reached, the computation of the qualitative utility
relative to a decision d can be achieved.

Proposition 2. Let ΠKmin = (GK , π) and ΠPmin = (GP , µ) be the min-based
networks representing agent’s beliefs and preferences. Let ΠG⊕ = (G⊕, π⊕) be
the result of merging ΠKmin and ΠPmin using the min operator. Let J T be the
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Algorithm 1: Init(JT,d)

Data: J T , a Junction Tree,
d, a decision instance,

begin
/*m, the number of clusters in J T */
for i = 1..m do

πICi
← 1,

for j = 1..(m− 1) do
πISj
← 1,

n, the number of variables in J T ,
for i = 1..n do

Select a cluster Cj∈{1,...,m} containing Xi ∪ Par(Xi),

πICi
← min(πICi

, π⊕(Xi | Ui)),
for i = 1..m do

if D ∈ Ci then
if D = ¬d then

πICi
← 0

junction tree associated with ΠG⊕ generated using the above global propagation
procedure. Then, the computation of optimistic decisions amounts to compute
a normalization degree of J T :

u∗(d) = h(πJT ) = max
Ci

πCi
. (17)

The optimal optimistic decisions are those maximizing the qualitative util-
ity. The computation of these optimal optimistic decisions is obtained using Al-
gorithm 2.

In Algorithm 2, the function Fusion(ΠKmin,ΠPmin,ΠG⊕) defines the fu-
sion step of the two initial min-based networks ΠKmin and ΠPmin. The result of the
fusion step is the min-based network ΠG⊕(G⊕, π⊕). The construction of the junc-
tion tree J T associated with the resulted fusion min-based network ΠG⊕ is ensured
by calling the function Junction− Tree(ΠG⊕,JT ). In addition, the function
Init(JT , d) corresponds to the initialization step defined by Algorithm 1. Sim-
ilarly, the function Prog(JT ) corresponds to the global propagation and returns
a normalization degree relative to J T . As it was already stated, the construction of
the junction tree is only done once but the initialization and the propagation steps
are repeated for each decision. More precisely, for each decision di ∈ {d1, . . . , dp},
a call to the initialization and propagation functions occurred. The initialization
function Init(JT , d) allows the parametrization of the junction tree by the deci-
sion di. As for the propagation function Prog(JT ), it allows the computation of
a normalization degree associated to the parameterized junction tree. Finally, the
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Algorithm 2: Graph-based computation of optimal optimistic decisions

Data: ΠKmin = (GK , π), a knowledge possibilistic network,
ΠPmin = (GP , µ), a preferences possibilistic network,
D = {D1, . . . , Dp}, set of decisions.

Result: Decisions, u∗.
begin

Fusion(ΠKmin,ΠPmin,ΠG⊕), /* ΠG⊕ is the fusion of ΠKmin and ΠPmin */,
Junction − Tree(ΠG⊕,J T ), /* J T the junction tree issued from ΠG⊕*/,
i← 1,
Norm← 0, /*normalisation degree*/,
u∗ ← 0, /*the optimistic utility*/,
Decisions ← ∅, */optimal optimistic decisions*/,
for i = 1..p do

Init(J T , di),/*Initialization step*/
Norm ← Prog(J T ), /*global propagation*/
if Norm > u∗ then

Decisions ← {di},
u∗ ← Norm,

else
if Norm = u∗ then

Decisions ← Decisions ∪ {di}

algorithm returns optimal decisions, those that maximize the normalization degree
relative to the junction tree.

A good feature of our approach is that the decision process has basically the
same complexity as the reasoning process. Hence, there is no important extra com-
putational cost added by the presence of decision variables. Indeed, the extra cost
due to the presence of decision variables corresponds to the computational com-
plexity of the fusion process. Once the two graphical models (knowledge-based and
preference-based networks) are fused, the computational complexity of the variant
of the junction tree presented in the paper is the same as the one of standard junc-
tion tree. Besides, the computational complexity of the fusion process is smaller
than the one of the inference of the junction tree, in particular when the union
of the two graphs is free of cycles. In this case, the complexity of the fusion pro-
cess is linear with respect to the number of variables and parameters of the two
graphs.

Example 3. Let us continue Example 2. We need to compute the optimal opti-
mistic decision D = {d,¬d}. As indicated in Algorithm 2, we first begin by con-
structing the junction tree (see Figure 4) associated with the graph G⊕ (Figure 3)
representing the fusion of ΠKmin and ΠPmin. The resulting junction tree contains
two clusters C1 = {X1, X2, X4, D} and C2 = {X1, X3, X4, D} and their separator
S12 = {X1, X4, D}.
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Figure 4. The junction tree associated with G⊕ of Example 2

Then for each decision value D = {d,¬d}, we need to run the initialization and
the propagation algorithm in order to compute the normalization degree associated
with the junction tree.

Step 1: D = d, in this case, the fact D = d is encoded as follows:

ΛD(d) =

{
1 If D is instantiated as d
0 If D is instantiated as ¬d.

Conditional possibility distributions will be transformed into local joint distri-
butions attached with clusters and separators as follows: πC1 = min(1, π⊕(X1),
π⊕(X2), π⊕(X4 | DX2)) and πC2 = min(1, π⊕(X3 | DX1X4),ΛD). Using the
initialization procedure, potentials of C1 and C2 are given by Table 9.

X1 X2 X4 D πC1 X1 X2 X4 D πC1 X1 X4 D X3 πC2 X1 X4 D X3 πC2

x1 x2 x4 d .1 ¬x1 x2 x4 d .1 x1 x4 d x3 .5 ¬x1 x4 d x3 .6
x1 x2 x4 ¬d .2 ¬x1 x2 x4 ¬d .2 x1 x4 d ¬x3 .7 ¬x1 x4 d ¬x3 .7
x1 x2 ¬x4 d .1 ¬x1 x2 ¬x4 d .1 x1 x4 ¬d x3 0 ¬x1 x4 ¬d x3 0
x1 x2 ¬x4 ¬d .3 ¬x1 x2 ¬x4 ¬d .3 x1 x4 ¬d ¬x3 0 ¬x1 x4 ¬d ¬x3 0
x1 ¬x2 x4 d .1 ¬x1 ¬x2 x4 d .1 x1 ¬x4 d x3 .5 ¬x1 ¬x4 d x3 .6
x1 ¬x2 x4 ¬d .5 ¬x1 ¬x2 x4 ¬d 1 x1 ¬x4 d ¬x3 1 ¬x1 ¬x4 d ¬x3 1
x1 ¬x2 ¬x4 d .1 ¬x1 ¬x2 ¬x4 d .1 x1 ¬x4 ¬d x3 0 ¬x1 ¬x4 ¬d x3 0
x1 ¬x2 ¬x4 ¬d .2 ¬x1 ¬x2 ¬x4 ¬d .2 x1 ¬x4 ¬d ¬x3 0 ¬x1 ¬x4 ¬d ¬x3 0

Table 9. Potential assigned to C1 and C2

Lastly, the global propagation allows to compute the normalization degree of
the junction tree which corresponds to the normalization degree of any cluster.
We obtain: u∗(d) = maxC1 πC1 = maxC2 πC2 = .1.

Step 2: D = ¬d, we repeat the same procedure described in the previous step, with
ΛD(¬d) = 1 If D is instantiated as ¬d and 0 If D is instantiated as d. In the same
way, potentials of C1 and C2, given D = ¬d are: πC1 = min(1, π⊕(X1), π⊕(X2),
π⊕(X4 | DX2)) and πC2 = min(1, π⊕(X3 | DX1X4),ΛD). The corresponding
results are reported in Table 10.



Computing Optimistic Decisions 1053

X1 X2 X4 D πC1 X1 X2 X4 D πC1 X1 X4 D X3 πC2 X1 X4 D X3 πC2

x1 x2 x4 d .1 ¬x1 x2 x4 d .1 x1 x4 d x3 0 ¬x1 x4 d x3 0
x1 x2 x4 ¬d .2 ¬x1 x2 x4 ¬d .2 x1 x4 d ¬x3 0 ¬x1 x4 d ¬x3 0
x1 x2 ¬x4 d .1 ¬x1 x2 ¬x4 d .1 x1 x4 ¬d x3 .5 ¬x1 x4 ¬d x3 .6
x1 x2 ¬x4 ¬d .3 ¬x1 x2 ¬x4 ¬d .3 x1 x4 ¬d ¬x3 1 ¬x1 x4 ¬d ¬x3 1
x1 ¬x2 x4 d .1 ¬x1 ¬x2 x4 d .1 x1 ¬x4 d x3 0 ¬x1 ¬x4 d x3 0
x1 ¬x2 x4 ¬d .5 ¬x1 ¬x2 x4 ¬d 1 x1 ¬x4 d ¬x3 0 ¬x1 ¬x4 d ¬x3 0
x1 ¬x2 ¬x4 d .1 ¬x1 ¬x2 ¬x4 d .1 x1 ¬x4 ¬d x3 .2 ¬x1 ¬x4 ¬d x3 .2
x1 ¬x2 ¬x4 ¬d .2 ¬x1 ¬x2 ¬x4 ¬d .2 x1 ¬x4 ¬d ¬x3 1 ¬x1 ¬x4 ¬d ¬x3 1

Table 10. Potential assigned to C1 and C2

From the global propagation, we get: u∗(¬d) = maxC1 πC1 = maxC2 πC2 = 1.
Finally, the optimal decision D∗ = ¬d with the maximal qualitative utility is
equal to 1. This result is exactly the same as the one obtained in Example 2.

5 LOGICAL-BASED MODEL FOR COMPUTING
OPTIMAL OPTIMISTIC DECISIONS

The logical counterpart of our new graphical model offers an alternative way to
compute optimal decisions. It is particularly suitable when it is impossible to apply
the junction tree due to space memory. Namely, when the size of cliques is large,
then the logical-based encoding is more appropriate.

The first step consists of transforming the two initial min-based networks into
two logical possibilistic knowledge bases. We explore the algorithm proposed in [6]
for transforming the graphical model to a logical one. The min-based network
ΠKmin = (GK , π) can be represented by a set of triples ΠKmin = {(xi, ui, αi) : αi =
π(xi | ui) 6= 1 is an element of the graph}, where xi ∈ DXi

and ui is an element of
the cartesian product of the domains Dj of the variables Xj ∈ Par(Xi). Then the
possibilistic knowledge base associated with ΠKmin is [6]:

ΣKmin
= {(¬xi ∨ ¬ui, 1− αi) : (xi, ui, αi) ∈ ΠKmin}. (18)

The possibilistic base ΣKmin
induces the same joint distribution πK induced by the

min-based possibilistic network ΠKmin = (GK , π) using Equation (4). Similarly, the
min-based network ΠPmin encoding agent’s preferences can be represented by a set
of triples ΠPmin = {(yj, uj, βj) : βj = π(yj | uj) 6= 1 is an element of the graph},
where yj ∈ DYj and uj is an element of the cartesian product of the domains Dl of
the variables Yl ∈ Par(Yj). The min-based network ΠPmin = (GP , µ) is transformed
into a logical possibilistic base as follows:

ΣPmin
= {(¬yj ∨ ¬uj, 1− βj) : (yj, uj, βj) ∈ ΠPmin}. (19)

The preference possibilistic logic base ΣPmin
induces again the same joint possibility

distribution µP generated by ΠPmin = (GP , µ) using Equation (4).
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Example 4. Let us consider the decision problem of Example 1, where the deci-
sion problem will be encoded in a logical model: the min-based network ΠKmin

encoding agent’s knowledge is transformed into a logical possibilistic base ΣK using
Equation (18):

ΣKmin
= {(¬d ∨ ¬x1 ∨ ¬x2, .9), (¬x4 ∨ ¬d ∨ ¬x2, .9), (¬x4 ∨ d ∨ ¬x2, .8),

(x4 ∨ d ∨ x2, .8), (¬d ∨ x1 ∨ x2, .6), (¬x1, .5), (¬x3 ∨ ¬x1, .5), (¬x3 ∨ x1, .4),

(¬d ∨ ¬x1 ∨ x2, .4), (¬d ∨ x1 ∨ ¬x2, .3), (¬x2, .2), (¬x4 ∨ ¬d ∨ x2, .1)}.

Similarly, using Equation (19), we have:

ΣPmin
= {(¬d, .9), (x4, .7), (x3 ∨ ¬d ∨ ¬x4, .3), (¬x3 ∨ ¬d ∨ x4, .4),

(¬x3 ∨ d ∨ ¬x4, .2), (¬x3 ∨ d ∨ x4, .8), (x3 ∨ ¬d ∨ ¬x4, .3)}.

Once the first step is achieved, the logical-based approach can then be applied
on the two logical bases ΣKmin

and ΣPmin
associated with the initial networks ΠKmin

and ΠPmin respectively. We recall that the optimistic utility decision is given by:

u∗(d) = max
ω∈Ω

min(min(πK(ω), µP (ω)), πd(ω)). (20)

The syntactic counterpart of min(πK(ω), µP (ω)) is the possibilistic base Σ⊕ =
ΣKmin

∪ ΣPmin
. So Equation (20) becomes:

u∗(d) = max
ω∈Ω

min(πΣ⊕(ω), πd(ω)). (21)

Using Equation (4), the optimistic utility decision u∗(d) comes to:

u∗(d) = max
ω∈Ω

πΣd⊕
(ω), (22)

where Σd⊕ = ΣKmin
∪ ΣPmin

∪ {(d, 1)}. The syntactic counterpart of Equation (22)
is:

u∗(d) = 1− Inc(Σd⊕), (23)

where Inc(Σd⊕) is the inconsistency degree of ΣKmin
∪ ΣPmin

∪ {(d, 1)}. Comput-
ing optimal optimistic decisions using Equation (23) comes down to computing an
inconsistency degree of the possibilistic base Σd⊕ issued from the fusion phase of
the knowledge base ΣKmin

, the preference possibilistic logic base ΣPmin
and a de-

cision di ∈ {d1, . . . , dp}. Optimizing the decision utility means to take a decision
di ∈ {d1, . . . , dp} which has the minimal inconsistency degree with ΣKmin

∪ ΣPmin
.

The computation of optimal optimistic decisions is summarized in Algorithm 3–4
which is a slight adaptation of the one proposed in [8]. Our approach basically adds
a test that stops the algorithm when the inconsistency degree cannot be improved.

The computation of inconsistency degree is performed by a call to the function
Incons which has three parameters: a stratified base Σ, an integer Inc representing
the current inconsistency degree and a boolean variable Bool .
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Algorithm 3: Logical-based computation of optimal optimistic decisions

Data: ΠKmin = (GK , π), a knowledge possibilistic network,
ΠPmin = (GP , µ), a preferences possibilistic network,
D = {D1, . . . , Dp}, set of decisions.

Result: Decisions, u∗.
begin

ΣKmin = {(¬xi ∨ ¬ui, 1− αi) : (xi, ui, αi) ∈ ΠKmin}, a possibilistic knowledge
base

ΣPmin = {(¬yj ∨ ¬uj , 1− βj) : (yj , uj , βj) ∈ ΠPmin}, a preferences possibilistic
network
min← 1,
Inc← 1, inconsistency degree,
u∗ ← 0, the optimistic utility,
Decisions← ∅, optimal optimistic decisions,
for i = 1..p do

Σd⊕ = ΣKmin ∪ ΣPmin ∪ {(di, 1)},
Call Algorithm 4 Incons(Σd⊕ , Inc,Bool), to compute inconsistency degree
of Σd⊕

if bool = true then
if Inc < min then

min← Inc, Decisions← {di}, u∗ ← 1− Inc,
else

if Inc = min then
Decisions← Decisions ∪ {di}

The function Incons(Σ ∪ {(¬φ,1)}, Inc,Bool) (defined in Algorithm 4)
is an adaptation of a dichotomous algorithm proposed in [29] to compute incon-
sistency degree of a possibilistic base. Indeed, when the inconsistency degree of
ΣK ∪ΣP ∪ {(di∈[1,p], 1)} is greater than the inconsistency degree of ΣKmin

∪ΣPmin
∪

{(dj∈[1,i−1], 1)}, the algorithm stops. This is ensured by the use of the boolean
variable Bool .

Example 5. Let us continue Example 4, where agent’s knowledge and preferences
are now transformed into the two possibilistic logic-based bases ΣKmin

and ΣPmin
.

The set of decisions is: D = {d,¬d}. Let us apply the logical approach detailed
in Algorithm 3. For each decision di ∈ D, an inconsistency degree is computed of
the possibilistic logic base Σ⊕ = ΣKmin

∪ΣPmin
when the decision {(di, 1)} is added.

The Algorithm applies as follows:

Step 1: D = d, the function Incons(Σ⊕ ∪ {(d, 1)}, Inc,Bool) returns Inc = .9 and
Bool = true. In this case, Inc < min (initially min = 1), so Decisions ← {d}
and min← .9. The optimistic utility decision is then, u∗(d) = 1− Inc = .1.
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Algorithm 4: Incons(Σ ∪ {(¬φ, 1)}, Inc,Bool)

Data: Σ, a stratified base
{(¬φ, 1)}, a weighted formula,
Inc, inconsistency degree,

Result: Bool , a boolean
begin

Σ, stratified base,
φ, weighted formula,
n, number of strate in Σ,
l← 0, initially pointed on the last strate of Σ,
u← n, initially pointed on the first strate of Σ,
Bool← true, while (l < u) and (Bool = true) do

r ← [(l + u)/2], pointer uses for dichotomy,
if (Σ∗≥αr

= {φi/αi ≥ αr}) ∧ ¬φ consistent then
u← r − 1, check inconsistency in the most big base,

else
if Inc ≥ αr then

l← r, check inconsistency in the base delimited by u and l,
else

Bool← false,

if u = 0 then
Inc = 0

else
if Bool = true then

Inc = αr,

Step 2: D = ¬d, the function Incons(Σ⊕ ∪ {(¬d, 1)}, Inc,Bool) returns Inc = 0
and Bool = true. In this case, Inc < min, so Decisions ← {¬d} and min ← 0.
The optimistic utility decision is then, u∗(¬d) = 1 − Inc = 1. Finally, as in
Example 3, we conclude that the optimal optimistic decision D∗ = ¬d with the
maximal qualitative utility equal to 1.

In the logical-based approach, the complexity of the transformation from a min-
based possibilistic network to a qualitative possibilistic base is linear. The complex-
ity of the function Incons (for computing inconsistency degrees) requires log2 n
satisfiability checks [29], where n is the number of strate or degrees present in the
possibilistic logic base. This is the same complexity as the one of standard possi-
bilistic logic.

6 RELATED WORKS

Several graphical approaches for dealing with decision problems under uncertainty
have been proposed in the literature. In probability theory, among these models,
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we can mention decision trees [31, 14], influence diagrams [27], valuation based
systems [32], etc. Despite its popularity, a decision tree is not appropriate in the
huge decision problems. An alternative to a decision tree is the notion of influ-
ence diagrams which have been proposed as a compact representation of a decision
making problem under uncertainty. In a qualitative setting, possibility theory al-
lows an agent to express uncertainty by ranking different states of the world. Both
agent’s knowledge and preferences can be expressed in a possibilistic qualitative
way. However, few works exist on decision making using the possibility theory. For
multi-stage (sequential or non sequential) decision making, the possibilistic coun-
terparts of the standard graphical models have been proposed: possibilistic decision
trees proposed in [24], possibilistic influence diagrams [24, 26, 22], etc. Uncer-
tainty and preference relations are expressed on the same structure by using ordinal
data. Like the probabilistic influence diagrams, the possibilistic influence diagrams
contain three types of nodes: chance, decision and utility nodes. Uncertainty is
described by means of possibility distributions on chance nodes and preferences are
expressed as satisfaction degrees on utility nodes. To compute optimal decisions, ei-
ther the possibilistic influence diagram is transformed into a secondary structure
(into a possibilistic decision tree [24] or into a qualitative possibilistic network
[26]) or the initial structure is directly used but this method requires additional
computations to update possibility distribution tables [24]. In one-stage decision
making, a logical-based representation has been proposed in [18]. In this model,
agent’s knowledge and preferences are encoded separately by two possibilistic bases.
A method for computing optimal decisions based on ATMS (assumption-based truth
maintenance system) [17] has been proposed in [18]. The proposed solution cannot
deal with the important number of variables. An alternative approach exploiting
the syntactic counterpart of possibilistic data fusion techniques has been proposed
in [7, 8].

Our new graphical model for possibilistic decision making offers several advan-
tages over existing ones.

The first advantage is the separation of knowledge and preferences which does
not appear in the existing graphical models including possibilistic influence di-
agrams. This is an advantage because in practice a decision problem contains
two distinct components: the uncertain distribution and the utility function. Be-
sides, the separation of knowledge and preferences is in full accordance with the
semantics of decision making in the possibility theory. Indeed, the semantics def-
initions of a possibilistic decision accepts as inputs two possibility distributions:
one representing knowledge and the other representing preferences [18]. Hence,
we provided a compact representations of these two possibility distributions and
a graphical model for computing optimistic optimal possibilistic decisions. Ac-
cording to the semantic definition, the proposed model is based on the use of two
distinct min-based possibilistic networks: one representing agent’s knowledge and
the second one encodes his preferences. This separation makes the model more
intuitive since it naturally reflects the semantics of a possibilistic decision prob-
lem.



1058 I. Zeddigha, S. Benferhat, F. Khellaf

The second important feature of our approach is that we enriched the expressive
power of the graphical-based representation language, by adding decision variables,
without increasing its computational complexity. As we already pointed out in the
paper, our decision process (that included both state and decision variables) has
basically a same complexity as the one of the reasoning process (that only accepts
state variables). This is true for both graphical-based and logical-based approaches.
For instance, in the logical-based model, the extra computational cost, due to the
addition of decision variables, corresponds to the cost of the equivalent translation
of min-based networks into possibilistic logic bases. This translation is done in
linear time with respect to the number of parameters (possibility degrees) present
in min-based networks.

A third advantage of our approach is that it benefits from the simplicity of using
graphs to elicit preferences and knowledge. It also benefits from intensive works on
inference algorithms developed in graphical models such as junction tree algorithms
or network-based computation algorithms. Indeed, any new heuristic for building
compact junction trees or any new compiler for possibilistic networks can be easily
reused in our model for integrating decision variables.

Lastly, the fourth important advantage of our approach is the use of a unique
kind of nodes to represent both state variables and decision variables. This is not the
case with other decision models, such as PIDs [24], where different kinds of nodes
are used: chance, decision and utility nodes. Hence, our approach offers a simple
format for representing both knowledge and preferences.

7 CONCLUSIONS

This paper first proposed a graphical model for representing possibilistic decision
making under uncertainty in a compact way using qualitative possibilistic networks.
We proposed an encoding of agent’s beliefs and preferences by means of two distinct
min-based possibilistic networks. The first min-based possibilistic network encodes
a joint possibility distribution representing available knowledge and the second one
encodes the qualitative utility. Then we proposed a new approach for computing
optimal optimistic decisions that takes advantages of existing inference algorithms
for qualitative possibilistic networks. Our approach first merges possibilistic net-
works associated with uncertain knowledge and possibilistic networks associated
with agent’s preferences. Then we showed that computing optimistic decisions comes
down to computing a normalization degree of the junction tree associated to the re-
sult graph of merging agent’s beliefs and preference-based networks. This allows an
efficient computation of optimal decisions. In the second part of this paper, we pro-
posed an alternative algorithm for computing optimistic decisions when the problem
is expressed by means of two distinct min-based possibilistic networks. We showed
that the logical counterpart is equivalent to the junction tree associated to the result
graph of merging agent’s beliefs and preference-based networks. The logical-based
network is particularly suitable when it is difficult to built a junction tree.
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As future works, we plan to extend our graphical model for the representation
of decision problems to deal with more complex problems involving sequential de-
cisions. We also plan to show how to encode a possibilistic influence diagram [26]
into our new model based on possibilistic networks. The idea consists in decompos-
ing the graph into two possibilistic networks, one encoding a possibility distribution
representing agent’s beliefs, and the second one encodes the qualitative utility. An-
other future work is to use the proposed graphical model to deal with the pessimistic
decisions for possibilistic decision problems.

A APPENDIX

Proof. [Proof of Proposition 1] We need to prove that using the initialization proce-
dure given in Algorithm 1, the qualitative utility associated with a decision d given
in Equation (12) can be rewritten as follows: u∗(d) = h(πJT ) = maxω∈Ω πJT (ω).
We proceed in two steps

Step 1 (standard junction tree): By definition, using Equation (15) the joint
possibility distribution associated with J T is expressed by: πJT (X1, . . . , Xn) =
minj=1..m πCj

. From steps 1 and 2 of the initialization procedure, we get:
πJT (X1, . . . , Xn) = min(mini=1..n π⊕(Xi | Ui), 1) = mini=1..n π⊕(Xi | Ui) =
πG⊕(X1, . . . , Xn).

Step 2 (parameterized junction tree): By applying Equations (13) and (14),
the joint possibility associated with J T comes down to compute: πJT (X1, . . . ,
Xn) = min(πG⊕(X1, . . . , Xn),ΛD) = min(πG⊕(X1, . . . , Xn), πd(X1, . . . , Xn))
where:

πd(X1, . . . , Xn) =

{
1 If X1, . . . , Xn |= d
0 otherwise.

This result can be replaced in Equation (12), then we obtain:
u∗(d) = maxω∈Ω πJT (ω). �

Proof. [Proof of Proposition 2] Our aim is to prove that the optimistic utility
corresponds to the normalization degree of any cluster once the consistency in the
junction tree J T is reached. Proposition 1 indicates that computing optimistic
utility comes down to computing a normalization degree of the junction tree J T .
Then, it is enough to prove that optimistic utility corresponds to a normalization
degree of some cluster amounts to prove that a normalization degree of the junction
tree J T corresponds to a normalization degree of some cluster once the propagation
algorithm is achieved (consistency reached). Formally, this amounts to prove the
following equality: maxω∈Ω πJT = maxCi

πCi
. This equality is satisfied in the case

of a junction tree with a unique cluster. Indeed, in this case we have: πJT = πCi
.

Assume that this property is true in the case of a junction tree with m clusters,
and let us show that it is also true with m+ 1 clusters. Let J T be a junction tree
with m + 1 clusters defined on a set of variables V . Let J T ′ = J T \Cm+1 defined
on m clusters and V ′ be the universe relative to J T ′. The cluster Cm+1 must be
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a leaf of J T , connected to the cluster Cm via the separator S(m+1)m, otherwise
Cm+1 is connected to another cluster in J T ′ namely {Cm+1\S(m+1)m} ∩ V ′ 6= ∅
which contradicts the hypothesis J T ′ = J T \Cm+1. Let L = Cm+1\S(m+1)m, then
V ′ = V \L. From the induction hypothesis, we obtain: maxV \L πJT ′ = maxCi

πCi
.

By definition, using Equation (15) we obtain: πJT = min(πJT ′ , πCm+1). Then,
maxω∈Ω πJT = maxω∈Ω min(πJT ′ , πCm+1) = min(maxV \L πJT ′ ,maxCm+1 πCm+1). Us-
ing the induction hypothesis, we get: maxω∈Ω πJT = min(maxCi

πCi
,maxCm+1 πCm+1).

In the case, where Ci corresponds to the cluster Cm (the cluster adjacent to
Cm+1) and since the junction tree J T is consistent, then: maxCm πCm = maxCm+1

πCm+1 . So, the normalization degree associated with the junction tree J T corre-
sponds to the normalization degree of any cluster Ci ∈ {C1, . . . , Cm+1}: maxω∈Ω πJT
= maxCi

πCi
. Hence, the optimistic utility corresponds to the normalization degree

of any cluster Ci: u
∗(d) = maxCi

πCi
. �
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