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Multiple agent possibilistic logic

Asma Belhadia, Didier Duboisb, Faiza Khellaf-Haneda and Henri Pradeb∗

aLRIA, University of Sciences & Technology Houari Boumediene, BP 32 El Alia 16111 Bab
Ezzouar, Algiers, Algeria; bIRIT, CNRS & University of Toulouse, 118 route de Narbonne, 31062

Toulouse Cedex 09, France

The paper presents a ‘multiple agent’ logic where formulas are pairs of the form (a, A),
made of a proposition a and a subset of agents A. The formula (a, A) is intended
to mean ‘(at least) all agents in A believe that a is true’. The formal similarity of
such formulas with those of possibilistic logic, where propositions are associated with
certainty levels, is emphasised.However, the subsets of agents are organised in aBoolean
lattice, while certainty levels belong to a totally ordered scale. The semantics of a set
of ‘multiple agent’ logic formulas is expressed by a mapping which associates a subset
of agents with each interpretation (intuitively, the maximal subset of agents for whom
this interpretation is possibly true). Soundness and completeness results are established.
Then a joint extension of the multiple agent logic and possibilistic logic is outlined.
In this extended logic, propositions are then associated with both sets of agents and
certainty levels.A formula then expresses that ‘all agents in set A believe that a is true at
least at some level’. The semantics is then given in terms of fuzzy sets of agents that find
an interpretation more or less possible. A specific feature of possibilistic logic is that the
inconsistency of a knowledge base is a matter of degree. The proposed setting enables
us to distinguish between the global consistency of a set of agents and their individual
consistency (where both can be a matter of degree). In particular, given a set of multiple
agent possibilistic formulas, one can compute the subset of agents that are individually
consistent to some degree.

Keywords: possibilistic logic; possibility theory; uncertainty; multiple agent
inconsistency

1. Introduction

Possibilistic logic (Dubois, Lang, & Prade, 1994; Dubois & Prade, 2004) was originally

motivated by the need to manipulate statements of the form N (a) ≥ α in a logical way

(Dubois & Prade, 1987), where N is a necessity measure (see, for example, Dubois &

Prade, 1998) valued in a totally ordered scale and a is a proposition in classical logic. This

statement means that the proposition is an accepted belief with a minimal strength, and is

syntactically encoded under the form of a pair (a, α). Such certainty-qualified statements

have a clear modal flavour. Possibilistic logic can also be viewed as a special case of

a labelled deductive system (Gabbay, 1996). Inference in possibilistic logic propagates

certainty in a qualitative manner, using the law of the weakest link, and is inconsistency-

tolerant, as it enables non-trivial reasoning to be performed from the largest consistent

subset of most certain formulas. A characteristic feature of this uncertainty theory is that
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a set of propositions {a ∈ L : N (a) ≥ α} in a propositional language L, the propositions

of which are believed at least to a certain extent, is deductively closed (thanks to the min-

decomposability of necessity measures with respect to conjunction). As a consequence,

possibilistic logic remains very close to classical logic.

One may think of associating other ‘labels’ with classical logical formulas. It may

be lower bounds of other measures in possibility theory, such as weak or strong possibility

measures (see, for example, Dubois&Prade, 2004). It may also be a set of logical arguments

in favour of a (Lafage, Lang, & Sabbadin, 1999), a set of distinct sources supporting the

truth of the associated formula (Dubois, Lang,&Prade, 1992), or a set of time instants where

the formula holds true for sure (Dubois, Lang, & Prade, 1991). In this paper, we investigate

in detail a ‘multiple agent’ logic where formulas are of the form (a, A), and A is a subset of

agents that are known to believe that a is true. The idea was outlined in (Dubois & Prade,

2006, 2007), and previously in (Dubois et al., 1992) in an information fusion perspective,

but the underlying semantics was never studied. In contrast, with timed possibilistic logic

where it is important to make sure that the knowledge base remains consistent over time,

what matters in multiple agent logic is the collective consistency of subsets of agents. The

formula (a, A)will be understood at the semantic level as a constraint of the formN(a) ⊇ A,

where N is a set-valued mapping that returns the set of agents for whom it is certain that a

is true. Thus stating (a, A) amounts to saying that at least all the agents in A believe a.

The problem of processing information coming from various sources has a rather long

tradition in logic, which at least dates back to Belnap (1977), whose approach was extended

by Carnielli & Lima-Marques (1999). However, these authors only consider the situations

where sources provide information about atomic formulas. A solution to this limitation

has been proposed in Avron, Ben-Naim, & Konikowska (2009) using a new tool called

non-deterministic logical matrices. The approach that we present in this paper handles

information pertaining to any kind of propositional formulas, but we restrict ourselves to

the case of propositions a jointly supplied by all agents in a set A, and the conjunction

of formulas of the form (a, A). In other words, the language does not allow formulas like

¬(a, A) (‘it is false that all the agents in A believe a’) or disjunctions (a, A) ∨ (b, B). In

particular, and in contrast with Belnap (1977), we do not represent pieces of information of

the form ‘there is at least one agent in A who believes a’, which amounts to a disjunctive

statement. Handling such formulas could be achieved by getting inspiration from the

so-called generalised possibilistic logic (Dubois, Prade, & Schockaert, 2012), as briefly

mentioned at the end of this paper. Indeed, basic possibilistic logic, fromwhich our multiple

agent logic derives, suffers from the same limitations of handling only conjunctions of

formulas of the form (a, α). Besides, the multiple agent logic can be nicely extended into a

multiple agent possibilistic logic which handles formulas expressing that ‘at least all agents

in A believe that a is true at least at level α’. Then N becomes a fuzzy set-valued mapping

that returns a weighted set of agents.

The paper is organised in the following way. The next section provides a brief refresher

on possibilistic logic,where itsmain features are emphasised. Section 3 presents themultiple

agent logic and its semantics, along with soundness and completeness results. Section 4

outlines the extension of multiple agent logic with certainty levels. These three sections are

illustrated by a running example which shows how (in)consistency is handled in terms of

subsets of agents and in terms of certainty levels. The concluding section briefly discusses

prospective extensions of the proposed framework.



2. A refresher on possibilistic logic

We first describe the syntax of possibilistic logic, provide a short background on possibility

theory that underlies its semantics, and then present its semantics in terms of possibility

distributions and necessity measures, before ending the section with an illustrative example.

2.1. Syntax

Let L denote a propositional logical language. Well-formed formulas of L, denoted

a, b, c, . . . , ai , . . . , are built from atoms, denoted p, q, r, . . . and the usual connectives ¬,

∧,∨ (where a∨b =de f ¬(¬a∧¬b)) with parentheses ( and ), using the usual rules.⊤ and⊥

denote the tautology and the contradiction respectively.We take the axioms of propositional

logic (PL) for granted, and the modus ponens as inference rule (a,¬a ∨ b ⊢ b). We can

equivalently use the resolution or cut rule (¬a ∨ b, a ∨ c ⊢ b ∨ c) and refutation (proving

Ŵ ⊢ a amounts to proving Ŵ,¬a ⊢ ⊥, where Ŵ stands for a collection of propositional

formulas a1, . . . , am and ⊥ is the contradiction).

Language

A (basic) possibilistic logic formula is a pair (a, α), with a ∈ L and α ∈ S, where S is

a bounded totally ordered scale, equipped with an ordering relation denoted by ≤. Then

α is called the certainty level (or weight) of the propositional formula a. More precisely,

(a, α) means that it is certain at least at level α that a is true. In the following we take

S = [0, 1]. But any bounded totally ordered set, finite or not, can be used as well. Then the

complementation to 1 operation, namely 1−(·), used in the following should be understood

as an order-reversing map. A possibilistic logic base Ŵ is a set of such pairs, namely

Ŵ = {(ai , αi ) | i = 1, . . . , m}, understood as the conjunction of pairs (ai , αi ), with

∀i, αi > 0.

Axioms and inference rules

The axioms of possibilistic logic (Dubois et al., 1994),5L for short, are those of PL, where

each axiom schema is now supposed to hold with the maximal certainty, i.e., is associated

with level 1. It has two inference rules:

• if β ≤ α then (a, α) ⊢ (a, β) (level weakening);

• (¬a ∨ b, α), (a, α) ⊢ (b, α), ∀α ∈ (0, 1] (level modus ponens).

We may equivalently use the level weakening rule with the 5L counterpart of the

resolution rule:

(¬a ∨ b, α), (a ∨ c, α) ⊢ (b ∨ c, α), ∀α ∈ (0, 1] (level resolution).

Using level weakening, it is then easy to see that the following inference rule is valid:

(¬a ∨ b, α), (a ∨ c, β) ⊢ (b ∨ c,min(α, β)) (α-β-resolution).

The idea that in a reasoning chain, the certainty level of the conclusion is the smallest of

the certainty levels of the formulas involved in the premises is at the basis of the syntactic

approach proposed by Rescher (1976) for plausible reasoning, and would date back to

Theophrastus, a follower of Aristotle.



The following inference rule, which we call formula weakening, also holds as a conse-

quence of α-β-resolution:

if a ⊢ b then (a, α) ⊢ (b, α), ∀α ∈ (0, 1] (formula weakening).

Indeed, a ⊢ b expresses that ¬a ∨ b is valid in PL and thus (¬a ∨ b, 1) holds, which

by applying the α-β-resolution rule with (a, α) yields the result.

It turns out that any valid deduction in propositional logic is valid as well in possibilistic

logic where the corresponding propositions are associated with any level α ∈ (0, 1].

Thus since a, b ⊢ a ∧ b, we have (a, α), (b, α) ⊢ (a ∧ b, α). Note that we also have

(a ∧ b, α) ⊢ (a, α) and (a ∧ b, α) ⊢ (b, α) by the formula weakening rule. Thus, stating

(a ∧ b, α) is equivalent to stating (a, α) and (b, α). Thanks to this property, it is always

possible to rewrite a5L base under the form of a collection of weighted clauses.

Note also that if we assume that for any propositional tautology t , i.e., such that t ≡ ⊤,

(t, α) holds with any certainty level, which amounts to saying that each axiom schema holds

with any certainty level, then the α-β-resolution rule entails the level weakening rule, since

(¬a ∨ a, β) together with (a ∨ c, α) entails (a ∨ c, β) when β ≤ α.

Inference and consistency

Inference in 5L is quite similar to the one in PL. We may either use the 5L axioms and

the level weakening and level modus ponens rules, or equivalently proceed by refutation

(proving Ŵ ⊢ (a, α) amounts to proving Ŵ, (¬a, 1) ⊢ (⊥, α) by repeated application of the

α-β-resolution rule,whereŴ stands for a collectionof5L formulas (a1, α1), . . . , (am, αm)).

Moreover, note that

Ŵ ⊢ (a, α) if and only if Ŵα ⊢ (a, α) if and only if (Ŵα)∗ ⊢ a

where Ŵα = {(ai , αi ) ∈ Ŵ, αi ≥ α} and Ŵ∗ = {ai | (ai , αi ) ∈ Ŵ}. Thus, the certainty

levels stratify the knowledge base Ŵ into nested level cuts Ŵα , i.e., Ŵα ⊆ Ŵβ if β ≤ α. A

consequence (a, α) from Ŵ can only be obtained from formulas having a certainty level

at least equal to α, so from formulas in Ŵα; then a is a classical consequence from the PL

knowledge base (Ŵα)∗, and α = max{β|Ŵβ ⊢ (a, α)}.

The inconsistency level of Ŵ is defined by

inc-l(Ŵ) = max{α | Ŵ ⊢ (⊥, α)}.

The possibilistic formulas in Ŵ whose level is strictly above inc-l(Ŵ) are safe from

inconsistency, namely inc-l({(ai , αi ) | (ai , αi ) ∈ Ŵ and αi > inc-l(Ŵ)}) = 0. Indeed, if

α > inc-l(K ), (Ŵα)∗ is consistent. In particular, we have the remarkable property that the

classical consistency of Ŵ∗ is equivalent to saying that Ŵ has a level of inconsistency equal

to 0. Namely,

inc-l(Ŵ) = 0 if and only if Ŵ∗ is consistent.

The semantics of5L is expressed in terms of possibility distributions, (weak) possibility

measures and (strong) necessity measures. Let us first recall these notions.

2.2. Background on possibility theory

Let � be the set of interpretations of the propositional logic language L. A possibility

distribution (Zadeh, 1978) on � is a function π from � to [0,1]. It is supposed to reflect



the available knowledge: π(ω) estimates to what extent it is possible that the interpretation

ω corresponds to the real state of the world. The possibility distribution π is normalised if

∃ω ∈ � such that π(ω) = 1. Normalisation expresses that at least one interpretation in �

is fully possible.

Based on a possibility distribution π , a function, from L to [0,1], called possibility

measure, denoted by5, is defined by Zadeh (1978)1 as

5(a) = max{π(ω) |ω |= a}.

The possibility measure estimates the extent to which a is compatible with the available

knowledge represented by π . Informally, 5(a) = 0 means that a is impossible, while

5(a) = 1 means that a is fully possible and expresses full consistency with the current

knowledge. Particularly, 5(a) = 0 when a is a contradiction. 5(a) = 5(¬a) = 1

expresses that botha and¬a are fully possible,which corresponds to a case of total ignorance

(about a).

Possibility measures are such that5(⊤) = 1 and5(⊥) = 0, and satisfy the character-

istic axiom

5(a ∨ b) = max(5(a),5(b)).

A necessity measure N (Dubois & Prade, 1980), defined from L to [0,1], is associated

by duality with5, namely

N (a) = 1− 5(¬a),

expressing that a is all the more necessarily true, or certain, as ¬a is more impossible, and

conversely the absence of certainty in favour of a (N (a) small) makes¬a possible (5(¬a)

high). Thus N is defined from π by

N (a) = min{1− π(ω)|ω |= ¬a}.

Informally, N (a) estimates to what extent a is entailed by the available knowledge.

N (a) = 1 means that a is sure, for instance N (a) = 1 when a is a tautology. The case of

total ignorance in terms of necessity measure is represented by N (a) = N (¬a) = 0 indeed;

from the available knowledge nothing enables us to say if a is rather true or rather false.

Necessitymeasures are such that N (⊤) = 1 and N (⊥) = 0, and satisfy the characteristic

axiom

N (a ∧ b) = min(N (a), N (b)).

Asa consequence,min(N (a), N (¬a))=0 should hold.Dually,max(5(a),5(¬a))=1.

It can be checked that these two conditions hold for any a if and only if π is normalised.

Thus having for some a, min(N (a), N (¬a)) > 0 (or equivalentlymax(5(a),5(¬a)) < 1)

amounts to having π unnormalised, which intuitively expresses a situation of inconsistency,

since one cannot be somewhat certain of both a and ¬a, or find both a and ¬a somewhat

impossible.

2.3. Semantics

We have now recalled the notions needed for presenting the semantics of 5L

(Dubois et al., 1994). Let us first consider a 5L formula (a, α) that encodes the statement

N (a) ≥ α. Its semantics is given by the following possibility distribution π(a,α), defined

by

π(a,α)(ω) = 1 if ω � a and π(a,α)(ω) = 1− α if ω � ¬a.



Intuitively, the underlying idea is that any model of a should be fully possible, and that

any interpretation that is a counter-model of a is all the less possible as a is more certain,

i.e., as α is higher. It can easily be checked that the associated necessity measure is such that

N(a,α)(a) = α, and π(a,α) is the least informative possibility distribution (i.e., maximising

possibility degrees) such that this constraint holds. In fact, any possibility distribution π

such that ∀ω, π(ω) ≤ π(a,α)(ω) is such that its associated necessity measure N satisfies

N (a) ≥ N(a,α)(a) = α (hence is more committed).

Let us now consider a 5L knowledge base Ŵ = {(ai , αi ), i = 1, . . . , m}, thus cor-

responding to the conjunction of 5L formulas (ai , αi ), each representing a constraint

N (ai ) ≥ αi . The base Ŵ is semantically associated with the possibility distribution

πŴ(ω) = min
i=1,...,m

π(ai ,αi )(ω) = min
i=1,...,m

max([ai ](ω), 1− αi ),

where [ai ] is the characteristic function of the models of ai , namely [ai ](ω) = 1 if ω � ai

and [ai ](ω) = 0 otherwise. Thus, the least informative induced possibility distributionπŴ is

obtained as the min-based conjunction of the fuzzy sets of interpretations (with membership

functions π(ai ,αi )), representing each formula. It can be checked that

NŴ(ai ) ≥ αi for i = 1, . . .,m,

where NŴ is the necessity measure defined from πŴ . Note that we may only have an

inequality here since Ŵ may, for instance, include two formulas associated with equivalent

propositions, but with distinct certainty levels.

So a 5L knowledge base is understood as a set of constraints N (ai ) ≥ αi for i =

1, . . . , m, and the set of possibility distributions π associated with N that are compatible

with this set of constraints has a largest element which is nothing but πŴ , i.e., we have

∀ω, π(ω) ≤ mini=1,...,m π(ai ,αi ) = πŴ(ω). Thus, the possibility distribution πŴ semanti-

cally representing a5L baseŴ is the onewhich assigns the largest possibility degree to each

interpretation, in agreement with the semantic constraints N (ai ) ≥ αi for i = 1, . . . ,m that

are associated with the formulas (ai , αi ) in Ŵ. Thus, any possibility distribution π ≤ πŴ

semantically agrees with Ŵ, which can be written π � Ŵ.

The semantic entailment is defined by

Ŵ � (a, α) if and only if ∀ω, πŴ(ω) ≤ π{(a,α)}(ω).

It can be shown (Dubois et al., 1994) that possibilistic logic is sound and complete w.r.t.

this semantics, namely

Ŵ ⊢ (a, α) if and only if Ŵ � (a, α).

Moreover, we have

inc-l(Ŵ) = 1−max
ω∈�

πŴ(ω),

which acknowledges the fact that the normalisation of πŴ is equivalent to the classical

consistency of Ŵ∗. Thus, an important feature of possibilistic logic is its ability to deal with

inconsistency. The consistency of Ŵ is estimated by the extent to which there is at least one

interpretation completely possible for Ŵ, i.e., by the quantity cons-l(Ŵ) = 1− inc-l(Ŵ) =

maxω∈� πŴ(ω) = maxπ |=Ŵmaxω∈�π(ω).



Table 1. Detailed computation of the possibility distribution in the example.

ω π{(¬p∨q,.8)} π{(¬p∨r,.9)} π{(¬p∨¬r,.1)} π{(¬q∨r,.6)} π{(p,.3)} π{(q,.7)} π{(¬q,.2)} π{(r,.8)} πŴ

pqr 1 1 0.9 1 1 1 0.8 1 0.8

pq¬r 1 0.1 1 0.4 1 1 0.8 0.2 0.1

p¬qr 0.2 1 0.9 1 1 0.3 1 1 0.2

p¬q¬r 0.2 0.1 1 1 1 0.3 1 0.2 0.1

¬pqr 1 1 1 1 0.7 1 0.8 1 0.7

¬pq¬r 1 1 1 0.4 0.7 1 0.8 0.2 0.2

¬p¬qr 1 1 1 1 0.7 0.3 1 1 0.3

¬p¬q¬r 1 1 1 1 0.7 0.3 1 0.2 0.2

2.4. An example in possibilistic logic

Let us illustrate the previously introduced notions on the following5L base Ŵ, which is in

clausal form (p, q, r are atoms):

{(¬p ∨ q, 0.8), (¬p ∨ r, 0.9), (¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3), (q, 0.7), (¬q, 0.2),

(r, 0.8)}.

First, it can be checked that inc-l(Ŵ) = 0.2.

Thus, the sub-base Ŵ0.3={(¬p ∨ q, 0.8),(¬p ∨ r, 0.9),(¬q ∨ r, 0.6),(p, 0.3),(q, 0.7),

(r, 0.8)} is safe from inconsistency, and its deductive closure is consistent, i.e., ∄a, ∄α >

0, ∄β > 0 such that Ŵ0.3 ⊢ (a, α) and Ŵ0.3 ⊢ (¬a, β). By contrast, Ŵ0.1 ⊢ (¬r, 0.1) and

Ŵ0.1 ⊢ (r, 0.8). Note also that while (¬p ∨ r, 0.9), (p, 0.3) ⊢ (r, 0.3), we clearly have

Ŵ ⊢ (r, 0.8) as well. This illustrates the fact that in possibilistic logic we are interested in

practice in the proofs leading to the highest certainty levels. Besides, in case Ŵ contains

(r, 0.2) rather than (r, 0.8), then (r, 0.2) would be of no use, since subsumed by (r, 0.3).

Indeed, it can be checked that Ŵ \ {(r, 0.8)} and (Ŵ \ {(r, 0.8)}) ∪ {(r, 0.2)} are associated

with the same possibility distribution.

The possibility distribution associated with Ŵ, whose computation is detailed in

Table 1, is given by πŴ(pqr) = 0.8; πŴ(¬pqr) = 0.7; πŴ(¬p¬qr) = 0.3; πŴ(p¬qr) =

πŴ(¬pq¬r) = πŴ(¬p¬q¬r) = 0.2; πŴ(pq¬r) = πŴ(p¬q¬r) = 0.1.

As can be seen cons-l(Ŵ) = maxω∈� πŴ(ω) = 0.8 and inc-l(Ŵ) = 1 − 0.8 = 0.2.

Similarly, inc-l(Ŵ \ {(¬q, 0.2)}) = 0.1 and inc-l(Ŵ \ {(¬q, 0.2), (¬p ∨ ¬r, 0.1)}) = 0.

3. Multiple agent logic

We now introduce a multiple agent logic (ma-L) which parallels possibilistic logic in many

respects, starting with the syntactic aspects, then introducing a set-valued counterpart of

the notions of possibility distribution, possibility measure, and necessity measure, before

presenting the semantics that relies on these notions, and endingwith an illustrative example.

3.1. Syntax

Language

L still denotes a propositional logic language. Let All denote the finite set of all agents

considered.A subset of agents is denoted by capital letters A, B, or by indexed letters Ai for

i = 1, . . . , m. Clearly, the set of subsets of agents equipped with the usual set operations,

i.e., (2AL L ,∩,∪, ,⊆), is a Boolean algebra, thus only partially ordered, which contrasts

with the scale S used in possibilistic logic.



A multiple agent propositional formula (ma-formula) is a pair (a, A), where a is a

classical propositional formula of L and A is a non-empty subset of All, i.e., A ⊆ All.

The intuitive meaning of formula (a, A) is that at least all the agents in A believe that

a is true. In spite of the obvious parallel with possibilistic logic (where propositions are

associated with levels expressing the strength with which the propositions are believed to

be true), (a, A) should not be just understood as another way of expressing the strength of

the support in favour of a (the larger A, the stronger the support), but rather as a piece of

information linking a proposition with a group of agents. Amultiple agent knowledge base

(ma-base) is simply a finite set Ŵ = {(ai , Ai ), i = 1, . . . , m}, viewed as the conjunction of

ma-formulas. Ŵ◦ denotes the set of classical formulas obtained from Ŵ by ignoring the sets

of agents: Ŵ◦ = {ai | (ai , Ai ) ∈ Ŵ, i = 1, . . . , m}.

Inference rules and axioms

Ma-L has two inference rules:

• if B ⊆ A then (a, A) ⊢ (a, B) (subset weakening);

• (¬a ∨ b, A), (a, A) ⊢ (b, A), ∀A ∈ 2AL L \ ∅ (subset modus ponens).

The axioms ofma-L are those of PL where each axiom schema is now supposed to hold

for the maximal set of agents, i.e., is associated with subset All. We may equivalently use

the subset weakening rule with the ma-L counterpart of the resolution rule:

(¬a ∨ b, A), (a ∨ c, A) ⊢ (b ∨ c, A), ∀A ∈ 2AL L \ ∅ (subset resolution).

Using subset weakening (since A ∩ B ⊆ A and A ∩ B ⊆ B), it is then easy to see that

the following inference rule is valid:

if A ∩ B 6= ∅, then (¬a ∨ b, A), (a ∨ c, B) ⊢ (b ∨ c, A ∩ B) (A-B-resolution).

Clearly, if A ∩ B = ∅, the information resulting from applying the rule does not belong

to the language, and would make little sense: it is of no use to put vacuous formulas of the

form (a,∅) in a ma-base as it corresponds to information possessed by (at least) no agent.

As a consequence, we also have a formula weakening rule:

if a ⊢ b then (a, A) ⊢ (b, A), ∀A ∈ 2AL L \ ∅ (ma-formula weakening).

As for 5L, any valid deduction in propositional logic is valid as well in ma-L where

the corresponding propositions are associated with a subset A ∈ 2AL L \ ∅. Thus, similarly

to5L, stating (a ∧ b, A) is equivalent to stating (a, A) and (b, A). Thanks to this property,

it is always possible to rewrite ama-base under the form of a collection of clauses labelled

by subsets of agents.

Inference and consistency

Inference inma-L is similar to that of PL.Wemay either use thema-L axioms and the subset

weakening and subset modus ponens rules, or equivalently proceed by refutation (proving

Ŵ ⊢ (a, A) amounts to proving Ŵ, (¬a, All) ⊢ (⊥, A) by repeated application of the

A-B-resolution rule, where Ŵ stands for a collection of ma-formulas (a1, A1), . . . ,

(am, Am)).

Since 2AL L is not totally ordered like S is, we cannot ‘slice’Ŵ into layers. Still, one can

define the restriction of Ŵ to a subset A ⊆ All as



ŴA = {(ai , Ai ∩ A) | Ai ∩ A 6= ∅ and (ai , Ai ) ∈ Ŵ}.

Moreover, an inconsistency subset of agents for Ŵ can be defined as

inc-s(Ŵ) =
⋃

{A ⊆ All | Ŵ ⊢ (⊥, A)} and inc-s(Ŵ) = ∅ if ∄A s.t. Ŵ ⊢ (⊥, A).

Note that in this definition, A = ∅ is not forbidden. For instance, letŴ = {(p, A), (q, B),

(¬p ∨ q, C), (¬q, D)}, then inc-s(Ŵ) = (A ∩ C ∩ D) ∪ (B ∩ D), and obviously

inc-s(ŴA∩B∩C∩D) = ∅.

Clearly, it is not the case that the consistency of Ŵ (inc-s(Ŵ) = ∅) implies that Ŵ◦

is consistent. This feature contrasts with possibilistic logic. Just consider the example

Ŵ = {(a, A), (¬a, A)}, then inc-s(Ŵ) = A∩A = ∅whileŴ◦ is inconsistent. This is because

there is nothing anomalous with agents that contradict each other. Yet the consistency of Ŵ◦

does entail inc-s(Ŵ) = ∅.

The semantics ofma-L is expressed in terms of set-valued possibility distributions, set-

valued possibility measures and set-valued necessity measures, which are now introduced.

3.2. A set-valued possibility theory

A multiple agent possibility distribution (ma-distribution) is a function π from a set of

interpretations � to 2All , the set of subsets of agents. Then π(ω) represents the subset of

agents in All who find ω possible. If π(ω) = ∅, it means that all agents agree that ω is

impossible. Ama-distribution is ma-normalised if ∃ω ∈ �,π(ω) = All. This expresses a

collective (or social) consistency since there exists at least one interpretation that all agents

find possible.

Associated with π , we can define a function fromL to 2All that will be called a multiple

agent possibility measure (ma-possibility measure) by analogy, for obvious reasons, in the

following way:

5(a) =
⋃

ω|=a

π(ω).

It is the set of agents for whom a is possibly true. Note that there is an equivalent

definition of 5(a). Namely, instead of focusing on the sets π(ω) of agents that consider

each interpretation possible, one can represent the same information by focusing on the

set of interpretations Ek considered possible by each agent k ∈ All, obviously defined as

Ek = {ω, k ∈ π(ω)}. Dually we have that π(ω) = {k ∈ All, ω ∈ Ek}. Then it is easy to

see that

5(a) =
⋃

ω|=a

π(ω) = {k, Ek ∩ [a] 6= ∅}.

By convention, 5(⊥) = ∅. Moreover, if π is ma-normalised, then 5(⊤) = All.

However,5(⊤) = All does not entail that π is ma-normalised. Just consider the example

where � = {p,¬p}, π(p) = A, π(¬p) = A. Then5(⊤) = A ∪ A = All, while π is not

ma-normalised. This situation departs from usual valued possibility theory in finite settings,

where5(⊤) = 1 is equivalent to ∃ω, π(ω) = 1.

Besides, the condition5(⊤) = All is equivalent to
⋃

ω∈� π(ω) = All. This condition

means that the set of agents who find at least one interpretation possible is precisely the

whole set of agents All. This means that each agent is individually consistent, even if

altogether the agents are not necessarily mutually so. For this reason, the condition

5(⊤) =
⋃

ω∈�

π(ω) = All



is called the i-normalisation ofπ . Clearly,5(⊤) ⊂ All if and only if∃k ∈ All : Ek = ∅, and

the set of individually inconsistent agents is I = All\5(⊤). Clearly5(a)∪5(¬a) = 5(⊤)

(the set of self-consistent agents), while 5(a) ∩ 5(¬a) is the set of agents that ignore

everything about a.

Wedefine amultiple agent necessitymeasure (ma-necessitymeasure) as usual byduality,

N : L → 2All , namely N(⊤) = All (tautologies are certain for any agent), and

N(a) = 5(¬a) =
⋂

ω|=¬a

π(ω).

Note that if 5(⊤) 6= All, we may fail to have the inclusion ∀a ∈ L, N(a) ⊆ 5(a).

Indeed, while 5(a) ⊆ 5(⊤), N(a) includes the set I of inconsistent agents. So,

N(a) ⊆ 5(a) for alla if andonly if I = ∅.Howeverwealways have thatN(a)∩5(¬a) = ∅.

In contrast, and as suggested by Smets (1988) for belief functions, we can define the set

of agents that believe a as

Bel(a) = {k : ∅ 6= Ek ⊆ [a]},

which gathers the subset of self-consistent agents who are sure that a is true. We obviously

have the desirable inclusion ∀a ∈ L, Bel(a) ⊆ 5(a), namely the consistent agents who are

sure that a is true are among the ones who think that a is possibly true. It is easy to see that

Bel(a) = 5(⊤) \ 5(¬a) = 5(⊤) ∩ N(a),

and Bel(a) ∩ Bel(¬a) = ∅. Conversely, N(a) = Bel(a) ∪ I = {k : Ek ⊆ [a]}. In other

words,N(a) corresponds to the idea of logical implicability, and accounts for the fact that in

classical logic everything follows from contradictions, while Bel(a) corresponds to a more

intuitive idea of non-trivial belief.

The following properties are easy to check:

• If a |= b then5(a) ⊆ 5(b), N(a) ⊆ N(b), and Bel(a) ⊆ Bel(b);

• 5(a ∨ b) = 5(a) ∪ 5(b);

• N(a ∧ b) = N(a) ∩ N(b);

• Bel(a ∧ b) = Bel(a) ∩ Bel(b).

Thus, the set of agents who think that a ∧ b is certainly true is the intersection of the

set of agents who think that a is certainly true, and of the set of agents who think that b is

certainly true. Moreover, we have N(a ∨ b) ⊇ N(a) ∪ N(b) (and likewise for Bel): the set

of agents who are certain about a ∨ b is larger (in the broad sense) than the union of the

agents who are certain about a and of the agents who are certain about b.

If 5(⊤) = All (i-normalisation), then Bel(a) = 5(¬a) = N(a). Hence, under i-

normalisation, Bel(a) ∪ 5(¬a) = All, i.e., any agent finds either a certainly true or ¬a

possibly true, but not both (since in any case, N(a) ∩ 5(¬a) = ∅). Otherwise there would

exist one agent who is inconsistent. But it does not hold thatN(a) 6= ∅ implies that5(a) =

All, in contrast with the usual possibility theory.

As a summary, Figure 1 pictures the relations between the set5(a) of agents who think

that a is possible, the set5(¬a) of agents who think that ¬a is possible, the set I of agents

who are individually inconsistent, the set Bel(a) of consistent agents who are certain of a,

and the set Bel(¬a) of consistent agents who are certain of ¬a.



Figure 1. The different sets of agents according to their attitude w.r.t. a.

3.3. Possibilistic semantics of the multiple agent logic

We have now introduced the notions needed for presenting the semantics of ma-L. Let us

first consider a ma-L formula (a, A), which represents the piece of information ‘at least

all agents in A believe a’. In other words, the agents in A find any interpretation of ¬a

impossible. This means that the maximal set of agents who think that ¬a is possible is A

(these agents, like those in A, also find the interpretations of a possible, according to this

knowledge). Thus, the fact that all agents in A believe a does not prevent all agents from

finding the models of a possible. This leads to the following semantic representation of

formula (a, A) by the ma-distribution π {(a,A)}:

∀ω ∈ �,π {(a,A)}(ω) =

{

All if ω |= a

A if ω |= ¬a,

where� is the set of interpretations associated withL. It can be checked that the associated

ma-necessity measure is such that N{(a,A)}(a) = A. In fact, any possibility distribution π

such that π ⊆ π {(a,A)}, i.e., ∀ω ∈ �,π(ω) ⊆ π {(a,A)}(ω), has its associated ma-necessity

measure N satisfying N(a) ⊇ N{(a,A)}(a) = A.

More generally, the ma-distribution πŴ semantically associated with a set of ma-

formulas Ŵ = {(ai , Ai ), i = 1, . . . , m} is given by

πŴ(ω) =

{

All if ∀(ai , Ai ) ∈ Ŵ,ω |= ai
⋂

{Ai : (ai , Ai ) ∈ Ŵ,ω |= ¬ai } otherwise.

Thus, the value πŴ(ω) of thema-distribution for ω is obtained as the intersection of the

different subsets Ai of agents that still find ω possible according to the different formulas

(ai , Ai ) violated by this interpretation: the larger the set of agents who find the interpretation

impossible, the smaller the maximal set of those that may find it possible. It can be checked

that

NŴ(ai ) ⊇ Ai for i = 1, . . . ,m,



where NŴ is the ma-necessity measure defined from πŴ . Note that we may only have an

inequality here since Ŵ may, for instance, include two formulas associated with equivalent

propositions, but with distinct subsets of agents.

Thus, πŴ is the largestma-distribution satisfying the set of formulas Ŵ in the sense that

it allocates to each interpretation the maximal subset of agents that may find it possible

according to the constraints expressed by the formulas (ai , Ai ), namely the constraints

NŴ(ai ) ⊇ Ai . Any ma-distribution π such that π ⊆ πŴ (i.e., ∀ω ∈ �,π(ω) ⊆ πŴ(ω))

semantically agrees withŴ, which can be writtenπ � Ŵ. The semantic entailment is defined

by

Ŵ � (a, A) if and only if ∀ω,πŴ(ω) ⊆ π {(a,A)}(ω).

Thus, if π � Ŵ then π � {(a, A)}.

Proposition 1. ma-L is sound and complete w.r.t. this semantics, namely

Ŵ ⊢ (a, A) if and only if Ŵ � (a, A).

Proof. (sketch) Assume Ŵ is put under clausal form. This can be done without loss of

information since the equivalence of {(a ∧ b, A)} with {(a, A), (b, A)} is semantically

expressed by N(a ∧ b) = N(a) ∩ N(b) ⊇ A ⇔ N(a) ⊇ A and N(b) ⊇ A. Then the

ma-L syntactic inference Ŵ ⊢ (a, A) amounts to a finite number of applications of the

A-B-resolution rule to Ŵ ∪ {(¬a, All)}, put in clausal form, leading to (⊥, A).

For proving the soundness of the rule we have to check that, if A1 ∩ A2 6= ∅,

∀ω, π(ω){(c1,A1),(c2,A2)} ⊆ π(ω){(c3,A1∩A2)}

where (c1, A1) and (c2, A2) are ma-L clauses, and c3 is any classical resolvent

of c1 and c2, then (c3, A1 ∩ A2) is a resolvent of (c1, A1) and (c2, A2) by the

A-B-resolution rule (c1, A1), (c2, A2) ⊢ (c3, A1 ∩ A2). We have

π{(c1,A1),(c2,A2)}(ω) =

{

All i f ω |= c1 ∧ c2
A1 ∩ A2 i f ω |= ¬(c1 ∧ c2)

and

π{(c3,A1∩A2)}(ω) =

{

All i f ω |= c3
A1 ∩ A2 i f ω |= ¬c3

.

It holds since the situations π{(c1,A1),(c2,A2)}(ω) = All and π{(c3,A1∩A2)}(ω) = A1 ∪ A2
cannot occur, as by hypothesis ω |= c1 ∧ c2 ⇒ ω |= c3. It is easy to see that in the other

situations the inclusion holds. So the A-B-resolution rule is sound.

For completeness, suppose Ŵ 6⊢ (a, A). Then ∄1 ⊆ Ŵ,1 ⊢ (a, A) using A-B

refutation, with all formulas in1. Hence for all such1 ⊆ Ŵ, either1◦ 6⊢ a, or1◦ ⊢ a but

A 6⊆ ∩(ai ,Ai )∈1 Ai .

In the first case 1◦ 6|= a (completeness of PL), hence 1 6|= (a, A) as well.

In the second case ∃(i, k) : k ∈ A, k 6∈ Ai . Let 1
◦
{k} = {a j : k ∈ A j , (a j , A j ) ∈ 1},

clearly 1◦
{k} 6⊢ a since it does not contain ai and ai is needed to derive a. Hence 1◦

{k} 6|= a

(completeness of PL). But then 1{k} 6|= (a, {k}) either, and 1 6|= (a, A). Since this is the

case for all subsets of Ŵ, Ŵ 6|= (a, A). �

Remark. Another proof could proceed by equivalences:

Ŵ ⊢ (a, A) ⇐⇒ Ŵ ⊢ (a, {k}),∀k ∈ A ⇐⇒ Ŵ{k} ⊢ (a, {k}),∀k ∈ A ⇐⇒

Ŵ◦
{k} ⊢ a,∀k ∈ A ⇐⇒ Ŵ◦

{k} |= a,∀k ∈ A (completeness of PL). The latter stands for

Ek = [Ŵ◦
{k}] ⊆ [a]. Then again Ŵ◦

{k} |= a ⇐⇒ Ŵ{k} |= (a, {k}) (this is {(ω, k) : ω ∈



Ek} ⊆ {(ω, k) : ω ∈ [a]}); then Ŵ{k} |= (a, {k}) ⇐⇒ Ŵ |= (a, {k}) (adding irrelevant

agents to Ŵ{k}). And since all of these derivations hold for all k ∈ A, this is equivalent to

Ŵ |= (a, A).

As defined in the previous subsection, there exist two forms of normalisation for a

ma-distribution π , thema-normalisation and the i-normalisation, the first one entailing the

second one:

• ∃ω ∈ � such that π(ω) = All (ma-normalisation);

•
⋃

{π(ω), ω ∈ �} = All (i-normalisation).

Proposition 2. Given a ma-base Ŵ = {(ai , Ai ), i = 1, . . . , m}, the ma-normalisation of

πŴ is equivalent to the consistency of Ŵ◦.

Proof. πŴ is ma-normalised if and only if ∃ω ∈ � such that πŴ(ω) = All, if and only if

ω |= ai ,∀i = 1, . . . , m, that is, Ŵ◦ is consistent. �

Proposition 3. Given a ma-base Ŵ = {(ai , Ai ), i = 1, . . . , m}, the i-normalisation of

πŴ is equivalent to the consistency of (Ŵk)
◦ = {ai |(ai , Ai ) ∈ Ŵ, k ∈ Ai }, for all agents

k ∈
⋃

i=1,...,m Ai .

Proof. Indeed, assume ∃k such that (Ŵk)
◦ is inconsistent; then this agent k has an incon-

sistent set of beliefs, which contradicts i-normalisation. �

More generally, cons-s(Ŵ) =
⋃

ω∈� πŴ(ω) = 5Ŵ(⊤) is the subset of agents who

are individually consistent in Ŵ, while its complement inc-s(Ŵ) =
⋂

ω∈� πŴ(ω) = I is

the subset of agents who are individually inconsistent. Lastly, inc-s(Ŵ) as just defined is

precisely equal to
⋃

{A ⊆ All | Ŵ ⊢ (⊥, A)}, since they respectively correspond to the

semantic and syntactic ways of computing the subset of individually inconsistent agents.

3.4. A multiple agent logic example

Let us consider the following ma-base:

Ŵ={(¬p∨q,A), (¬p∨q,C), (¬p∨r,A), (¬p∨¬r,B), (¬q∨r,All), (p,All), (q,A), (¬q,D), (r,C)}.

Note that the classical PL base Ŵ◦ coincides with Ŵ∗ in the example in Section 2.4.

The ma-distribution associated with Ŵ is given by

πŴ(pqr) = B ∩ D;

πŴ(pq¬r) = πŴ(¬pqr) = πŴ(¬pq¬r) = πŴ(¬p¬qr) = πŴ(¬p¬q¬r) = ∅;

πŴ(p¬qr) = A ∩ B ∩ C ;

πŴ(p¬q¬r) = A ∩ C .

Its detailed computation can be found in Table 2.

The set of agents who are individually consistent is given by

cons-s(Ŵ) = 5Ŵ(⊤) = (A ∩ C) ∪ (A ∩ B ∩ C) ∪ (B ∩ D) = (A ∩ C) ∪ (B ∩ D)

and then the set of agents who are individually inconsistent is

I = inc-s(Ŵ) = (A ∪ C) ∩ (B ∪ D).

If we now ask who believes r , it can easily be seen that the answer isN(r) = A∪C ∪ D,

since Ŵ ⊢ (r, A), Ŵ ⊢ (r, C), Ŵ ⊢ (r, D), and thus Ŵ ⊢ (r, A ∪ C ∪ D). If we want to know

who believes r and is consistent, then we have to compute Bel(r) in the form

(A∪C∪D)\inc-s(Ŵ) = (A∪C∪D)\((A∪C)∩(B∪D)) = (B∩C∩D)∪(A∩B∩C∩D).



Table 2. Detailed computation of the ma-distribution in the example.

ω π (¬p∨q,A) π (¬p∨q,C) π (¬p∨r,A) π (¬p∨¬r,B) π (¬q∨r,All) π (p,All) π (q,A) π (¬q,D) π (r,C) πŴ

pqr All All All B All All All D All B ∩ D

pq¬r All All A All ∅ All All D C ∅

p¬qr A C All B All All A All All A ∩ B ∩ C

p¬q¬r A C A All All All A All C A ∩ C

¬pqr All All All All All ∅ All D All ∅

¬pq¬r All All All All ∅ ∅ All D C ∅

¬p¬qr All All All All All ∅ A All All ∅

¬p¬q¬r All All All All All ∅ A All C ∅



Besides, note that in Ŵ, we have four distinct symbols pertaining to subsets of agents,

namely A, B, C, D. This induces a partition of the set of agents into 24 = 16 subsets of

indistinguishable agents sharing the same opinion (which correspond to the interpretations

of the language induced by these symbols). For each subset S in this partition, one can

compute the propositional part (ŴS)◦ of the restriction ŴS of Ŵ to S. The result is given

below. Then, the propositional bases that are consistent are marked with ∗. The facts that

Ŵ ⊢ (r, A∪C ∪ D) and inc-s(Ŵ) = (A∪C)∩(B ∪ D) can be checked using these PL bases.

Ŵ◦
A∩B∩C∩D = {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q,¬p ∨ ¬r, r,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q,¬p ∨ ¬r, r}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q,¬p ∨ ¬r,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q,¬p ∨ ¬r}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q, r,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q, r} ∗

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬p ∨ r,¬q ∨ r, p, q} ∗

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬q ∨ r, p,¬p ∨ ¬r, r,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬q ∨ r, p,¬p ∨ ¬r, r}

Ŵ◦

A∩B∩C∩D
= {¬q ∨ r, p,¬p ∨ ¬r,¬q} ∗

Ŵ◦

A∩B∩C∩D
= {¬q ∨ r, p,¬p ∨ ¬r} ∗

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬q ∨ r, p, r,¬q}

Ŵ◦

A∩B∩C∩D
= {¬p ∨ q,¬q ∨ r, p, r} ∗

Ŵ◦

A∩B∩C∩D
= {¬q ∨ r, p,¬q} ∗

Ŵ◦

A∩B∩C∩D
= {¬q ∨ r, p} ∗

Lastly, using here the obvious identity Ŵ◦
S∪T = Ŵ◦

S ∩ Ŵ◦
T , we could compute the sets of

beliefs of any given subset of agents. However, this would be an extremely costly process.

This points out that beyond the proof that Ŵ ⊢ (a, A) by establishing that Ŵ∪{(¬a, All)} ⊢

(⊥, A) using the A-B-resolution rule, we need a dual inference mechanism where A is

‘fixed’, rather than a, taking advantage of the ‘symmetrical’ roles played by a and A.

4. Outline of a multiple agent possibilistic logic

We now introduce a multiple agent possibilistic logic (ma-5-L) which extends both possi-

bilistic logic and the multiple agent of the previous section.

One may think of two different ways for building a joint generalisation of the two

settings. A first idea would be to embed 5-L inside ma-L. This would mean having in the

syntax formulas of the form ((a, α), A), understood as (at least) all the agents in A have

the uncertain piece of belief (a, α). Ma-L would then correspond to formulas of the form

((a, 1), A). The other way to have a graded generalisation ofma-L, outlined in this section,

is to consider that the language is now made of formulas of the form (a, F) where F is a

fuzzy set of agents. The degree of membershipµF (k) is the minimal degree of certainty of a

for this agent. Note that in general, F is not normalised, i.e., maxk µF (k) 6= 1. Clearly, All

is partitioned by F into subgroups of agents Fi having the same certainty level αi associated

with proposition a (including the subgroup of agents having zero certainty); then, F can

be viewed as a weighted union
⋃

i αi/Fi , where all the αi are distinct and strictly positive,

and the Fi s are classical, mutually disjoint subsets.



We start with the syntactic aspects of ma-5-L, then introduce a fuzzy set-valued

counterpart of the notions of possibility distribution, possibility measure, and necessity

measure, before presenting the semantics that rely on these notions, and ending with an

illustrative example.

4.1. Syntax

Ama-5-L formula is a pair (a, F) where a is a proposition in L and F is a fuzzy subset

of All. Namely, F belongs to the complete distributive lattice L = [0, 1]All , where L is

equipped with the fuzzy set max-based union ∪, min-based intersection ∩, and inclusion

F ⊆ G ⇐⇒ µF ≤ µG . The following equivalence is expected:

(a, F), (a, F ′) ⊢⊣ (a, F ∪ F ′).

This generalises the syntactic equivalence of ma-L (a, A), (a, B) ⊢⊣ (a, A ∪ B). We

also expect the resolution rule, if F and G do not have disjoint supports,

(¬p ∨ q, F); (p ∨ r, G) ⊢ (q ∨ r, F ∩ G),

and the weakening rule, if F ⊆ G then (a, F) ⊢ (a, G).

In the following we use particular fuzzy sets F = (α/A) such that (α/A)(k) = α if

k ∈ A, and (α/A)(k) = 0 if k ∈ A. Thus, we restrict ourselves to formulas of the form

(a, α/A) that encode the piece of information ‘at least all agents in A believe a at least at

level α’, and formulas with more complex weights (a,
⋃

i αi/Fi ).

In the syntactic equivalence between

(a, α/A), (a, β/B) ⊢⊣ (a, (α/A) ∪ (β/B)),

the weight (α/A) ∪ (β/B) is provably the same as

α/(A ∩ B) ∪max(α, β)/(A ∩ B) ∪ β/(A ∩ B).

The result is equivalent to the set of elementary formulas {(a, α/A ∩ B),

(a,max(α, β)/A ∩ B), (a, β/A ∩ B)}, with the proviso that we omit formulas weighted by

empty sets.

A multiple agent possibilistic logic base (ma-5-L base) is then defined as a finite set

(i.e., conjunctions) ofma-5 formulas. Let Ŵ∗◦ denote the set of classical formulas obtained

from Ŵ by ignoring the fuzzy sets of agents: if Ŵ = {(ai , αi/Ai ), i = 1, . . . , m} then

Ŵ∗◦ = {ai , i = 1, . . . , m}.

The resolution rule becomes in ma-5-L

(¬p ∨ q, α/A); (p ∨ r, β/B) ⊢ (q ∨ r,min(α, β)/(A ∩ B)).

Whenα = 1 = β,we retrieve thema-L resolution rule, identifying (a, A)with (a, 1/A).

When A = All = B, we retrieve the possibilistic resolution rule.

Inference in ma-5-L is very similar to the one in ma-L. We proceed by refutation, i.e.,

proving Ŵ ⊢ (a, F) amounts to proving Ŵ, (¬a, All) ⊢ (⊥, F) by repeated application of

the above resolution rule, also using the equivalence (a, G), (a, G ′) ⊢⊣ (a, G ∪ G ′)where

G and G ′ are fuzzy sets. Then the fuzzy inconsistency subset for Ŵ is now obtained as

inc-sl(Ŵ) =
⋃

{α/A | Ŵ ⊢ (⊥, α/A)}. It yields the fuzzy set of individually inconsistent

agents.



4.2. Multiple agent possibility theory

A graded multiple agent possibility distribution (ma-5-distribution) is a function π from a

set of interpretations� to [0, 1]All , the set of fuzzy subsets of agents. Then π(ω) represents

the fuzzy subset of agents in All who find ω possible to some extent. Associated with π ,

we can define a function from L to [0, 1]All , which will be called the graded multiple agent

possibility measure (ma-5-possibility measure) for obvious reasons, in the following way

(now using the max-based fuzzy set union):

5(a) =
⋃

ω∈�

{π(ω), ω |= a}.

5(a) is the fuzzy set of agents who think that it is possible to some extent that a is true.

By duality,N(a) = 5(¬a) =
⋂

ω∈�{π(ω), ω |= ¬p} where fuzzy set complementation is

defined as usual by F(k) = 1− F(k), and we use the min-based fuzzy set intersection.N(a)

is the fuzzy set of agents who are certain to some extent that a is true, or are inconsistent to

some degree.

The ma-normalisation continues to be defined as ∃ω ∈ �,π(ω) = All (All is clearly

the same as 1/All), and is still equivalent to the consistency of Ŵ∗◦. The i-normalisation is

still defined by5(⊤) =
⋃

ω∈� π(ω) = All; it still means that all the agents are individually

consistent. More generally, the degree of membership of an agent k to the fuzzy set5(⊤)

is nothing but the level to which the possibilistic logic base made of the uncertain pieces of

belief held by the agent is consistent (in the5-L sense).

4.3. Semantics

Let us consider a ma-5-L formula (a, α/A), which expresses that a is certain at least at

level α for at least all agents in A. So the set of agents in A finds any interpretation of a

completely possible. Furthermore, the other agents in A are free to find the interpretation

of a completely possible. Then, the maximal set of agents who find any interpretation of

a completely possible is A ∪ A = All. Besides, the maximal set of agents who find any

interpretation of ¬a possible are the agents in A at least at level 1− α, and the agents in A

at least at level 1. This leads to the following semantic representation of (a, α/A):

π {(a,α/A)}(ω) =

{

1/All if ω |= a

{(1− α)/A ∪ 1/A} if ω |= ¬a.

In agreementwith the syntactic equivalence (a, α/A), (a, β/B) ⊢⊣ (a, (α/A)∪(β/B)),

if ω |= ¬a, π {(a,α/A),(a,β/B)}(ω) = π {(a,α/A)}(ω) ∩ π {(a,β/B)}(ω) = ((1− α)/A ∪ 1/A) ∩

((1− β)/B ∪ 1/B) = (1− α)/(A ∩ B) ∪ (1−max(α, β))/(A ∩ B) ∪ (1− β)/(A ∩ B) ∪

1/(A ∩ B), which defines π {(a,(α/A)∪(β/B))}(ω).

More generally, thema-5-distribution associatedwithŴ = {(ai , αi/Ai ), i = 1, . . . , m}

is the mapping π from � to L:

πŴ(ω) =

{

1/All if ∀(ai ,αi/Ai )∈Ŵ,ω |=ai
⋂

{(1− αi )/Ai ∪ 1/Ai | (ai , αi/Ai ) ∈ Ŵ,ω |= ¬ai } otherwise.

Thus, the semantics of a base Ŵ = {(ai , αi/Ai ) | i = 1, . . . , m} is now in terms of

a fuzzy set-valued distribution, for which it can be checked that N(ai ) ⊇ αi/Ai , where

N(a) = 5(¬a) and5(a) =
⋃

ω: ω�a πŴ(ω).

Soundness and completeness of ma-5-L can be conjectured on the basis of the sound-

ness and completeness of5-L and of ma-L, and is a matter left for further research.



4.4. A multiple agent possibilistic logic example

Let us consider the following ma-5-L base, which combines the certainty levels and the

agent subsets of the two previous examples on the same propositional formulas:

Ŵ = {(¬p ∨ q, 0.6/A), (¬p ∨ q, 0.8/C), (¬p ∨ r, 0.9/A), (¬p ∨ ¬r, 0.1/B), (¬q ∨

r, 0.6/All), (p, 0.3/All), (q, 0.7/A), (r, 0.8/C), (¬q, 0.2/D)}.

The ma-5-distribution associated with Ŵ is given by

πŴ(pqr) = (0.9/B ∪ 1/B) ∩ (0.8/D ∪ 1/D)

πŴ(pq¬r) = (0.1/A ∪ 0.4/A) ∩ (0.2/C ∪ 0.4/C) ∩ (0.8/D ∪ 0.4/D)

πŴ(p¬qr) = (0.3/A ∪ 1/A) ∩ (0.9/B ∪ 1/B) ∩ (0.2/C ∪ 1/C)

πŴ(p¬q¬r) = (0.1/A ∪ 1/A) ∩ (0.2/C ∪ 1/C)

πŴ(¬pqr) = (0.7/AL L)

πŴ(¬pq¬r) = (0.2/C ∪ 0.4/C) ∩ (0.4/D ∪ 0.4/D)

πŴ(¬p¬qr) = (0.3/A ∪ 0.7/A)

πŴ(¬p¬q¬r) = (0.3/A ∪ 0.7/A) ∩ (0.2/C ∪ 0.7/C)

Its detailed computation can be found in Tables 3 and 4.

As in the previous example, one can compute the possibilistic logic part (ŴS)◦ for each

subset of the partition of the set of agents, and compute its inconsistency level, which is

also indicated below. When this inconsistency level is equal to 0, it is marked with ∗, and

we retrieve exactly the same seven cases as in the second example, as expected (since the

example here coincides with the second example when we ignore the certainty levels).

These inconsistency levels thus correspond to the levels of inconsistency of the different

subgroups of agents.

The global inconsistency level ofŴwhenwe ignore the subset of agents, i.e., inc-l((Ŵ)◦)

is equal to 0.2 as in the first example. Thus, the 0.3-level cut of Ŵ, namely the set of ma-

formulas {(ai , Ai ) | (ai , αi/Ai ) ∈ Ŵ and αi ≥ 0.3} is collectively consistent. Besides,

keeping in mind that we have cons-s(Ŵ) = (A ∩ C) ∪ (B ∩ D) in the second example, it

is clear that here, for instance, inc-l(ŴB∩D) = 0, i.e., the agents in B ∩ D hold consistent

possibilistic belief bases individually.

ŴA∩B∩C∩D= {(¬p ∨ q, 0.6), (¬p ∨ q, 0.8), (¬p ∨ r, 0.9), (¬p ∨ ¬r, 0.1),

(¬q ∨ r, 0.6), (p, 0.3), (q, 0.7), (r, 0.8), (¬q, 0.2)} inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ q, 0.8), (¬p ∨ r, 0.9), (¬p ∨ ¬r, 0.1),

(¬q ∨ r, 0.6), (p, 0.3), (q, 0.7), (r, 0.8)} inc(ŴA∩B∩C∩D) = 0.1

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ r, 0.9), (¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3),

(q, 0.7), (¬q, 0.2)} inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ r, 0.9), (¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3),

(q, 0.7)} inc(ŴA∩B∩C∩D) = 0.1

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ q, 0.8), (¬p ∨ r, 0.9), (¬q ∨ r, 0.6), (p, 0.3),

(q, 0.7), (r, 0.8), (¬q, 0.2)} inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ q, 0.8), (¬p ∨ r, 0.9), (¬q ∨ r, 0.6), (p, 0.3),

(q, 0.7), (r, 0.8)} ∗

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ r, 0.9), (¬q ∨ r, 0.6), (p, 0.3), (q, 0.7),

(¬q, 0.2)} inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ q, 0.6), (¬p ∨ r, 0.9), (¬q ∨ r, 0.6), (p, 0.3), (q, 0.7)} ∗



Table 3. Detailed computation of the ma-5-distribution in the example, part 1.

ω π (¬p∨q,.6/A) π (¬p∨q,.8/C) π (¬p∨r,.9/A) π (¬p∨¬r,.1/B) π (¬q∨r,.6/All) π (q,.7/A)

pqr 1/All 1/All 1/All (0.9/B ∪ 1/B) 1/All 1/All

pq¬r 1/All 1/All (0.1/A ∪ 1/A) 1/All 0.4/All 1/All

p¬qr (0.4/A ∪ 1/A) (0.2/C ∪ 1/C) 1/All (0.9/B ∪ 1/B) 1/All (0.3/A ∪ 1/A)

p¬q¬r (0.4/A ∪ 1/A) (0.2/C ∪ 1/C) (0.1/A ∪ 1/A) 1/All 1/All (0.3/A ∪ 1/A)

¬pqr 1/All 1/All 1/All 1/All 1/All 1/All

¬pq¬r 1/All 1/All 1/All 1/All 0.4/All 1/All

¬p¬qr 1/All 1/All 1/All 1/All 1/All (0.3/A ∪ 1/A)

¬p¬q¬r 1/All 1/All 1/All 1/All 1/All (0.3/A ∪ 1/A)



Table 4. Detailed computation of the ma-5-distribution in the example, part 2.

ω π (p,.3/All) π (¬q,.2/D) π (r,.8/C) πŴ

pqr 1/All (0.8/D ∪ 1/D) 1/All (0.9/B ∪ 1/B) ∩ (0.8/D ∪ 1/D)

pq¬r 1/All (0.8/D ∪ 1/D) (0.2/C ∪ 1/C) (.1/A ∪ 1/A) ∩ (.4/All) ∩ (.2/C ∪ 1/C) ∩ (.8/D ∪ 1/D)

p¬qr 1/All 1/All 1/All (0.3/A ∪ 1/A) ∩ (0.9/B ∪ 1/B) ∩ (0.2/C ∪ 1/C)

p¬q¬r 1/All 1/All (0.2/C ∪ 1/C) (0.1/A ∪ 1/A) ∩ (0.2/C ∪ 1/C)

¬pqr 0.7/All (0.8/D ∪ 1/D) 1/All (0.7/All) ∩ (0.8/D ∪ 1/D)

¬pq¬r 0.7/All (0.8/D ∪ 1/D) (0.2/C ∪ 1/C) (0.4/All) ∩ (0.2/C ∪ 1/C) ∩ (0.8/D ∪ 1/D)

¬p¬qr 0.7/All 1/All 1/All (0.7/All) ∩ (0.3/A ∪ 1/A)

¬p¬q¬r 0.7/All 1/All (0.2/C ∪ 1/C) (0.7/All) ∩ (0.3/A ∪ 1/A) ∩ (0.2/C ∪ 1/C)



ŴA∩B∩C∩D = {(¬p ∨ q, 0.8), (¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), ( p, 0.3), (r, 0.8),
(¬q, 0.2)} inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ q, 0.8), (¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3), (r, 0.8)}

inc(ŴA∩B∩C∩D) = 0.1

ŴA∩B∩C∩D = {(¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3), (¬q, 0.2)} ∗

ŴA∩B∩C∩D = {(¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3)} ∗

ŴA∩B∩C∩D = {(¬p ∨ q, 0.8), (¬q ∨ r, 0.6), (p, 0.3), (r, 0.8), (¬q, 0.2)}

inc(ŴA∩B∩C∩D) = 0.2

ŴA∩B∩C∩D = {(¬p ∨ ¬r, 0.1), (¬q ∨ r, 0.6), (p, 0.3), (r, 0.8)} ∗

ŴA∩B∩C∩D = {(¬q ∨ r, 0.6), (p, 0.3), (¬q, 0.2)} ∗

ŴA∩B∩C∩D = {(¬q ∨ r, 0.6), (p, 0.3)} ∗

Since this base without its certainty levels coincides with the ma-base of the second

example, we keep the same inc-s(Ŵ) = (A ∪ C) ∩ (B ∪ D), but it is now partitioned into

the subset of agents that are inconsistent at level 0.2, namely (A∩ D)∪ (A∩C ∩ D) and the

subset of agents that are inconsistent at level 0.1 only, namely (A∩B∩D)∪(A∩B∩C ∩D).

5. Concluding remarks

The paper has presented a multiple agent logic and outlined its possibilistic extension that

enables a rich handling of inconsistency both in terms of subsets of agents and in terms of

levels of certainty. In particular, two formulas such as (¬a, A) and (a, B) are contradictory

only if A ∩ B 6= ∅, i.e., if there exists an agent that believes both a and ¬a. There are

many issues that have still to be studied. Beyond obvious computational issues, the kind of

symmetrical roles played by a and A in (a, A) has to be investigated, in particular for jointly

exploiting some possible pieces of knowledge about groups of agents such as A ⊆ B, or

even A ∩ B 6= ∅.

One may think of several future lines of research. In particular, the multiple agent

extension of the generalised possibilistic logic (Dubois et al., 2012) would allow us to

consider the disjunction and the negation of formulas like (a, α/A), and then to syntactically

encode statements like ‘at most all agents in some subset believe a to at least degree α’, or

‘there exists at least one agent in subset A who believes a’ to at least degree α.

Note

1. In this paper, we do not differentiate between functions f from the languageL to 2All and functions

2� → 2All , interpreting f (a) as f ([a]), that is, f (a) = f (b) whenever a and b are logically
equivalent.
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