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Abstract

We analyze the periodicity of optimal long products of matrices. A set of matrices is said to have the
finiteness property if the maximal rate of growth of long products of matrices taken from the set can be
obtained by a periodic product. It was conjectured a decade ago that all finite sets of real matrices have the
finiteness property. This “finiteness conjecture” is now known to be false but no explicit counterexample
is available and in particular it is unclear if a counterexample is possible whose matrices have rational or
binary entries. In this paper, we prove that all finite sets of nonnegative rational matrices have the finiteness
property if and only if pairs of binary matrices do and we state a similar result when negative entries are
allowed. We also show that all pairs of 2 × 2 binary matrices have the finiteness property. These results have
direct implications for the stability problem for sets of matrices. Stability is algorithmically decidable for
sets of matrices that have the finiteness property and so it follows from our results that if all pairs of binary
matrices have the finiteness property then stability is decidable for nonnegative rational matrices. This would
be in sharp contrast with the fact that the related problem of boundedness is known to be undecidable for
sets of nonnegative rational matrices.
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1. Introduction

The joint spectral radius of a set of matrices characterizes the maximum rate of growth that
can be obtained by forming long products of matrices. Let � ⊂ Rn×n be a finite set of matrices.
The joint spectral radius of � is defined by:

ρ(�) = lim sup
t→∞

max{‖A‖1/t : A ∈ �t }, (1.1)

where �t is the set of products of length t of matrices from �, i.e., �t = {A1 . . . At : Ai ∈ �}. It
is easy to verify that the quantity ρ(�) does not depend on the chosen matrix norm. It has been
proved in [1] that the following equality holds for finite sets �:

ρ(�) = lim sup
t→∞

max{ρ(A)1/t : A ∈ �t }
(ρ is used in the right hand side to denote the usual spectral radius). It is also known that the
following inequalities hold for all t :

max {ρ(A)1/t : A ∈ �t } � ρ(�) � max {‖A‖1/t : A ∈ �t }. (1.2)

These inequalities provide a straightforward way to approximate the joint spectral radius to any
desired accuracy: evaluate the upper and lower bounds given in (1.2) for products of increasing
length t , until ρ is squeezed in a sufficiently small interval and the desired accuracy is reached.
Unfortunately, this method, and in fact any other general method for computing or approximating
the joint spectral radius, is bound to be inefficient. Indeed, it is known that, unless P = NP , there
is no algorithm that computes or even approximates with a priori guaranteed accuracy the joint
spectral radius of a set of matrices in polynomial time [5]. And this is true even if the matrices
have binary entries.

For some sets �, the right hand side inequality in (1.2) is strict for all t . This is the case for
example for the set consisting of just one matrix(

1 1
0 1

)
.

Thus, there is no hope to reach the exact value of the joint spectral radius by simply evaluating
the right hand side in (1.2). On the other hand, since ρ(Ak) = ρ(A)k the left hand side always
provides the exact value when the set � consists of only one matrix and one can thus hope to reach
the exact value of the joint spectral radius by evaluating the maximal spectral radii of products of
increasing length. If for some t and A ∈ �t we have ρ(A)1/t = ρ(�), then the value of the joint
spectral radius is reached. Sets of matrices for which such a product is possible are said to have
the finiteness property.

Finiteness property. A set � of matrices is said to have the finiteness property if there exists
some product A = A1 . . . At with Ai ∈ � for which ρ(�) = ρ1/t (A).

One of the interests of the finiteness property arises from its connection with the stability
question for a set of matrices which is a problem of practical interest in a number of contexts.
A set of matrices � is stable if all long products of matrices taken from � converge to zero.
There are no known algorithms for deciding stability of a set of matrices and it is unknown if this
problem is algorithmically decidable. One can verify that stability of the set � is equivalent to
the condition ρ(�) < 1 and we may therefore hope to decide stability as follows: for increasing
values of t evaluate ρ

t
= max{ρ(A)1/t : A ∈ �t } and ρ̄t = max{‖A‖1/t : A ∈ �t }. From (1.2)
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we know that ρ
t
� ρ � ρ̄t and so, as soon as a t is reached for which ρ̄t < 1 we stop and declare

the set stable, and if a t is reached for which ρ
t
� 1 we stop and declare the set unstable. This

procedure will always stop unless ρ = 1 and ρ
t
< 1 for all t . But this last situation never occurs

for sets of matrices that satisfy the finiteness property and so we conclude:

Proposition 1. Stability is algorithmically decidable for sets of matrices that have the finiteness
property.

It was first conjectured in 1995 by Lagarias and Wang that all sets of real matrices have the
finiteness property [13]. This conjecture, known as the finiteness conjecture, has attracted intense
attention and several counterexamples have been provided in recent years [4,7,12]. So far all
proofs provided are nonconstructive and all sets of matrices whose joint spectral radius is known
exactly satisfy the finiteness property. The finiteness property is also known to hold in a number
of particular cases including the case were the matrices are symmetric, or if the Lie algebra
associated with the set of matrices is solvable [19, Corollary 6.19]: in this case the joint spectral
radius is simply equal to the maximum of the spectral radii of the matrices (see [9,14]).

The definition of the finiteness property leads to a number of natural questions: When does
the finiteness property holds? Is it decidable to determine if a given set of matrices satisfies the
finiteness property? Do matrices with rational entries satisfy the finiteness property? Do matrices
with binary entries satisfy the finiteness property? In the first theorem in this paper we prove a
connection between rational and binary matrices:

Theorem 1. The finiteness property holds for all sets of nonnegative rational matrices if and only
if it holds for all pairs of binary matrices.

The case of binary matrices appears to be important in a number applications [8,15–18].
These applications have led to a number of joint spectral radius computations for binary matrices
[10,15,16]. The results obtained so far seem to indicate that for binary matrices there is always an
optimal infinite periodic product. When the matrices have binary entries they can be interpreted as
adjacency matrices of graphs on an identical set of nodes and in this context it is natural to expect
optimality to be obtained for periodic products. Motivated by these observations, the following
conjecture appears in [3]:

Conjecture 1. Pairs of binary matrices have the finiteness property.

Of course if this conjecture is correct then nonnegative rational matrices also satisfy the finite-
ness property and this in turn implies that stability, that is, the question ρ < 1, is decidable for
sets of matrices with nonnegative rational entries. From a decidability perspective this last result
would be somewhat surprising since it is known that the closely related question ρ � 1 is not
algorithmically decidable for such sets of matrices [2,6].

Motivated by the relation between binary and rational matrices, we prove in our second theorem
that pairs of 2 × 2 binary matrices satisfy the finiteness property. We have not been able to find
a unique argument for all possible pairs and we therefore proceed by enumerating a number of
cases and by providing separate proofs for each of them. This somewhat unsatisfactory proof is
nevertheless encouraging in that it could possibly be representative of the difficulties arising for
pairs of binary matrices of arbitrary dimension. In particular, some of the techniques we use for
the 2 × 2 case can be applied to matrices of arbitrary dimension.
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Let us finally notice that in all the numerical computations that we have performed on binary
matrices not only the finiteness property always seemed to hold but the period length of optimal
products was always very short. The computation of the joint spectral radius is known to be
NP-hard for binary matrices but this does not exclude the possibility of a bound on the period
length that is linear, or polynomial, in the dimension of the matrices. In the case of matrices
characterizing the capacity of codes avoiding forbidden difference patterns, the length of the
period is even suspected to be sublinear (see Conjecture 1 in [10]).

2. Finiteness property for rational and binary matrices

In this section, we prove that the finiteness property holds for nonnegative rational matrices
if and only if it holds for pairs of binary matrices. The proof proceeds in three steps. First we
reduce the nonnegative rational case to the nonnegative integer case, we then reduce this case to
the binary case, and finally we show how to reduce the number of matrices to two. In the last
theorem we give an analogous result for matrices with arbitrary rational entries: the finiteness
property holds for matrices with rational entries if and only if it holds for matrices with entries in
{−1, 0, 1}.

Proposition 2. The finiteness property holds for sets of nonnegative rational matrices if and only
if it holds for sets of nonnegative integer matrices.

Proof. From the definition of the joint spectral radius we have that for any α > 0, ρ(�) =
(1/α)ρ(α�). Now, for any set � of matrices with nonnegative rational entries, let us pick an
α /= 0 ∈ N such that α� ⊆ Nn×n. If there exists a positive integer t and a matrix A ∈ (α�)t such
that ρ(α�) = ρ1/t (A), then ρ(�) = (1/α)ρ1/t (A) = ρ1/t (A/αt ), where A/αt ∈ �t . �

We now turn to the reduction from the integer to the binary case.

Theorem 2. The finiteness property holds for sets of nonnegative integer matrices if and only if
it holds for sets of binary matrices.

Proof. Consider a finite set of nonnegative integer matrices � ⊂ Nn×n. We think of the matrices
in � as adjacency matrices of weighted graphs on a set of n nodes and we construct auxiliary
graphs such that paths of weight w in the original weighted graphs are replaced by w paths
of weight one in the auxiliary graphs. For every matrix A ∈ � ⊂ Nn×n, we introduce a new
matrix Ã ∈ {0, 1}nm×nm as follows. We define m as the largest entry of the matrices in �. Then,
for every node vi (i = 1, . . . , n) in the original graphs, we introduce m nodes ṽi,1, . . . , ṽi,m in
the auxiliary graphs. The auxiliary graphs have nm nodes; we now define their edges. For all
A ∈ � and Ai,j = k /= 0, we define km edges in Ã from nodes ṽi,s : 1 � s � k to the nodes
ṽj,t : 1 � t � m. Now, the following reasoning leads to the claim:

(1) For any product Ã ∈ �̃
t
, and for any indices i, r, j, s, s′, Ãṽi,r ,ṽj,s

= Ãṽi,r ,ṽj,s′ . This is due

to the fact that for every matrix in �̃, the columns corresponding to ṽi,s and ṽi,s′ are
equal.

(2) For any product A ∈ �t , and any couple of indices (i, j), the corresponding product Ã ∈ �̃
t

has the following property: ∀s, Ai,j = ∑
r Ãṽi,r ,ṽj,s

. We show this by induction on the length
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of the product: First, this is true by construction for every matrix in �̃. Now suppose that
it is true for every product of length t, and consider a product of length t + 1 : AB ∈ �t+1

and its corresponding product ÃB̃ ∈ �̃
t+1

, with Ã ∈ �̃
t

and B̃ ∈ �̃. We have the following
implications:

(AB)i,j =
∑

1�k�n

Ai,kBk,j

=
∑

1�k�n

⎛⎝ ∑
1�r�m

Ãṽi,r ,ṽk,s

⎞⎠Bk,j

=
∑

1�r�m

⎛⎝ ∑
1�k�n

Ãṽi,r ,ṽk,s
Bk,j

⎞⎠
=

∑
1�r�m

⎛⎝ ∑
1�k�n,1�s�m

Ãṽi,r ,ṽk,s
B̃ṽk,s ,ṽj,s′

⎞⎠
=

∑
1�r�m

(
ÃB̃

)
ṽi,r ,ṽj,s′

.

In the first implication we used the induction hypothesis for products of length t , in the
second implication we reverse the order of summation, while for the third implication we
use both the induction hypothesis for products of length 1 to transform Bk,j , and moreover
we use the item (1) of this proof in order to let the index s of the matrix Ãṽi,r ,ṽk,s

vary. Since
s′ can be chosen arbitrarily between 1 and m, the proof is done.

(3) ∀t, ∀A ∈ �t , ‖A‖1 = ‖Ã‖1, where ‖ · ‖1 represents the maximum sum of the absolute
values of all entries of any column in a matrix.

(4) ρ(�) = ρ(�̃), and if ρ(�̃) = ρ1/T (Ã) : Ã ∈ �̃
T

, then ρ(�) = ρ1/T (A), where A is the
product in �T corresponding to Ã. �

We finally consider the last reduction: we are given a set of matrices and we reformulate the
finiteness property for this set into the finiteness property for two particular matrices constructed
from the set. The construction is such that the entries of the two matrices are exactly those of the
original matrices, except for some entries that are equal to zero or one.

More specifically, assume that we are given m matrices A1, . . . , Am of dimension n. From
these m matrices we construct two matrices Ã0, Ã1 of dimension (2m − 1)n. The matrices Ã0, Ã1
consist of (2m − 1) × (2m − 1) square blocks of dimension n that are either equal to 0, to the
identity matrix I , or to one of the matrices Ai . The explicit construction of these two matrices is
best illustrated with a graph.

Consider the graph G0 on a set of 2m − 1 nodes si (i = 1, . . . , 2m − 1) and whose edges are
given by (i, i + 1) for i = 1, . . . , 2m − 2. We also consider a graph G1 defined on the same set
of nodes and whose edges of weight ai are given by (m + i − 1, i) for i = 1, . . . , m. These two
graphs are represented on Fig. 1 for the case m = 5. In such a graph a directed path that leaves the
node m returns there after m steps and whenever it does so, the path passes exactly once through
an edge of graph G1. Let us now describe how to construct the matrices Ã0, Ã1. The matrices are
obtained by constructing the adjacency matrices of the graphs G0 and G1 and by replacing the
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Fig. 1. Schematic representation of the macro transitions between subspaces. The full edges represent transitions in Ã0
and the dashed edges transitions in Ã1.

entries 1 and 0 by the matrices I and 0 of dimension n, and the weight ai by the matrices Ai . For
the case m = 5 the matrices Ã0, Ã1 are thus given by:

Ã0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ã1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
A1 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0
0 0 0 0 A5 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The two matrices so constructed inherit some of the properties of the graphs G0 and G1 and
this allows us to prove the following theorem.

Theorem 3. Consider a set of m � 1 matrices � = {A1, . . . , Am : Ai ∈ Rn×n} and define �̃ =
{Ã0, Ã1} with the matrices Ã0 and Ã1 as defined above. Then ρ(�̃) = ρ(�)1/m. Moreover, the
finiteness property holds for � if and only if it holds for �̃.

Proof. The crucial observation for the proof is the following. Consider a path in G0 and G1.
Edges in G0 and G1 have outdegree at most equal to one and so if a sequence of graphs among
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G0 and G1 is given, there is only one path leaving i that follows that particular sequence. This
fact ensures that any block in any product of matrices in �̃ is a pure product of blocks of the
matrices in �̃, and not a sum of such products. Moreover, any path leaving from i and of length
km either returns to i after passing through k edges of G1, or ends at node i + m after passing
through k − 1 edges of G1, or ends at node i + m (mod 2m) after passing through k + 1 edges of

G1. From this it follows that in a product of length km of the matrices Ã0 and Ã1 there is exactly
one nonzero block in every line of blocks, and this block is a product of length k − 1, k, or k + 1
of matrices from �.

We now show that ρ(�̃) � ρ(�)1/m by proving that for any matrix A ∈ �t , there is a matrix
Ã ∈ �̃

tm
such that ‖Ã‖ � ‖A‖. Define B̃i = Ãi−1

0 Ã1Ã
m−i
0 ∈ �̃

m
for i = 1, . . . , m so that the

block in position (m, m) in B̃i is simply equal to Ai . Consider now some product of length t ,
A = Ai1 · · · Ait ∈ �t and construct the corresponding matrix product Ã = B̃i1 . . . B̃it ∈ �̃

tm
. The

block in position (m, m) in Ã is equal to Ai1 . . . Ait and so ‖Ã‖ � ‖A‖ and ρ(�̃) � ρ(�)1/m.

Let us now show that ρ(�̃) � ρ(�)1/m. Consider therefore an arbitrary product Ã ∈ �̃
l

and
decompose Ã = C̃Ã′ with C̃ a product of at most m factors and Ã′ ∈ �km. By the observation
above we know that there is at most one nonzero block in every line of blocks of Ã′, and this block
is a product of length k − 1, k, or k + 1 of matrices from �. Therefore, if the norm is chosen to
be the maximum line sum, we have ‖Ã‖ � K1K2‖A‖ where A is some product of length k − 1
of matrices from �, K1 is the maximal norm of a product of at most m matrices in �̃, and K2 is
the maximal norm of a product of at most 2 matrices in �. Using the last inequality, we arrive at

‖Ã‖1/(k−1) � (K1K2)
1/(k−1)‖A‖1/(k−1).

The initial product Ã is an arbitrary product of length l = km + r and so by letting k tend to
infinity and using the definition of the joint spectral radius we conclude ρ(�̃) � ρ(�)1/m.

We have thus proved that ρ(�̃) = ρ(�)1/m. It remains to prove the equivalence of the finite-
ness property. If � satisfies the finiteness property then ρ(�) = ρ(A1 . . . At )

1/t , then ρ(�̃) =
ρ(�)1/m = ρ(B̃1 . . . B̃t )

1/(tm) and so �̃ does too. In the opposite direction, if the finiteness prop-
erty holds for �̃, then we must have ρ(�̃) = ρ(B̃1 . . . B̃t )

1/t (because every other product of
matrices in �̃ has its spectral radius equal to zero), and then ρ(�) = ρ(�̃)m = ρ(A1 . . . At )

1/t .
�

Combining the results obtained so far in this section for nonnegative matrices we immediately
obtain the first part of our main result. In the second part of the statement we describe an analogous
result for the case of matrices whose entries may be negative and we describe how to adapt the
proof to that situation.

Theorem 4. The finiteness property holds for all sets of nonnegative rational matrices if and only
if it holds for all pairs of binary matrices.

The finiteness property holds for all sets of rational matrices if and only if it holds for all pairs
of matrices with entries in {0, 1, −1}.

Proof. The proof for the nonnegative case is a direct consequence of Proposition 2, Theorems 2
and 3.

For the case of arbitrary rational entries, the statements and proofs of Proposition 2 and Theorem
3 can easily be adapted. We now show how to modify Theorem 2 so as to prove that the finiteness
property holds for all sets of integer matrices if and only if it holds for matrices with entries in
{0, −1, 1}. The value m in the proof of Theorem 2 is now given by the largest magnitude of the
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entries of the matrices in �, and we weight the edges of the auxiliary graphs by −1 whenever
they correspond to a negative entry. Then, the arguments for proving (1) and (2) do not need any
modification since they rely on equalities that are also valid for matrices with entries in {0, 1, −1}.
From this we deduce that

‖A‖ =
∑

i

Ai,j =
∑
i,r

Ãṽi,r ,ṽj,s
�

∑
i,r

|Ãṽi,r ,ṽj,s
| � ‖Ã‖,

and so ρ(�̃) � ρ(�). Now, let us decompose any product Ã = B̃C̃ : B̃ ∈ �̃, C̃ ∈ �̃
t−1

, and con-
sider the corresponding product A = BC ∈ �t . Remark that

|Ãvi,r ,vj,s
| =

∣∣∣∣∣∣
∑

k:|Bi,k |�r

sign(Bi,k)
∑
q

C̃vk,q ,vj,s

∣∣∣∣∣∣ �
∑

k

|Ck,j |.

So, we have ‖Ã‖ � mn‖C‖.
Finally, if �̃ has the finiteness property, there exists Ã ∈ �̃

t : ρ(�̃) = ρ(Ã)1/t , and, taking the
same decomposition A = BC as above, we have the following relations:

ρ(�) � ρ(�̃) = lim
k→∞ ‖(B̃C̃)k‖1/(kt) � lim

k→∞(mn‖C(BC)k−1‖)1/(kt) � ρ(A)1/t � ρ(�),

and ρ(�) = ρ(A)1/t . �

Let us finally remark that for the purpose of reducing the finiteness property of rational matrices
to pairs of binary matrices, we have provided a construction that, given a set � of m matrices
with nonnegative rational entries, produces a pair of matrices �̃ with binary entries and an integer
k � 0 such that ρ(�) = ρ(�̃)k. The joint spectral radius of a set of nonnegative rational matrices
can thus be expressed as the power of the joint spectral radius of two binary matrices. In the same
way, the joint spectral radius of a set of arbitrary rational matrices can be expressed as the power
of the joint spectral radius of two matrices with entries in {0, 1, −1}.

3. The finiteness property for pairs of 2 × 2 binary matrices

In this section, we prove that the finiteness property holds for pairs of binary matrices of
size 2 × 2. Even if this result may at first sight appear anecdoctic, it has some relevance since
it has been shown in the previous section that pairs of binary matrices are not restrictive. More-
over, even for this 2 × 2 case, non-trivial behaviours occur. As an illustration, the set of
matrices{(

1 1
0 1

)
,

(
0 1
1 0

)}
,

whose behaviour could at first sight seem very simple, happens to have a joint spectral radius
equal to ((3 + √

13)/2)1/4, and this value is only reached by products of length at least four.
Another interest of this section is to introduce techniques that may prove useful to establish the
finiteness property for matrices of larger dimension.

There are 256 ordered pairs of binary matrices. Since we are only interested in unordered
sets we can lower this number to (24(24 − 1))/2 = 120. We first present a series of simple
properties that allow us to handle most of these cases and we then give a complete analysis of
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the few remaining cases. In the following, we note A � B if the matrix B − A has nonnegative
entries.

Proposition 3. For any set of matrices � = {A0, A1} ⊂ R2×2, we have

• ρ({A0, A1}) = ρ({AT
0 , AT

1 }), where AT is the transpose of A,

• ρ({A0, A1}) = ρ({SA0S, SA1S}), where S =
(

0 1
1 0

)
.

Moreover, in both cases the finiteness property holds for one of the sets if and only if it holds for
the other.

Proposition 4 [19, Proposition 6.13]. The finiteness property holds for sets of symmetric matrices.

Proof. The matrix norm induced by the euclidean vector norm is given by the largest singular
value of the matrix. For symmetric matrices the largest singular value is also equal to the largest
magnitude of the eigenvalues. Thus, max {‖A‖ : A ∈ �} = max {ρ(A) : A ∈ �} and from (1.2)
it follows that ρ(�) = max {ρ(A) : A ∈ �}. �

Proposition 5. Let � = {A0, A1} ∈ Nn×n. The finiteness property holds in any of the following
situations:

(1) ρ(�) � 1,

(2) A0 � I (or A1 � I ).

Proof. (1) It is known that for sets of nonnegative integer matrices, if ρ � 1, then either ρ = 0
and the finiteness property holds, or ρ = 1, and there is a product of matrices in � with a diagonal
entry equal to one [11]. Such a product A ∈ �t satisfies ρ(�) = ρ(A)1/t = 1 and so the finiteness
property holds when ρ(�) � 1.

(2) If ρ(A1) � 1, then ρ(A) � 1 for all A ∈ �t and thus ρ(�) � 1 and the result follows from
(1). If ρ(A1) > 1 then ρ(�) = ρ(A1) and so the finiteness property holds. �

Proposition 6. Let � = {A0, A1} ∈ Nn×n. The finiteness property holds in the following situa-
tions:

(1) A0 � A1 (or A1 � A0),

(2) A0A1 � A2
1 (or A1A0 � A2

1),

(3) A0A1 � A1A0.

Proof. (1) Any product of length t is bounded by At
1. Hence the joint spectral radius of � is given

by limt→∞ ‖At
1‖1/t = ρ(A1).

(2) and (3). Let A ∈ �t be some product of length t . If A0A1 � A2
1 or A0A1 � A1A0 we have

A � A
t1
1 A

t0
0 for some t0 + t1 = t . The joint spectral radius is thus given by

ρ = lim
t→∞ max

t1+t0=t
‖At1

1 A
t0
0 ‖1/t� lim

t→∞ max
t1+t0=t

‖At1
1 ‖1/t‖At0

0 ‖1/t

� max (ρ(A0), ρ(A1)). (3.1)

Hence the joint spectral radius is given by max (ρ(A0), ρ(A1)). �
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In order to analyse all possible sets of matrices, we consider all possible couples (n0, n1),
where ni is the number of nonzero entries in Ai . From Proposition 6, we can suppose ni = 1, 2,

or 3 and without loss of generality we take n0 � n1.

• n0 = 1:
− If n1 = 1 or n1 = 2, the maximum row sum or the maximum column sum is equal to one

for both matrices, and since these quantities are norms it follows from (1.2) that the joint
spectral radius is less than one and from Proposition 5 that the finiteness property holds.

− If n1 = 3, it follows from Proposition 6 that the only interesting cases are:

� =
{(

1 0
0 0

)
,

(
0 1
1 1

)}
and �0 =

{(
0 1
0 0

)
,

(
1 0
1 1

)}
.

In the first case the matrices are symmetric and so the finiteness property holds by Proposition
4. We keep �0 for later.

• n0 = 2:
−n1 = 2: The only interesting cases are:

� =
{(

1 1
0 0

)
,

(
0 1
0 1

)}
and �1 =

{(
1 1
0 0

)
,

(
1 0
1 0

)}
.

Indeed in all the other cases either the maximum row sum or the maximum column sum is
equal to one and the finiteness property follows from Proposition 5. The joint spectral radius
of the first set is equal to one. Indeed, it is known that for nonnegative integer matrices, if
the joint spectral radius is larger than one, then there must be a product of matrices with a
diagonal entry larger than one [11]. This is impossible here, since as soon as a path leaves the
first node, it cannot come back to it, and no path can leave the second node. By Proposition
5 the finiteness property holds for the first set. We keep �1 for further analysis.

−n1 = 3: If the zero entry of A1 is on the diagonal (say, the second diagonal entry), then, by
Proposition 5 we only need to consider the following case:{(

0 1
0 1

)
,

(
1 1
1 0

)}
.

These matrices are such that A0A1 � A2
1 and so the finiteness property follows from Prop-

osition 6.
If the zero entry of A1 is not a diagonal entry, we have to consider the following cases:

�2 =
{(

1 0
1 0

)
,

(
1 1
0 1

)}
and �3 =

{(
0 1
1 0

)
,

(
1 1
0 1

)}
.

We will handle �2 and �3 later.
• n0, n1 = 3: It has already been noticed by several authors (see, e.g., [19, Proposition 5.17]) that

ρ

({(
1 1
0 1

)
,

(
1 0
1 1

)})
= ρ

((
1 1
0 1

)
·
(

1 0
1 1

))1/2

=
√

1 + √
5

2
.

After excluding the case of symmetric matrices and using the symmetry argument of Propo-
sition 3, the only remaining case is:{(

1 1
0 1

)
,

(
1 1
1 0

)}
,

but again these matrices are such that A0A1 � A2
1 and so the finiteness property follows from

Proposition 6.
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We now analyse the cases�0, �1, �2, �3 that we have identified above. For�0, notice thatA2
0 �

A0A1. Therefore, any product of length t is dominated by a product of the form A
t1
1 A0A

t2
1 A0 . . . A

tl
1

for some t1, tl � 0 and ti � 1 (i = 2, . . . , l − 1). The norm of such a product is equal to (t1 +
1)(tl + 1)t2 . . . tl−1. The maximal rate of growth of this norm with the product length is given by
5
√

4 and so the joint spectral radius is equal to 5
√

4 = ρ(A4
1A0)

1/5
. The maximal rate of growth is

obtained for ti = 4.
For �1, simply notice that maxA∈�2 ρ(A) = maxA∈�2 ‖A‖∞ = 2, where ‖ · ‖∞ denotes the

maximum row sum norm. Hence by (1.2) we have ρ(�) = ρ(A0A1)
1/2 = √

2.
Consider now �2. These matrices are such that A2

0 � A0A1 and so any product of length t

is dominated by a product of the form A
t1
1 A0A

t2
1 A0 . . . A

tl
1 for some t1, tl � 0 and ti � 1 (i =

2, . . . , l − 1). We have

A
t1
1 A0 . . . A

tl
1A0 =

(
(t1 + 1) . . . (tl + 1) 0
(t2 + 1) . . . (tl + 1) 0

)
and the maximum rate of growth of the norm of such a product is equal to

√
2. This rate is obtained

for ti = 3 and ρ = ρ(A3
1A0)

1/4 = √
2.

The last case, �3, is more complex and we give an independent proof for it.

Proposition 7. The finiteness property holds for the set{(
0 1
1 0

)
,

(
1 1
0 1

)}
.

Proof. Because A2
0 = I we can assume the existence of a sequence of maximal-normed products

�i of length Li , of the form Bt1 . . . Btl with Bti = A
ti
1 A0,

∑
tk + l = Li, and lim ‖�i‖1/Li =

ρ(�). We show that actually any maximal-normed product only has factors B3, except a bounded
number of factors that are equal to B1, B2, or B4 and so the finiteness property holds.

Let us analyse one of these products �. We suppose without loss of generality that � begins
with a factor B3. First, it does not contain any factor Bt : t > 4 because for such t, Bt−3B2 � Bt

and we can replace these factors without changing the length.
Now, our product � has less than 8 factors B4, because replacing the first seven factors B4

with B3, and the eighth one with (B3)
3 we get a product of the same length but with larger norm

(this is because B3 � (3/4)B4, and (B3)
3 � (33/4)B4). We remove these (at most) seven factors

B4 and by doing this, we just divide the norm by at most a constant K0.
We now construct a product �′ of larger norm by replacing the left hand sides of the following

inequalities by the respective right hand sides, which are products of the same length:

BiB1B1Bj � BiB3Bj ,

B2B1B2 � B3B3,

B3B1B2 � B2B2B2,

B2B1B3 � B2B2B2.

If the factor B3B1B3 appears eight times, we replace it seven times with B3
2 � (4/5)B3B1B3

and the last time with B3
2B2

3 which is greater than 7B3
2 . By repeating this we get a new product

�′′ � 7(4/5)8�′(1/K0) > �′(1/K0) that has a bounded number of factors B1. We remove these
factors from the product and by doing this we only divide by at most a constant K1.
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If there are more than four factors B2 in the product, we replace the first three ones with B3,
and remove the fourth one. It appears that for any X ∈ {B2, B3}, B2

3X > 1.35B3B2X, and on
the other hand, B2

3X � B2
3B2X

1
2,4349 . Then each time we replace four factors B2 we get a new

product: �′′′ � 1.353

2.4348�′′(1/K1) > �′′(1/K1). Finally we can remove the (at most) three last
factors B2 and by doing this, we only divide the product by at most a constant K2. By doing these
operations to every �i , we get a sequence of products �

′′′
i , of length at most Li . Now, introducing

K = K0K1K2, we compute

ρ � lim ‖�′′′
i ‖1/(Li) � lim ‖(1/K)�i‖1/(Li) = ρ.

Hence ρ = lim ‖(A3
1A0)

t‖1/(4t) = ρ(A3
1A0)

1/4 = ((3 + √
13)/2)1/4, and the finiteness property

holds. �

4. Conclusion

This paper provides a contribution to the analysis of the finiteness property for matrices that
have rational entries. We have shown that the finiteness property holds for matrices with nonneg-
ative rational entries if and only if it holds for pairs of matrices with binary entries. For pairs of
binary matrices of dimension 2 × 2 we have shown that the property holds true and we conjecture
that it holds for binary matrices of arbitrary dimension. A natural way to prove the conjecture for
pairs of binary matrices would be to use induction on the size of the matrices, but this does not
seem to be easy. If the conjecture is true, it follows that the stability question for matrices with
nonnegative rational entries is algorithmically decidable. If the conjecture is false, then the results
and techniques developed in this paper could possibly help for constructing a counterexample.
Finally let us add that the construction provided in this paper has the additional interest that it can
be used to transform the computation of the joint spectral radius of matrices with nonnegative
rational entries into the computation of the joint spectral radius of two binary matrices.
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