191 research outputs found

    An Intervening Ethical Governor for a Robot Mediator in Patient-Caregiver Relationships

    Get PDF
    © Springer International Publishing AG 2015DOI: 10.1007/978-3-319-46667-5_6Patients with Parkinson’s disease (PD) experience challenges when interacting with caregivers due to their declining control over their musculature. To remedy those challenges, a robot mediator can be used to assist in the relationship between PD patients and their caregivers. In this context, a variety of ethical issues can arise. To overcome one issue in particular, providing therapeutic robots with a robot architecture that can ensure patients’ and caregivers’ dignity is of potential value. In this paper, we describe an intervening ethical governor for a robot that enables it to ethically intervene, both to maintain effective patient–caregiver relationships and prevent the loss of dignity

    Effects of Obesity on Stability Control among Young Adults in Responding to a Simulated Slip Induced in Gait

    Get PDF
    Falls among older adults present a significant medical, societal, and economic challenge affecting not only the frail or impaired, but the active and vigorous. Falls initiated by slip account for about 25% of all falls among older people. Obesity has been regarded as a significant health problem. It has been reported that obesity causes muscle weakness, abnormal body mass distribution, and postural instability. Dynamic gait stability has been identified as a key factor leading to falls during slip in gait among both young and old adults. Despite the fact that obese individuals suffer higher risk of falls compared to non-obese individuals, little is known about the possible impact of obesity upon dynamic gait stability control. The purpose of this study was to examine if and to what extent the dynamic gait stability control during a slip-initiated fall differs between young obese and non-obese individuals. Twelve healthy young adults including 6 non-obese and 6 obese participated in the study approved by the Institutional Review Board. The subjects were classified as obese with a body mass index ≄ 30 kg/m2 and a body fat percentage ≄ 30%. Subjects were informed that they would be performing normal walking initially and would experience simulated slip later without knowing when, where, and how that would happen. They were also told to try to recover their balance on any slip incidence and then to continue walking. All trials were performed on an Activestep treadmill and were under protection of a safety harness connected to a load cell and then to an overhead arch. After 6-8 normal walking trials, a 24-cm and 12 m/s2 unexpected slip was induced within 0.2 s. A fall in responding to the slip was identified if the load cell force exceeded 30% of the subject’s body weight. Dynamic gait stability was calculated, at touchdown (TD) of the leading foot and liftoff (LO) of the trailing foot upon the slip trial, by using the collected center of mass kinematics. Independent t-tests results indicated that dynamic stability control did not display significant between-group difference at TD (immediately before the slip onset) upon the slip trial (0.86 ± 0.03 vs. 0.86 ± 0.04, p \u3e 0.05). However, the non-obese group was more stable than the obese group at LO (~180 ms after slip onset) as evidenced by the higher stability values within the non-obese group in comparison with the ones in obese group (0.14 ± 0.03 vs. 0.01 ± 0.08, p \u3c 0.01). As a result of the better control of the dynamic stability, fewer subjects in the non-obese group fell than in the obese group when exposure to the unannounced slip. In particular, five out of 6 (83%) participants in the obese group fell while only one out of 6 (17%) fell within the non-obese group (p \u3c 0.05). Our results revealed that obesity affects the dynamic stability control and consequently increases the likelihood of slip-related falls among young adults during gait. Findings from this study could provide some guidance to train individuals with obesity to reduce their risk of falls

    The Benefits of Robot Deception in Search and Rescue: Computational Approach for Deceptive Action Selection via Case-Based Reasoning

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/SSRR.2015.7443002By increasing the use of autonomous rescue robots in search and rescue (SAR), the chance of interaction between rescue robots and human victims also grows. More specifically, when autonomous rescue robots are considered in SAR, it is important for robots to handle sensitively human victims’ emotions. Deception can potentially be used effectively by robots to control human victims’ fear and shock as used by human rescuers. In this paper, we introduce robotic deception in SAR contexts and present a novel computational approach for an autonomous rescue robot’s deceptive action selection mechanism

    Taxonomy of \u3ci\u3eEchinostoma revolutum\u3c/i\u3e and 37-Collar-Spined \u3ci\u3eEchinostoma\u3c/i\u3e spp.: A Historical Review

    Get PDF
    Echinostoma flukes armed with 37 collar spines on their head collar are called as 37-collar-spined Echinostoma spp. (group) or ‘Echinostoma revolutum group’. At least 56 nominal species have been described in this group. However, many of them were morphologically close to and difficult to distinguish from the other, thus synonymized with the others. However, some of the synonymies were disagreed by other researchers, and taxonomic debates have been continued. Fortunately, recent development of molecular techniques, in particular, sequencing of the mitochondrial (nad1 and cox1) and nuclear genes (ITS region; ITS1-5.8S-ITS2), has enabled us to obtain highly useful data on phylogenetic relationships of these 37-collar-spined Echinostoma spp. Thus, 16 different species are currently acknowledged to be valid worldwide, which include E. revolutum, E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. lindoense, E. luisreyi, E. mekongi, E. miyagawai, E. nasincovae, E. novaezealandense, E. paraensei, E. paraulum, E. robustum, E. trivolvis, and Echinostoma sp. IG of Georgieva et al., 2013. The validity of the other 10 species is retained until further evaluation, including molecular analyses; E. acuticauda, E. barbosai, E. chloephagae, E. echinatum, E. jurini, E. nudicaudatum, E. parvocirrus, E. pinnicaudatum, E. ralli, and E. rodriguesi. In this review, the history of discovery and taxonomic debates on these 26 valid or validity-retained species are briefly reviewed

    The Impact of Patchy Reionization on Ultra-faint Dwarf Galaxies

    Full text link
    We investigate how patchy reionization affects the star formation history (SFH) and stellar metallicity of ultra-faint dwarf galaxies (UFDs). Patchy reionization refers to varying ultraviolet (UV) background strengths depending on a galaxy's environment. Recent observations highlight the significance of this effect on UFDs, as UFDs can have different SFHs depending on their relative position with respect to their host halo during the period of reionization. However, most cosmological hydrodynamic simulations do not consider environmental factors such as patchy reionization, and the effect of reionization is typically applied homogeneously. Using a novel approach to implement patchy reionization, we show how SFHs of simulated UFDs can change. Our cosmological hydrodynamic zoom-in simulations focus on UFD analogs with M_vir~10^9solar mass, M_star < 10^5 solar mass at z=0z=0. We find that patchy reionization can weaken the effect of reionization by two orders of magnitude up to z=3z=3, enabling late star formation in half of the simulated UFDs, with quenching times ∌\sim460 Myr later than those with homogeneous reionization. We also show that halo merger and mass assembly can affect the SFHs of simulated UFDs, in addition to patchy reionization. The average stellar iron-to-hydrogen ratio, [Fe/H], of the simulated UFDs with patchy reionization increases by 0.22-0.42 dex. Finally, our findings suggest that patchy reionization could be responsible for the extended SFHs of Magellanic UFDs compared to non-Magellanic UFDs.Comment: 27 pages, 16 figures, Accepted for publication in Astrophysical Journa

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018

    TimeKit: A Time-series Forecasting-based Upgrade Kit for Collaborative Filtering

    Full text link
    Recommender systems are a long-standing research problem in data mining and machine learning. They are incremental in nature, as new user-item interaction logs arrive. In real-world applications, we need to periodically train a collaborative filtering algorithm to extract user/item embedding vectors and therefore, a time-series of embedding vectors can be naturally defined. We present a time-series forecasting-based upgrade kit (TimeKit), which works in the following way: it i) first decides a base collaborative filtering algorithm, ii) extracts user/item embedding vectors with the base algorithm from user-item interaction logs incrementally, e.g., every month, iii) trains our time-series forecasting model with the extracted time-series of embedding vectors, and then iv) forecasts the future embedding vectors and recommend with their dot-product scores owing to a recent breakthrough in processing complicated time-series data, i.e., neural controlled differential equations (NCDEs). Our experiments with four real-world benchmark datasets show that the proposed time-series forecasting-based upgrade kit can significantly enhance existing popular collaborative filtering algorithms.Comment: Accepted at IEEE BigData 202

    Effects of community health volunteers on infectious diseases of children under five in Volta Region, Ghana: study protocol for a cluster randomized controlled trial.

    Get PDF
    BACKGROUND: In many low- and middle-income countries, community health volunteers (CHVs) are employed as a key element of the public health system in rural areas with poor accessibility. However, few studies have assessed the effectiveness of CHVs in improving child health in sub-Saharan Africa through randomized controlled trials. The present study aims to measure the impact of health promotion and case management implemented by CHVs on the health of under-5 children in Ghana. METHODS/DESIGN: This study presents the protocol of a cluster-randomized controlled trial assessing the impacts of CHVs, in which the community was used as the randomization unit. A phase-in design will be adopted, and the intervention arm will be implemented in the intervention arm during the first phase and in the control arm during the second phase. The key intervention is the deployment of CHVs, who provide health education, provide oral rehydration solutions and zinc tablets to children with diarrhea, and diagnose malaria using a thermometer and a rapid diagnostic test kit during home visits. The primary endpoints of the study are the prevalence of diarrhea and fever/malaria in children under 5 years of age, as well as the proportion of affected children receiving case management for diarrhea and malaria. The first and second rounds of household surveys to collect data will be conducted in the first phase, and the final round will be conducted during the second phase. DISCUSSION: With growing attention paid to the roles of CHVs as an essential part of the community health system in low-income countries, this study will contribute valuable information to the body of knowledge on the effects of CHVs. TRIAL REGISTRATION: ISRCTN49236178 . (June 16th, 2015)
    • 

    corecore