161 research outputs found

    A Phosphatidylinositol-3-Kinase-Dependent Signal Transition Regulates ARF1 and ARF6 during Fcγ Receptor-Mediated Phagocytosis

    Get PDF
    Fcγ receptor (FcγR)–mediated phagocytosis of IgG-coated particles is regulated by 3′-phosphoinositides (3′PIs) and several classes of small GTPases, including ARF6 from the ADP Ribosylation Factor subfamily. The insensitivity of phagocytosis to brefeldin A (BFA), an inhibitor of certain ARF guanine nucleotide exchange factors (GEFs), previously indicated that ARF1 did not participate in phagocytosis. In this study, we show that ARF1 was activated during FcγR-mediated phagocytosis and that blocking normal ARF1 cycling inhibited phagosome closure. We examined the distributions and activation patterns of ARF6 and ARF1 during FcγR-mediated phagocytosis using fluorescence resonance energy transfer (FRET) stoichiometric microscopy of macrophages expressing CFP- or YFP-chimeras of ARF1, ARF6, and a GTP-ARF-binding protein domain. Both GTPases were activated by BFA-insensitive factors at sites of phagocytosis. ARF6 activation was restricted to the leading edge of the phagocytic cup, while ARF1 activation was delayed and delocalized over the phagosome. Phagocytic cups formed after inhibition of PI 3-kinase (PI-3K) contained persistently activated ARF6 and minimally activated ARF1. This indicates that a PI-3K-dependent signal transition defines the sequence of ARF GTPase activation during phagocytosis and that ARF6 and ARF1 coordinate different functions at the forming phagosome

    Synthesis, characterization and biological activity of some Dithiourea Derivatives:

    Get PDF
    Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis

    High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat

    Get PDF
    We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.publishersversionPeer reviewe

    Germline variants and breast cancer survival in patients with distant metastases at primary breast cancer diagnosis.

    Get PDF
    Breast cancer metastasis accounts for most of the deaths from breast cancer. Identification of germline variants associated with survival in aggressive types of breast cancer may inform understanding of breast cancer progression and assist treatment. In this analysis, we studied the associations between germline variants and breast cancer survival for patients with distant metastases at primary breast cancer diagnosis. We used data from the Breast Cancer Association Consortium (BCAC) including 1062 women of European ancestry with metastatic breast cancer, 606 of whom died of breast cancer. We identified two germline variants on chromosome 1, rs138569520 and rs146023652, significantly associated with breast cancer-specific survival (P = 3.19 × 10-8 and 4.42 × 10-8). In silico analysis suggested a potential regulatory effect of the variants on the nearby target genes SDE2 and H3F3A. However, the variants showed no evidence of association in a smaller replication dataset. The validation dataset was obtained from the SNPs to Risk of Metastasis (StoRM) study and included 293 patients with metastatic primary breast cancer at diagnosis. Ultimately, larger replication studies are needed to confirm the identified associations