617 research outputs found

    Gradient-prolongation commutativity and graph theory

    Get PDF
    This Note gives conditions that must be imposed to algebraic multilevel discretizations involving at the same time nodal and edge elements so that a gradient-prolongation commutativity condition will be satisfied; this condition is very important, since it characterizes the gradients of coarse nodal functions in the coarse edge function space. They will be expressed using graph theory and they provide techniques to compute approximation bases at each level.Comment: 6 page

    Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods

    Full text link
    We present a numerical study to investigate the conditioning of the plane wave discontinuous Galerkin discretization of the Helmholtz problem. We provide empirical evidence that the spectral condition number of the plane wave basis on a single element depends algebraically on the mesh size and the wave number, and exponentially on the number of plane wave directions; we also test its dependence on the element shape. We show that the conditioning of the global system can be improved by orthogonalization of the local basis functions with the modified Gram-Schmidt algorithm, which results in significantly fewer GMRES iterations for solving the discrete problem iteratively.Comment: Submitted as a conference proceeding; minor revisio

    Coercive combined field integral equations

    Get PDF
    Many boundary integral equations for exterior Dirichlet and Neumann boundary value problems for the Helmholtz equation suffer from a motorious instability for wave numbers related to interior resonances. The so-called combined field integral equations are not affected. This article presents combined field integral equations on two-dimensional closed surfaces that possess coercivity in canonical trace spaces. For the exterior Dirichlet problem the main idea is to use suitable regularizing operators in the framework of an indirect method. This permits us to apply the classical convergence theory of conforming Galerkin method

    Stable multilevel splittings of boundary edge element spaces

    Get PDF
    We establish the stability of nodal multilevel decompositions of lowest-order conforming boundary element subspaces of the trace space H12(divΓ,Γ){\boldsymbol{H}}^{-\frac {1}{2}}(\operatorname {div}_{\varGamma },{\varGamma }) of H(curl,Ω){\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega }) on boundaries of triangulated Lipschitz polyhedra. The decompositions are based on nested triangular meshes created by uniform refinement and the stability bounds are uniform in the number of refinement levels. The main tool is the general theory of P.Oswald (Interface preconditioners and multilevel extension operators, in Proc. 11th Intern. Conf. on Domain Decomposition Methods, London, 1998, pp.96-103) that teaches, when stability of decompositions of boundary element spaces with respect to trace norms can be inferred from corresponding stability results for finite element spaces. H(curl,Ω){\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega }) -stable discrete extension operators are instrumental in this. Stable multilevel decompositions immediately spawn subspace correction preconditioners whose performance will not degrade on very fine surface meshes. Thus, the results of this article demonstrate how to construct optimal iterative solvers for the linear systems of equations arising from the Galerkin edge element discretization of boundary integral equations for eddy current problem

    Non-Reflecting Boundary Conditions for Maxwell's Equations

    Get PDF
    A new discrete non-reflecting boundary condition for the time-dependent Maxwell equations describing the propagation of an electromagnetic wave in an infinite homogenous lossless rectangular waveguide with perfectly conducting walls is presented. It is derived from a virtual spatial finite difference discretization of the problem on the unbounded domain. Fourier transforms are used to decouple transversal modes. A judicious combination of edge based nodal values permits us to recover a simple structure in the Laplace domain. Using this, it is possible to approximate the convolution in time by a similar fast convolution algorithm as for the standard wave equatio

    Coupled boundary-element scheme for eddy-current computation

    Get PDF
    Abstract.: The mathematical foundation of a symmetric boundary-element method for the computation of eddy currents in a linear homogeneous conductor which is exposed to an alternating magnetic field is presented. Starting from the A-based variational formulation of the eddy-current equations and a related transmission problem, the problem inside and outside the conductors is reformulated in terms of integral equations on the boundary of the conductors. Surface currents occur as new unknowns of this direct formulation. The integral equations can be coupled in a symmetric fashion using the transmission conditions for the vector potential A and the magnetic field H. The resulting variational problem is elliptic in suitable trace spaces. A conforming Galerkin boundary-element discretization is employed, which relies on surface edge elements and provides quasi-optimal discrete approximations for the tangential traces of A and H. Surface stream functions supplemented with co-homology vector fields ensure the vital zero divergence of the discrete equivalent surface currents. Simple expressions allow the computation of approximate total Ohmic losses and surface forces from the discrete boundary dat
    corecore