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Abstract. The mathematical foundation of a symmetric boundary-element method for the computation of eddy
currents in a linear homogeneous conductor which is exposed to an alternating magnetic field is presented. Start-
ing from the A-based variational formulation of the eddy-current equations and a related transmission problem,
the problem inside and outside the conductors is reformulated in terms of integral equations on the boundary of
the conductors. Surface currents occur as new unknowns of this direct formulation. The integral equations can
be coupled in a symmetric fashion using the transmission conditions for the vector potential A and the mag-
netic field H. The resulting variational problem is elliptic in suitable trace spaces. A conforming Galerkin bound-
ary-element discretization is employed, which relies on surface edge elements and provides quasi-optimal discrete
approximations for the tangential traces of A and H. Surface stream functions supplemented with co-homology
vector fields ensure the vital zero divergence of the discrete equivalent surface currents. Simple expressions allow
the computation of approximate total Ohmic losses and surface forces from the discrete boundary data.

Key words: boundary elements, divergence-conforming boundary elements, eddy-current problem, surface stream
functions, homology spaces

1. Introduction

The typical setting of eddy-current problems involves a bounded conducting region �C and
its complement �′ :=R

3 \ �̄C , the non-conducting homogeneous, isotropic air region. Usually,
�′ is supposed to have the electromagnetic properties of empty space (ε =ε0, µ=µ0), whereas
�C might be filled with some “complex” conducting material. In this paper we restrict our
attention to the case of a simple, linear, homogeneous, and isotropic conductor characterized
by a constant conductivity σ >0 and permeability µc >0. This can be a reasonable approxi-
mation for a non-ferromagnetic material like aluminum.

In eddy-current simulation the shape of the conductor is usually provided in some CAD for-
mat. Therefore, we can take for granted that the surface of �C is piecewise smooth and consists
of a few curved faces. All the developments of this paper refer to such a geometric setting.

Electromagnetic excitation will be provided by an ideal coil located off �C , and it can be
modeled by a compactly supported current density js = js(x, t), for which we demand div js =
0. We will only examine the case of a time-harmonic excitation with fixed angular frequency
ω> 0. Thanks to the linearity of all materials involved, this will permit us to switch to the
frequency domain and state the equations in terms of complex amplitudes (phasors) of all
electrodynamic quantities.

The goal of the numerical simulation may be the approximate computation of the total
Ohmic losses in the conductors, and of the electromagnetic forces acting on the conductor.
This entails discretizing the field equations and, in particular, coping with the unbounded part
�′ of the generic computational domain R

3. The standard approach is the finite-element
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method, in which artificial homogeneous boundary conditions for the fields are imposed
“sufficiently” far away from the conductor. This is justified by the decay properties of the
fields, although it may be difficult to fix a viable cut-off distance a priori.

After meshing the resulting bounded computational domain, the finite-element discretiza-
tion can proceed in the standard fashion. However, in case of a complicated geometry of �C
suitable finite-element meshes may contain a prohibitively large number of elements.

Boundary-element methods (BEM) applied to the field equations in �′ steer clear of all
these difficulties, since they are based on integral equations on the surface ∂�C that employ
an explicit fundamental solution of the partial differential equation satisfied by a field. Such
a reduction to equations on ∂� is only feasible for homogeneous equations with constant
coefficients, and this is just the setting we take for granted. The boundary-integral equations
can be recast in weak form, which yields variational equations posed on Hilbert spaces of
traces. The final discrete equations can be obtained by a straightforward Galerkin discretiza-
tion. Finite elements built upon a triangulation of ∂�C can be used for this purpose. These
are commonly known as boundary elements.

The boundary-element method offers a very attractive option in computational electro-
magnetism [1–5] and it also plays an important role in eddy-current computation [6–11].
BEMs come in many varieties: we can distinguish direct and indirect boundary-integral equa-
tions, which can be discretized by means of the Nystrøm method, collocation or Galerkin
techniques. In this article, the focus will be on the Galerkin approach.

The boundary-integral equations of the direct method link the Cauchy data of the prob-
lem. In an electromagnetic context, the Cauchy data are the tangential components of elec-
tric and magnetic fields. Hence, the natural transmission conditions for electromagnetic fields
immediately lend themselves to the coupling of boundary-integral equations for �C and �′.
A judicious coupling strategy introduced by M. Costabel [12] relies on the so-called Calderón
projectors and leads to a symmetric structure of the coupled problem. The present article will
adapt this method to the eddy-current problem to derive a linear system of equations whose
unknowns are associated with the edges and vertices of a surface mesh on ∂�C .

If the conductor is non-homogeneous or is made of a ferro-magnetic material (steel), the
boundary-element method is no longer available for the treatment of the interior eddy-current
problem in �C , and a finite-element discretization based on curl-conforming edge elements on
a volume mesh is required [13,14]. However, the problem in �′ is still amenable to boundary-
element methods, which can be coupled with the finite-element equations using ideas similar
to those discussed in this paper; see [15].

However, the skin effect will lead to sharp boundary layers of the fields inside �C , which
enforces the use of rather fine aligned finite-element meshes close to ∂�C . The boundary-ele-
ment method, however, has the boundary layers built into its representation formulas and is
not affected. This is another reason for using BEM whenever possible.

In fact, the skin effect can be harnessed for numerical approximation by replacing the
eddy-current equations inside the conductor with so-called impedance boundary conditions [2,
Section 4.7]. These provide an acceptable approximation, if we deal with good conductors and
if ∂�C is smooth. We will elaborate on how impedance boundary conditions can be coupled
with BEM for the eddy-current problem in �′.

2. The eddy-current model

The behavior of an electromagnetic field is governed by Maxwell’s equations. Instead of
using these, in special situations simplified quasistatic models supply sufficiently accurate
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approximations to the true fields [16]. One of them is the eddy-current model, representing a
magneto-quasistatic approximation to Maxwell’s equations in the sense that the electric field
energy is neglected. This model is reasonably accurate for slowly varying fields, for which the
change in magnetic field energy is dominant [16,17]. “Slowly varying”, means that

L
√
ε µω�1 , (1)

where L is the characteristic size of the region of interest: �C has to be small compared to
the wavelength of electromagnetic waves, which makes it possible to ignore wave propagation.
There is a second condition for the validity of the eddy-current approximation, requiring that
the typical time-scale is long compared to the relaxation time for space charges, that is, the
conductivity must be large enough so that

ω
ε

σ
�1 . (2)

This implies that no space charges need to be taken into account. We point out that (1) and
(2) provide a “rule of thumb”, but ignore the impact of geometry: in the presence of thin con-
ducting sheets or pointed tips the eddy-current approximation might become invalid locally
[18, Chapter 8].

Formally, the eddy-current model arises from Maxwell’s equations by dropping the dis-
placement current D. In the frequency domain the eddy-current model for scaled non-dimen-
sional complex field amplitudes (for the electric field E and the magnetic field H) reads

curl E =−iωµH in R
3, curl H =

{
σE in �C

js in �′ . (3)

According to the aforementioned assumptions, the permeability µ is constant ≡µc on �C and
equal to µ0 in the air region �′. The conductivity σ is constant in �C and set to zero in �′.
The first equation is called Faraday’s law, the second (reduced) Ampere’s law. These equations
have to be supplemented by the decay conditions

H(x)=O(|x|−1), E(x)=O(|x|−1) uniformly for |x|→∞. (4)

The so-called A-based formulation departs from (3) and eliminates H, which results in

curlµ−1curl A + iωσA =−js in R
3, (5)

In fact, A = (iω)−1E is a vector potential subject to the so-called temporal gauge that makes
the scalar potential vanish.

Obviously, we cannot expect a solution for A to be unique, because it can be altered by
any gradient supported in �′ and will still satisfy the equations. The solution for H will not
be affected. This reflects the fact that in a magnetoquasistatic model, E is relegated to the role
of a “fictitious quantity”. Imposing the constraints

divA =0 in �′ and
∫
�k

A ·n dS=0, (6)

where �k, k=1, . . . ,L, are the connected components of �, will restore uniqueness of a solu-
tion for A. This is a typical gauging procedure that does not affect the physically meaningful
quantities.

Next, we aim to formulate (5) as a transmission problem. To this end, we search for the
right trace operators for electromagnetic fields. By a trace operator, we mean a linear map-
ping that extracts suitable boundary values from a field. It is well known that the relevant
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traces for electromagnetic fields return the tangential components of vector fields. Since we
have eliminated the magnetic field in the A-based formulation (5), we should consider the fol-
lowing trace operators for a (smooth) vector field U:

Electric trace : γDU(x) := (n(x)×U(x))×n(x), x ∈�,
Magnetic trace : γNU(x) := curlU(x)×n(x), x ∈�.

Here, n stands for the exterior unit normal vector field on � := ∂�C pointing from �C into
�′. With technical geometries in mind, we can always assume that �C has a piecewise smooth
Lipschitz surface so that n will be defined almost everywhere on ∂�C . We follow the conven-
tion that exterior traces will be labeled by a superscript +, whereas traces from �C bear a
superscript −.

The trace operators are key to stating transmission conditions for the eddy-current problem
across � := ∂�C : we require that on �

γ+
DA −γ−

DA =0 and
1
µc
γ−
N A − 1

µ0
γ+
N A (= [H ×n]�)=0. (7)

In order to state the transmission problem for the case of an excitation by js , a corresponding
“offset field” can be introduced by the Newton potential

As(x)= µ0

4π

∫
R3

js(y)
|x −y|dy, (8)

which satisfies the gauged eddy-current equations in �′. For simple current distributions, it is
really feasible to get closed form expressions for As . For general js , Equation (8) has to be
evaluated numerically. This can be done with moderate computational effort, because usually
js has a small support, and As is only needed on �.

Now we are in a position to restate the eddy-current problem in the form of a transmis-
sion problem using the total field A inside �C and the reaction field U :=A −As in �′.

curl curl A + iωµcσA =0 in �C, (9)

γ+
DU −γ−

DA =−γ+
DAs

on �, (10)
1
µ0
γ+
N U − 1

µc
γ−
N A =− 1

µ0
γ+
N As

curl curl U =0 and divU =0 in �′. (11)

which has to be supplemented by the constraints
∫
�k

U ·n dS=0, see (6), and the decay condi-
tions (4) for U. Existence and uniqueness of weak solutions of the transmission problem can
be established [15, Theorem 2.1], [19].

If we decide to model the interaction of the conductors with the electromagnetic fields by
means of impedance boundary conditions, the transmission problem can be converted into an
exterior boundary-value problem. This is straightforward, because in this case we assume that
the interior Cauchy data are connected by the local relationship

γ−
DA =ηγ−

N A, (12)

with surface impedance η := (1+ i)
√
ωµc/2σ . This formula is often applied even for non-con-

stant σ and µc. In any case, η will be a bounded function with strictly positive real part.
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3. Boundary-integral equations

It is obvious from (9) and (11) that the partial differential equations in �C and �′ have dis-
tinct features. Consequently, we will have to use different boundary-integral representations.
The crucial building blocks of such representation formulas are potentials, which are linear
operators mapping data on the boundary � to smooth functions defined in �C ∪�′. Here,
these potentials are given by convolution operators with the kernel [20, Chapter 9]

Gκ(x,y) := exp(−κ|x −y|)
4π |x −y| , x 	=y,

for κ ∈C. The kernel is used to define the scalar single-layer potential

�κV (ϕ)(x)=
∫
�

Gκ(x,y)ϕ(y)dS(y), x 	∈�,

the vectorial single-layer potential

�κ
A(�)(x) :=

∫
�

Gκ(x,y)�(y)dS(y) x 	∈�, (13)

and the “Maxwell double-layer potential”.

�κ
M(v) := curl �κ

A(v ×n). (14)

Recall that the kernal Gκ(x,y) is the fundamental solution of the differential operator
−+ κ2 in three space dimensions. This implies, away from � in a pointwise sense, (−+
κ2)�κV (ϕ)=0 and (−�+κ2)�κ

A(ϕ)=0. Using this in conjunction with the pointwise identity
curl curl −grad div=−�, we find for the Maxwell double-layer potential,

curl curl �κ
M(v)=−�curl �κ

A(v ×n)=−κ2�κ
M(v), (15)

pointwise in R
3\�. In order to establish a similar formula for the vectorial single-layer poten-

tial, we use the identity [21, Lemma 2.3]

div�κ
A(�)=�κV (div��) pointwise in R

3 \�. (16)

Here, div� designates the surface divergence of a tangential vector field. On the smooth faces
of �, it can be defined using local parameterizations [3, Section 2.5.2]. The same is true of the
surface gradient grad� and the surface rotation curl�. The latter satisfies grad�ϕ=curl�ϕ×n.

The identity (16) holds for tangential vector fields � for which div�� “makes sense” (more
precisely, �∈Xmag(�), see the explanations about trace spaces below). Thus, we can conclude

curl curl �κ
A(�)= (−�+grad div)�κ

A(�)

=−κ2�κ
A(�)+grad �κV (div��). (17)

An implication of (15) and (17) is summarized in the following lemma.

Lemma 3.1. For sufficiently smooth (in the sense of trace spaces Xel(�) and Xmag(�), see
below) tangential vector fields v and � on � and κ 	=0, the potentials

U =�κ
A(�)−

1
κ2

grad�κV (div��) and V =�κ
M(v)

are homogeneous solutions of curl curl +κ2 in R
3 \�.
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Potentials are important, because they are building blocks for the following representa-
tion formulas that are closely related to the Stratton-Chu formula [22, Theorem 6.1], [21, Sec-
tion 2], and [3, Section 5.5].

Theorem 3.2. If a field A :�C 
→C
3 solves (9), then it has a representation

A(x)=�κ
A(γ

−
N A)(x)+�κ

M(γ
−
DA)(x)− 1

κ2
grad�κV (div�(γ

−
N A))(x),

x ∈�C , where κ := 1
2 (1+ i)

√
2µcσω, that is, κ2 = iµcσω.

The representation formula in �′ also requires a trace that fits the div-operator. It is the
“flux trace” (γnU)(x) := U(x) · n(x), x ∈ �, that extracts the normal component of a vector
field.

Theorem 3.3. If a vector field U :�′ 
→C
3 solves (10) and satisfies the decay conditions U(x)=

O(1/|x|) uniformly for |x|→∞, then it possesses the representation

U(x)=−�0
A(γ

+
N U)−�0

M(γ
+
DU)−grad�0

V (γ
+
n U), x ∈�′.

We point out that the representation formulas hold in a pointwise sense off the boundary
� and up to � in the sense of distributions.
Remark 3.1. The presence of normal boundary data in the representation formula of Theo-
rem 3.3 constitutes a stark difference of the two representation formulas. This can be attrib-
uted to the divergence gauge necessary in �′. In a sense, we are dealing with a regularized
problem in �′, for which the underlying differential operator is essentially different from that
in �C . �

Boundary-integral equations are obtained by applying trace operators to representation
formulas. There is a wealth of choices corresponding to different combinations of traces with
potentials. For κ ∈C we define the following operators,

Vκ := 1
2 (γ

− +γ+)�κV , Bκ := 1
2 (γ

−
N +γ+

N )�
κ
A,

Kκ := 1
2 (γ

−
n +γ+

n )grad�κV , Cκ := 1
2 (γ

−
D +γ+

D )�
κ
M,

Aκ := 1
2 (γ

−
D +γ+

D )�
κ
A, Nκ := 1

2 (γ
−
N +γ+

N )�
κ
M,

where γ is the “standard trace” that amounts to pointwise restriction to � of a scalar func-
tion. Note that the potentials are not necessarily continuous across �, which explains the need
for averaging in the definitions of the boundary-integral operators. More precise information
is provided by the jump relations, cf. [15, Section 5].

Theorem 3.4. The potentials satisfy the jump relations[
γ�κV

]
�

=0,
[
(γn ◦grad)�κV

]
�

=−Id,[
γD�κ

A

]
�

=0,
[
γN�κ

A

]
�

=−Id,[
γD�κ

M

]
�

=−Id, [
γN�κ

M

]
�

=0,[
γn�

κ
A

]
�

=0,
[
γn�

κ
M

]
�

=0.

Up to now, the meaning of the equalities in the jump relations is not entirely clear. Recall
that even a smooth vector field will have discontinuous normal and tangential trace, if � has
edges and corners. This entails specifying appropriate function spaces (trace spaces) in which
the equations are posed.
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The relevant function spaces are natural, because they are closely related to “energy
norms”. The most important norm is the electromagnetic energy norm of a vector field U
on some domain �⊂R

3

‖U‖2
H (curl;�) :=

∫
�

|U|2 dx +
∫
�

|curl U|2 dx.

By the usual completion procedure, it gives rise to the Hilbert space H (curl;�) of vector
fields with bounded electromagnetic energy. This induces a norm on the range of the electric
trace operator γD

‖u‖el := inf{‖U‖H (curl;�C) , U ∈H (curl;�C)andγ−
DU =u}. (18)

Let Xel(�) stand for the Sobolev space (of distributions on �) induced by the norm ‖·‖el. This
will be a trace space of “tangential vector fields”, and γ−

D :H (curl;�C) 
→Xel(�) will become
a continuous and surjective operator. What is important about the norm from (18) is that it is
intrinsic to �, that is, γ+

D :H (curl;�′) 
→Xel(�) is continuous and surjective, too. More infor-
mation about the underlying sophisticated mathematical theory can be found in [23,24] and
the references cited therein. To deal with the magnetic trace, we introduce the inner product

(u, v)τ :=
∫
�

u · v dS

for complex valued tangential vector fields on �. A suitable norm for magnetic traces is the
dual norm of ‖·‖el:

‖ϕ‖mag := sup
v∈Xel(�)

(ϕ, v)τ
‖v‖el

. (19)

This norm will give rise to the Hilbert space Xmag(�), which supplies the proper range space
for γN and also has an alternative intrinsic definition [23]. By definition, it is dual to Xel(�)

in the sense that

ϕ ∈Xmag(�) : (ϕ, v)τ =0 ∀v ∈Xel(�) ⇒ ϕ =0,

u ∈Xel(�) : (µ, v)τ =0 ∀µ∈Xmag(�) ⇒ u =0.
(20)

In addition we mention that a similar duality holds for the trace operators γ (on H 1(�C))
and γn (on H (div;�C)) and their associated trace spaces H 1/2(�) and H−1/2(�) [20]. Here
duality has to be understood with respect to the inner product

(ϕ,ψ)0 :=
∫
�

ϕ ψ dS.

Thus, we can give a rigorous meaning to the jump relations from Theorem 3.4. They are to
be read in the sense of duality, i.e., with respect to integration over � and testing with func-
tions from the dual space.

Finally, for the sake of actual implementation, we need integral representations for the
boundary-integral operators. It turns out that almost everywhere on � these agree with the
operators emerging from formally applying the traces to the potentials
�κ
A and �κ

M as given in (13) and (14), respectively, e.g., for a tangential vector field �∈L∞(�)

Aκ(�)(x) :=
∫
�

Gκ(x,y)�(y)dS(y),

Bκ(�)(x) :=
∫
�

∂Gκ(x,y)
∂n(x)

�(y)−gradxGκ(x,y)(�(y) ·n(x))dS(y),

almost everywhere on �.
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4. Coupled problem

The jump relations from Theorem 3.4 tell us, how we can recover the value of interior/exterior
traces of potentials. Thus, we get the Calderón identities: applying γ−

D and γ−
N to the repre-

sentation formula of Theorem 3.2 we find for a solution A of (9),

γ−
DA =

(
Aκ − 1

κ2 grad� ◦Vκ ◦div�
)
(γ−
N A)+

(
1
2Id+Cκ

)
(γ−
DA),

γ−
N A =

(
1
2Id+Bκ

)
(γ−
N A)+Nκ(γ−

DA),
(21)

where κ = 1
2

√
2(1 + i)

√
ωσµc. As the reaction field U satisfies the assumptions of

Theorem 3.3, we conclude

γ+
DU = −A0(γ+

N U)+
(

1
2Id−C0

)
(γ+
DU)−grad� V0(γ+

n U),

γ+
N U =

(
1
2Id−B0

)
(γ+
N U)−N0(γ+

DU),

γ+
n U = −γ+

n �0
A(γ

+
N U)−γ+

n �0
M(γ

+
DU)+

(
1
2Id−K0

)
(γ+

n U).

(22)

This arises by applying γ+
D , γ+

N , and γ+
n to the exterior representation formula of Theo-

rem 3.3. As we have stressed in the previous section, equalities in (21) and (22) have to be
read in the respective trace spaces. To state results, it is useful to resort to the concept of
Cauchy data:

Definition 4.1. Functions v ∈ Xel(�), µ∈ Xmag(�) are called interior Cauchy data, if v = γ−
DA,

µ∈ γ−
N A, where A solves (9). They represent exterior Cauchy data, if v = γ−

DU, µ∈ γ−
N U with

U satisfying the assumptions of Theorem 3.3.

Theorem 4.2. Traces γ−
DA and γ−

N A will be interior Cauchy data, if and only if they fulfill (21).
Traces γ+

DU, γ+
N U will be exterior Cauchy data, if and only if they satisfy (22) and

div�γ
+
N U =0.

Proof. Firstly, it is clear from the derivation of (21) and (22) that traces of solutions A and
U of (9) or (11), respectively, satisfy these equations. In the case of the second assertion, we
point out that

curl curlU =0, in �′ ⇒ div�(γ
+
N U)=0 (23)

which is an immediate consequence of the identity

div�(γ
+
DV)=γ+

n (curl V) (24)

for the surface divergence div�.
On the other hand, if traces v :=γ−

DA, µ :=γ−
N A satisfy (21), Lemma 3.1 suggests that we

simply use the representation formula of Theorem 3.2 to obtain a solution A of (9). By the
definition of the boundary-integral operators and the jump relations from Theorem 3.4 we
infer that its electric and magnetic traces will coincide with v and µ, respectively.

Further, if traces (v,µ, ϕ)∈Xel(�)×Xmag(�)×H−1/2(�) with div�µ=0 solve (22), we resort
to (16) and (17) for κ=0. This reveals that the representation formula of Theorem 3.3 gives the
desired solution of (11). The decay conditions (4) are verified by straightforward inspection of
the potentials. Then, appealing to the jump relations again completes the proof.
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The gist of the symmetric coupling approach according to Costabel [12] is to use all of
the equations of the Calderon identities in conjunction with the transmission conditions (7).
However, here we have to grapple with a mismatch of interior and exterior boundary data
due to the presence of γ+

n U in (22). A remedy is motivated by the observation that the con-
straint div�(γ

+
N U)= 0 was essential in Theorem 4.2. In other words, γ+

N U has to be sought
in the space

X0
mag(�) :={µ∈Xmag(�), div�µ=0}.

By the transmission condition for γN and the fact that curlcurlAs = 0 in a neighborhood of
�, γ−

N A has to be div�-free, as well. Hence, we can restrict our attention to boundary data
γ−
N A, γ+

N U ∈X0
mag(�) throughout.

This is a crucial hint on how to deal with the extra boundary data occurring in (22):
recalling the dualities, we use X0

mag(�) as test space for those equations of the Calderon iden-
tities that are set in Xel(�). Since X0

mag(�) is a smaller space than Xmag(�) this may involve
a loss of information, but Cauchy data will definitely satisfy the resulting equations. The par-
ticular attraction of this option lies in the fact that

µ∈X0
mag(�) ⇒ (

µ,grad� ϕ
)
τ
=0 ∀ϕ ∈H 1/2(�). (25)

Conclusion (25) is straightforward, since div� is the (·, ·)τ -adjoint of grad�. This makes the
undesirable terms disappear when switching to a weak form of the top equations in the Cald-
eron identities (21) and (22)! For all µ∈X0

mag(�) we obtain

(21) ⇒ (
µ, γ−

DA
)
τ

= (
µ,Aκ(γ−

N A)
)
τ

+
(
µ,

(
1
2Id+Cκ

)
γ−
DA

)
τ
,

(22) ⇒ (
µ, γ+

DU
)
τ

= (
µ,−A0(γ+

N U)
)
τ

+
(
µ,

(
1
2Id−C0

)
γ+
DU

)
τ
.

Having obtained matching boundary data, we can combine the above equations and the sec-
ond lines in (21) and (22) in a clever way. From the transmission conditions, we know γ+

DU−
γ−
DA =−γ+

DAs . Thus, subtracting the above equations leads to

−
(
µ,A0(γ+

N U)+Aκ(γ−
N A)

)
τ
−

(
µ,C0(γ+

DU)+Cκ(γ−
DA)

)
τ

=− 1
2

(
µ, γ+

DAs
)
τ

(26)

for all µ∈X0
mag(�). From the transmission condition 1/µ0γ

+
N U−1/µcγ

−
N A=−1/µ0γ

+
N As and

the second equations of the Calderon identities, we directly conclude

1
µ0

(
1
2Id−B0

)
(γ+
N U)− 1

µ0
N0(γ+

DU)− 1
µc

(
1
2Id+Bκ

)
(γ−
N A)− 1

µc
Nκ(γ−

DA)

=− 1
µ0
γ+
N As . (27)

As final unknown quantities we introduce the tangential trace of the vector potential u :=
γ−
DA ∈ Xel(�) and the tangential trace of the magnetic field � := 1

µc
γ−
N A ∈ X0

mag(�). The lat-
ter is also known as the equivalent surface current. The transmission conditions enable us to
express the exterior traces in these unknowns. We end up with the coupled variational prob-
lem: Seek u ∈Xel(�), �∈X0

mag(�) such that

−
((

1
µ0

N0 + 1
µc

Nκ
)

u, v
)

τ
− (
(B0 +Bκ)�, v

)
τ
=f (v),

− (
µ, (C0 +Cκ)u

)
τ
+ (

µ, (µ0A0 +µcAκ)�
)
τ
=g(µ)

(28)
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for all v ∈Xel(�), µ∈X0
mag(�). The right-hand side is given by

f (v) :=− 1
µ0

((
1
2Id+B0

)
γ+
N As , v

)
τ
− 1
µ0

(
N0(γ+

DAs), v
)

τ
,

g(µ) :=
(
µ,

(
1
2Id+C0

)
γ+
DAs

)
τ
+

(
µ,A0(γ+

N As)
)

τ
.

(29)

The analysis for the variational problem (28) relies on two profound results. The
first concerns the symmetry of boundary-integral operators [25, Theorem 3.9], [15, Section 6].

Theorem 4.3. If Reκ2 ≥0, the boundary integral operators Bκ and Cκ satisfy(
Bκµ, v

)
τ
=− (

µ,Cκv
)
τ

∀µ∈Xmag(�), v ∈Xel(�).

The second result is a statement about the ellipticity of some boundary-integral operators
with respect to the trace norms, see [26, Proposition.4.1] and [20, Corollary 8.13]

Theorem 4.4. If Reκ2 ≥0, the following estimates hold true

Re{(µ,Aκµ)
τ
}≥ c ‖µ‖2

mag , Im{(µ,Aκµ)
τ
}≥0 ∀µ∈X0

mag(�),

Re{(ϕ,Vκϕ)
0}≥ c‖ϕ‖2

H−1/2(�)
, Im{(ϕ,Vκϕ)

0}≥0 ∀ϕ ∈H−1/2�,

with (possibly different) positive constants c>0 depending on κ and �.

The proof of these inequalities follows the same lines as the proof of the next theorem.

Theorem 4.5. If κ2 = iρ with ρ >0, then

Re{− (
Nκv, v

)
τ
}≥0 , Im{− (

Nκv, v
)
τ
}≥0 ∀v ∈Xel(�),

and there is c= c(κ,�)>0 such that

|− (
Nκv, v

)
τ
|≥ c ‖v‖2

el ∀v ∈Xel(�).

Proof. Pick v ∈ Xel(�). Then, by the jump relation from Theorem. 3.4, the fact that V :=
�κ
M(v) fulfills curl curl V + κ2V = 0 in �C ∪�′, see Lemma 3.1, and the integration by parts

formula for the curl-operator

− (
Nκv, v

)
τ
= (
γN�κ

M(v),
[
γD�κ

M(v)
]
�

)
τ

=
∫

R3\�
|curl V|2 − curl curlV ·V dx

=
∫

R3\�
|curl V|2 +κ2|V|2 dx

This identity yields the first assertion of the theorem. The second follows from the continuity
of the trace γD: for c>0 independent of v,

‖v‖el =
∥∥[V]�

∥∥
el ≤ c ‖v‖H (curl;�C∪�′) .

Moreover, [2, Formula (2.86)] provides us with the identity(
Nκu, v

)
τ
=−κ2 (

Aκ(u ×n), v ×n
)
τ
− (

Vκ(curl� u), curl� v
)

0 . (30)
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Now we are in a position to prove the main result about the bilinear form

d
((

u
�

)
,

(
v
µ

))
= −

((
1
µ0

N0 + 1
µc

Nκ
)

u, v
)

τ
−

(
(B0 +Bκ)�, v

)
τ

−
(
µ, (C0 +Cκ)u

)
τ
+

(
µ, (µ0A0 +µcAκ)�

)
τ
,

underlying the coupled variational formulation (28).

Theorem 4.6. The bilinear form d associated with the variational problem (28) is Xel(�) ×
X0

mag(�)-elliptic in the sense that there is c>0 such that∣∣∣∣d
((

v
µ

)
,

(
v
µ

))∣∣∣∣≥ c {
‖v‖2

el +‖µ‖2
mag

}
for all v ∈Xel(�) and µ∈Xmag(�).

Proof. As a simple consequence of the block skew-symmetric structure of the variational
problem (see Theorem 4.3) we find for v ∈Xel(�), µ∈X0

mag(�) that

d
((

v
µ

)
,

(
v
µ

))
=−

((
1
µ0

N0 + 1
µc

Nκ
)

v, v
)

τ
+

(
µ, (µ0A0 +µcAκ)µ

)
τ
.

By Theorems 4.4 and 4.5, the real and imaginary parts of all summands are positive. Hence,∣∣∣∣d
((

v
µ

)
,

(
v
µ

))∣∣∣∣
2

≥
∣∣∣− 1

µ0

(
N0v, v

)
τ

∣∣∣2 +
∣∣∣− 1

µc
(Nκv, v)τ

∣∣∣2

+|µ0
(
µ,A0µ

)
τ
|2 +|µc (µ,Aκµ)τ |2.

For the first term, we can rely on (30). The others are taken care of by the ellipticity estimates
of Theorems 4.4 and 4.5.

Theorem 4.7. The variational problem (28–29) has a unique solution (u,�)∈Xel(�)×X0
mag(�),

which coincides with (γ−
DA,1/µcγ−

N A) for the solution A of (9–10).

Proof. Existence and uniqueness of solutions is immediate from Theorem 4.6 and the Lax–
Milgram Lemma [20, Lemma 2.32].

By the derivation of the boundary-integral equations it is clear that, given a solution
(A,U) of (9–10), the traces u :=γ−

DA, � := 1/µcγ
−
N A will satisfy (28–29). Existence and unique-

ness of solutions of both (9–10) and (28–29) complete the proof.

In the case of impedance boundary conditions (12) the coupling strategy is slightly differ-
ent. We start from the exterior Calderón projector in weak form(

γ+
N U, v

)
τ
=

((
1
2Id−B0

)
(γ+
N U), v

)
τ
−

(
N0(γ+

DU), v
)

τ
,

(
µ, γ+

DU
)
τ
=

(
µ,−A0(γ+

N U)
)

τ
+

(
µ,

(
1
2Id−C0

)
γ+
DU

)
τ
,

for all v∈Xel(�), µ∈X0
mag(�), and use the transmission conditions (10). As before, u :=γ−

DA∈
Xel(�) and � := 1/µcγ

−
N A ∈ X0

mag(�) will be retained as unknowns. In addition, the imped-
ance boundary conditions will be used to express γ+

N U = −γ+
N As +µ0µ

−1
c η−1u on the left-

hand side of the upper equation. This yields the variational problem: seek u∈Xel(�)∩L2(�),
�∈Xmag(�) such that
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1
µcη

u + 1
µ0

N0 u, v
)

τ
−

((
1
2Id−B0

)
�, v

)
τ

= . . . ,(
µ,

(
1
2Id+C0

)
u
)

τ
+ µ0

(
µ,A0 �

)
τ

= . . . .

(31)

for all v∈Xel(�)∩L2(�), µ∈Xmag(�). The functionals on the right-hand side have been omit-
ted, since they are straightforward.

Note the enhanced regularity required from u, v. Thanks to a result from [27] that asserts
the continuity of N0 : Xel(�)∩L2(�) 
→Xmag(�) and C0 : Xel(�)∩L2(�) 
→Xel(�)∩L2(�), the
variational problem (31) can be lifted to the function space Xel(�) ∩ L2(�). Moreover, the
apparent block skew-symmetric structure implies ellipticity on (Xel(�)∩L2(�))× Xmag(�) by
analogy with Theorem 4.6.

5. Galerkin discretization

We select a conforming Galerkin boundary-element discretization of (28) and (29) that relies
on finite dimensional subspaces Wh⊂ Xel(�) and Vh⊂ X0

mag(�). These should be boundary-
element spaces in the sense that
1. the functions in both Wh and Vh are piecewise polynomial tangential vector fields with

respect to a mesh �h of � consisting of flat triangles;
2. there are bases of Wh and Vh that only comprise locally supported functions.

For the construction of Wh we start from H (curl;�C)-conforming finite-element schemes
for the approximation of vector potentials. The simplest is provided by the so-called edge ele-
ments [28]. Keeping in mind that Xel(�) := γD(H (curl;�C)), we simply take the tangential
projections of edge-element functions on a mesh �h with �h|� =�h as space Wh. This will
give a space of piecewise linear vector fields on �, whose tangential components are continu-
ous across edges of triangles. This is a well-known sufficient condition for Wh⊂Xel(�). The
local shape functions on a triangle T are given by the formula

bTi,j :=λi grad� λj −λj grad� λi 1≤ i <j ≤3, (32)

where λi , i = 1,2,3, are the local linear barycentric coordinate functions in T . These basis
functions are sketched in Figure 1. They are associated with the edges of �h so that dim Wh

will agree with the total number of edges of �h. Note that Wh can also be obtained by 90◦-
rotation of the lowest order div-conforming Raviart-Thomas elements in 2D, cf. [29, Chap-
ter 3]. More details can be found in [30, Section 2.2].

In order to find Vh we recall that � is the rotated tangential trace of the magnetic field H.
As H (curl;�) is the right function space for H, too, we get the right boundary-element space
for magnetic traces by rotating functions in Wh by 90◦. This will give surface vector fields

Figure 1. Local shape functions of Wh.
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with continuous fluxes across edges of triangles, which is a very desirable property for discrete
equivalent surface currents. However, ellipticity of (28) only holds provided that div��=0.
Therefore, this property has to be enforced on Vh. Formally, we may choose

Vh :={µh ∈Wh×n, div�µ=0}.

Using the formula (32), we readily see that Vh only contains piecewise constant vector fields.
By Theorem 4.6 and Cea’s lemma [31, Theorem 2.4.1] conformity of the Galerkin method

directly translates into the quasi-optimal error estimate in energy norm

‖u −uh‖el +‖�−�h‖mag ≤C
(

inf
vh∈Wh

‖u − vh‖el + inf
ζh∈Vh

∥∥�− ζ h
∥∥

mag

)
, (33)

where uh and �h stand for the boundary-element solutions, and C > 0 depends on the
ellipticity and continuity constants of the continuous variational problem (28). Hence, approx-
imate error estimates for the finite-element spaces will directly provide us with rates of conver-
gence. Let us assume quasi-uniform and shape regular families of surface meshes �h, where
h denotes the meshwidth. Provided that the continuous solutions u and � are sufficiently
smooth, we arrive at

‖u −uh‖el +‖�−�h‖mag ≤C
(
hmin{ 3

2 ,η+ 1
2 } ‖u‖H η(curl�,�)+hmin{ 3

2 ,ρ+ 1
2 } ‖�‖H ρ(�)

)
, (34)

for some η,ρ>0. The constant C>0 now depends on the shape-regularity of the meshes, too.
Details about approximation by functions in Wh can be found in [32, Section 4.2.2]. The pos-
sible ranges of η and ρ depend on the geometry of �: the presence of edges and corners will
impose limits on η,ρ. At worst, these may only be slightly larger than zero.

Due to the divergence constraint in Vh we cannot use rotated shape functions from Fig-
ure 1 to get a locally supported basis. A remedy is offered by using scalar surface stream
functions. Let Sh stand for the space of �h-piecewise linear and continuous functions on �.
Then, if � is simply connected, we know from deRham’s theorem [28, Corollary 3.3] that
Vh= curl�Sh. Hence, we may simply use the surface rotation of the “hat basis functions” of
Sh as a basis for Vh, see Figure 2 (left).

Because we have not ruled out more general topologies of �, surface co-homology vector
fields can also contribute to the kernel of div�:

Vh= curl�Sh⊕Hh, dim Hh=β1(�), (35)

where β1(�) is the first Betti number of �, which is twice the number of holes drilled through
�C . This means that dim Vh will be equal to the number of vertices of �h plus β1(�).

Figure 2. Basis function of Vh associated with a vertex (left). Fundamental cycles for the torus (middle). Current
street along a section of a path γ (right).
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To find a basis of Hh we need representatives γk, k= 1 . . . , β1(�), of a basis of the co-
homology group H1(�h,Z) in the form of oriented closed edge paths (cycles). In other words,
we need a maximal set of closed curves on the surface that do not cut the surface into two
separate parts, and cannot be deformed into each other by sweeping them over parts of �.
Typical choices for the torus are depicted in Figure 2 (middle). We can always find such
curves that run along edges of �h. To each such path γ a “current sheet” ηγ can be asso-
ciated, a circular current traveling along the path, see Figure 2 (right).

Consider a non-bounding surface edge cycle γ that is bounding with respect to �e, that
is, there is an oriented surface �⊂�e such that γ = ∂�. Then we get from Stokes theorem∫

γ

(γNA ×n) ·d�s=
∫
�

curl curl A ·n dS=0.

As curl curl A=0 in �e, this means that, in the discrete variational problem (36), we can con-
fine ourselves to those �h∈Vh that satisfy

∫
γ
(�h×n) ·d�s=0 for all cycles γ bounding relative

to �e. This means that we only have to take into account current sheets along cycles bound-
ing relative to the exterior. An algorithm for the construction of these cycles has been devel-
oped in [33]. The resulting basis of the relevant subspace of Hh will be denoted by ι1, . . . , ιL,
L=: 1

2β1(�). Then the discrete linear variational problem arising from (28) reads: search for
uh ∈Wh, ϕh ∈Sh/R, (α1, . . . , αL)

T ∈C
L such that

−
(
Ñuh, vh

)
τ
−

(
B̃curl�ϕh, vh

)
τ
−

L∑
k=1

αk

(
B̃ιk, vh

)
τ
=f (vh),

(
B̃curl�ψh,uh

)
τ
+

(
curl�ψh, Ãcurl�ϕh

)
τ
+

L∑
k=1

αk

(
curl�ψh, Ãιk

)
τ
=g(curl�ψh),

(
B̃ιj ,uh

)
τ
+

(
ιj , Ãcurl�ϕh

)
τ
+

L∑
k=1

αk

(
ιj , Ãιk

)
τ
=g(ιj ),

(36)

for all vh∈Wh, ψh∈Sh/R, j =1, . . . ,L. We abbreviated Ã :=µ0A0 +µcAκ , B̃ =B0 +Bκ , Ñ :=
1/µ0N0 + 1/µcNκ . From (36) we can retrieve �h= curl�ϕh+∑L

k=1 αkι
k. We point out that in

the case of impedance boundary conditions, that is, for the variational problem (31), Galerkin
discretization can be accomplished in exactly the same fashion.

6. Implementation

The first algorithmic issue concerns the evaluation of expressions of the form (X·, ·)τ , where
X is a boundary-integral operator and the arguments will be basis functions from either Wh

or Vh. In detail, as a consequence of (30), we have to compute

(
Vκϕh,ψh

)
0 =

∫
�

∫
�

Gκ(x,y)ϕh(x)ψh(y)dS(x)dS(y)

for piecewise constant functions ϕh and ψh, the similar expressions

(
Aκϕh,ψh

)
τ
=

∫
�

∫
�

Gκ(x,y)�h(x)µh(y)dS(x)dS(y)

for piecewise linear tangential vector fields, and(
B̃�h, vh

)
τ
=

∫
�

∫
�

(
�h(y)(n(x) ·gradxGκ(x,y)

−gradxGκ(x,y)(�h(y) ·n(x)))
)

vh(x)dS(x)dS(y)
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for piecewise constant ϕ and piecewise linear vh. For the case κ=0 the singular inner integral
can be evaluated analytically, whereas low-order Gauss quadrature can be applied to the outer
integrals [34, Section 4.3]. For general κ we remark that, for instance, Aκ −A0 is an integral
operator with an analytic kernel. Hence, low-order quadrature will also yield sufficient accu-
racy for the inner integral.

In order to resolve complicated geometries and to achieve sufficient accuracy, fine surface
meshes have to be used. More than 104 elements are not unusual. However, when (36) is
written as a system of linear equations, most matrices are dense. As a consequence, memory
requirements for merely storing the matrices will already exceed several GBytes. Therefore, a
compression technique must be applied to the different discrete boundary-integral operators.
This can be done by using the H2-matrix approximation [35]. The idea is to separate near-
field and far-field interactions: conventional evaluation is used for the near field, whereas mul-
tidimensional Chebychev interpolation is used to approximate the smooth kernel in the far
field by tensor-product polynomials. This amounts to an approximation of the discrete inte-
gral operator that can give sufficient accuracy, while dramatically reducing memory usage and
speeding up the evaluation of the discrete boundary-integral operators. Details and numer-
ical experiments can be found in [30]. We remark that there is a close relationship of the
H2-matrix technique and the fast multipole method for integral operators [36].

The compressed operators only permit us to evaluate their products with coefficient vec-
tor. Hence, the use of iterative solvers for (36) is mandatory. By separating real and imagi-
nary parts of the unknowns, we can convert (36) into a symmetric system of linear equations,
which can be solved by the conjugate residual method [37, Section 9.5]. Yet, since we tackle
integral equations of the first kind, the conditioning of the discrete system (36) will deteri-
orate on fine meshes: the iterative solver will stall unless a good preconditioner is supplied.
It turns out that using the diagonal of the system (36) is a good choice, see [15, Section 9].
Numerical investigations are reported in [34, Section 5.2].

7. Postprocessing

As we remarked in the introduction, getting approximate Cauchy data (uh,�h) might not be
the eventual goal of the computation. Thus, we have to figure out how to get (i) the total
Ohmic losses in �C , and (ii) the total force acting on �C .

Ohmic losses are the only mechanism for the dissipation of field energy in the eddy-cur-
rent model. Moreover, since all fields are harmonic in time, the total field energy inside �C
will not change over one period. Therefore, we get the averaged Ohmic losses by appealing to
Poynting’s theorem

P̄Ohm =−1
2
Re

{∫
�

(E ×H) ·n dS
}

= 1
2
ωIm

{
(u,�)τ

}
,

where we used u = γ−
DA = (iω)−1γ−

DE and �= 1/µcγ
−
N A = H × n. Therefore, we will approxi-

mate

P̄Ohm ≈ P̄ hOhm := 1
2ωIm (uh,�h)τ .

The error can be estimated by

P̄Ohm − P̄ hOhm = 1
2ωIm

{
(u,�−�h)τ + (u −uh,�h)τ

}
≤ 1

2ω
(‖u‖el ‖�−�h‖mag +‖u −uh‖el ‖�h‖mag

)
,
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where we have exploited the continuity of the pairing (·, ·)τ . This shows that P̄ hOhm will con-
verge at the same rate as observed for the Cauchy data.

To compute the total force on the conductor, we can resort to the magnetic Maxwell stress
tensor for linear materials [38, Section 6.7]

T :=B ·HT − 1
2 (B ·H) I, (37)

where, B and H denote the real, time-dependent fields. Ignoring the electric forces is con-
sistent with the eddy-current model, which rests on the assumption of negligible electric-field
energy. Next, we consider T on � and split both the magnetic induction B and H into tan-
gential and normal components, cf. [39, Section 6].

B(x)=Bn(x)n(x)+Bt(x), H(x)=Hn(x)n(x)+Ht(x), x ∈�.
Using the constitutive equation B=µ0H, that is valid in �′, we express

Hn(x)= 1
µ0

Bn, Bt(x)=µ0Ht.

and get on �

T(x)n(x)= 1
2

(
1
µ0

B2
n(x)−µ0|Ht|2

)
n(x)+Bn(x)Ht(x), x ∈�.

Hence, the total force on the conductor at a particular time is given by

Ftot =
∫
γ

T(y)n(y)dS(y)

=
∫
γ

1
2

(
1
µ0

B2
n(y)−µ0|Ht(y)|2

)
n(y)+Bn(y)Ht(y)dS(y).

Let us revert to complex amplitudes B and H, for which the averaged force over one period
is given by

F̄tot =
∫
γ

1
4

(
1
µ0

|Bn(y)|2 −µ0|Ht(y)|2
)

n(y)+ 1
2
Re {Bn(y)Ht(y)} dS(y).

From B=curlA we infer Bn=curl� u, where curl� stands for the scalar surface rotation (div�
applied to the rotated field). On the other hand, it is straightforward that Ht =−�×n. Thus,
we can rewrite

F̄tot =
∫
γ

(
1

4µ0
| curl� u(y)|2 − µ0

4
|�(y)|2

)
n(y)

− 1
2Re {curl� u(y) (�(y)×n(y))} dS(y).

(38)

Finally, we have expressed the total force in terms of quantities that occur as unknowns in the
variational problem (28). Now, it is straightforward how to compute an approximation of F̄tot

from the boundary-element solution (uh,�h). As far as the approximation error is concerned,
the same considerations apply as for the energy flux.

It is important to be aware that the force as given by (38) is by no means a continuous
functional in the natural trace norms, because the inclusions Xel(�)⊂L2(�) and Xmag(�)⊂
L2(�) do not hold (Compare the case to the Neumann trace space H−1/2(�) for second-order
elliptic problems). Of course, Equation (38) can easily be evaluated for the boundary-element
functions, but unlike in the case of the total energy flux, rates of convergence for F̄tot cannot
be inferred from (33).
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Remark 7.1. Formally, the expression under the integral in (38) is a surface-force density,
although this physical interpretation is dubious. However, one should remember the skin
effect that leads to an exponential decay of electromagnetic fields penetrating conductors. If
(ωσµ)−1/2 is small compared to the size of the conductor, an argument using a Gaussian
“pillbox” will show that the integrand can be viewed as a reasonable approximation of a sur-
face force density. �
Remark 7.2. We emphasize that approximations for the traces of the fields onto � are directly
available, because we have relied on a direct boundary element method. If an indirect method
had been used, it would have taken expensive post-processing, in order to get the same infor-
mation. �

Figure 3. Surface mesh �h for the sphere and inductor loop.

Figure 4. Comparison of analytical solution for equivalent surface current and solution obtained by impedance
model and symmetrically coupled boundary-element scheme. The current density along a meridian is plotted.
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8. Numerical results

In a numerical experiment, the conductor �C is a homogeneous sphere with radius 5 cm. A
surface impedance condition according to (12) is used. An exiting current of 1 kA with fre-
quency ω= 2π × 10 kHz is imposed in a thin loop circling the equator of the sphere. This
arrangement has been chosen, because an analytic solution of the eddy-current problem is
available. The surface mesh �h is displayed in Figure 3. It comprises 2214 faces, 3321 edges,
and 1109 vertices. Thus, a system of equations with 4430 complex unknowns has to be solved.

In Figure 4 the modulus of the equivalent surface current H ×n and its approximation �h

are plotted along a meridian of the sphere and for different material parameters σ and µr

inside �C . A good agreement of analytical and numerical solution can be observed, which
is hardly surprising, as for a smooth object like the sphere impedance boundary conditions
work well and a relatively coarse surface mesh already yields good approximation.

9. Conclusion

We have presented a direct boundary-element method for the time-harmonic, linear eddy-cur-
rent problem. This approach merely relies on a mesh on the surface of the conductor and is
not affected by boundary layers due to the skin effect. Its unknowns are related to approx-
imations of traces of physical fields on the surface of the conductor and for those it sup-
plies quasi-optimal Galerkin boundary-element solutions. Approximate total Ohmic losses and
forces can easily be recovered from the approximate surface traces.

A significant improvement of the method can be achieved by using a priori anisotropically
graded meshes adapted to the singular behaviour of the fields at edges and corners of the con-
ductors, cf. [40,41]. These field singularities are now well understood [42]. The authors are
convinced that combining the boundary-element method described in the article with a priori
adaptivity will yield a very efficient numerical method that will outperform approaches based
on discretizing three-dimensional volumes.
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