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Well-posedness and regularity for a
generalized fractional Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In this paper, we investigate a rather general system of two operator equations that has the
structure of a viscous or nonviscous Cahn–Hilliard system in which nonlinearities of double-well
type occur. Standard cases like regular or logarithmic potentials, as well as non-differentiable po-
tentials involving indicator functions, are admitted. The operators appearing in the system equa-
tions are fractional versions of general linear operators A and B, where the latter are densely
defined, unbounded, self-adjoint and monotone in a Hilbert space of functions defined in a smooth
domain and have compact resolvents. In this connection, we remark the fact that our definition
of the fractional power of operators uses the approach via spectral theory. Typical cases are
given by standard second-order elliptic differential operators (e.g., the Laplacian) with zero Dirich-
let or Neumann boundary conditions, but also other cases like fourth-order systems or systems
involving the Stokes operator are covered by the theory. We derive in this paper general well-
posedness and regularity results that extend corresponding results which are known for either the
non-fractional Laplacian with zero Neumann boundary condition or the fractional Laplacian with
zero Dirichlet condition. These results are entirely new if at least one of the operators A and B
differs from the Laplacian. It turns out that the first eigenvalue λ1 of A plays an important und
not entirely obvious role: if λ1 is positive, then the operators A and B may be completely unre-
lated; if, however, λ1 equals zero, then it must be simple and the corresponding one-dimensional
eigenspace has to consist of the constant functions and to be a subset of the domain of defini-
tion of a certain fractional power of B. We are able to show general existence, uniqueness, and
regularity results for both these cases, as well as for both the viscous and the nonviscous system.

1 Introduction

Let Ω ⊂ R3 denote a bounded, connected and smooth set and H be a Hilbert space of real-valued
functions defined on Ω. We investigate in this paper the abstract evolutionary system

∂ty + A2rµ = 0, (1.1)

τ∂ty +B2σy + f ′(y) = µ+ u, (1.2)

y(0) = y0, (1.3)

where A2r and B2σ, with r > 0 and σ > 0, denote fractional powers of the selfadjoint, monotone
and unbounded linear operators A and B, respectively, which are densely defined in H and have
compact resolvents. The above system can be seen as a generalization of the famous Cahn–Hilliard
system, which models a phase separation process taking place in the container Ω (the list [14,16,18,
21,22,30,35,38] combines basic references with some recent contribution on Cahn–Hilliard systems).
In this case, one typically has A2r = B2σ = −∆ with zero Neumann boundary conditions, and
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P. Colli, G. Gilardi, J. Sprekels 2

the unknown functions y and µ stand for the order parameter (usually a scaled density of one of
the involved phases) and the chemical potential associated with the phase transition, respectively.
Moreover, f denotes a double-well potential. Typical and physically significant examples for f are
the so-called classical regular potential, the logarithmic double-well potential , and the double obstacle
potential , which are given, in this order, by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.4)

flog(r) :=
(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c1r

2 , r ∈ (−1, 1), (1.5)

f2obs(r) := −c2r
2 if |r| ≤ 1 and f2obs(r) := +∞ if |r| > 1. (1.6)

Here, the constants ci in (1.5) and (1.6) satisfy c1 > 1 and c2 > 0, so that flog and f2obs are

nonconvex. In cases like (1.6), one has to split f into a nondifferentiable convex part β̂ (the indicator
function of [−1, 1], in the present example) and a smooth perturbation π̂. Accordingly, one has to
replace the derivative of the convex part by the subdifferential and interpret (1.2) as a differential
inclusion or, equivalently, as a variational inequality involving β̂ rather than its subdifferential. Actually,
we will do the latter in this paper. We also note that τ is a nonnegative parameter, where for the
classical Cahn–Hilliard system one has τ = 0 (the nonviscous case); in this paper, we will handle
both the nonviscous case τ = 0 and the viscous case τ > 0 simultaneously. Of course, better
regularity results are to be expected in the latter case.

Fractional operators are nowadays a very hot topic in the mathematical literature, and it occurs that
different variants of fractional operators may be considered and tackled. Let us perform some review
of contributions and results. The paper [32] deals with several definitions of the fractional Laplacian
(also known as the Riesz fractional derivative operator), which is a core example of a class of nonlocal
pseudodifferential operators appearing in various areas of theoretical and applied mathematics. In
connection with such fractional operators, fractional Sobolev spaces are revisited and discussed in
[19]. The contributions by Servadei and Valdinoci deserve some attention: in [40], a comparison is
made between the spectrum of two different fractional Laplacian operators, of which the second one
fits in our framework; the paper [41] discusses the regularity of the weak solution to the fractional
Laplace equation; the existence of nontrivial solutions for nonlocal semilinear Dirichlet problem is
established in [39]; a fractional counterpart to the well-known Brezis–Nirenberg result on the existence
of nontrivial solutions to elliptic equations with critical nonlinearities is provided in [42].

The paper [2] presents a construction of harmonic functions on bounded domains for the spectral
fractional Laplacian operator having a divergent profile at the boundary. In the contribution [13], a
nonlinear pseudodifferential boundary value problem is investigated in a bounded domain with ho-
mogeneous Dirichlet boundary conditions, where the square root of the negative Laplace operator
is involved. Regularity results and sharp estimates are proved in [15] for fractional elliptic equations.
A nonlocal diffusion operator having the fractional Laplacian as a special case is analyzed in [20]
on bounded domains, with respect to nonlocal interactions. Fractional Dirichlet and Neumann type
boundary problems associated with the fractional Laplacian are investigated in [28], by demonstrating
regularity properties with a spectral approach; this analysis is extended to the fractional heat equation
in [29]. Obstacle problems for the spectral fractional Laplacian are studied in [34]. By using the Caputo
variant of an integral operator with the Riesz kernel, the authors of [36, 37] prove regularity up to the
boundary for a Dirichlet-type boundary value problem and study the extremal solutions by extending
some well-known results on the extremal solutions when the operator is the Laplacian. Some nonlo-
cal problems involving the fractional p−Laplacian and nonlinearities at critical growth are examined
in [11].
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Well-posedness and regularity for a generalized fractional Cahn–Hilliard system 3

Fractional porous medium type equations are discussed in [8–10]. The paper [9] deals with exis-
tence, uniqueness and asymptotic behavior of the solutions to an integro-differential equation related
to porous medium equations in bounded domains; the problem does not have a separate boundary
condition, since zero boundary data are implicitly assumed in the definition of the operator. A priori
estimates for positive solutions of a porous medium equation are shown in [10], where the spectral
fractional Laplacian with zero Dirichlet boundary data is considered; it turns out that the results are
influenced by the first eigenvalue and eigenfunction. A quantitative study of nonnegative solutions of
the same equation is provided in [8], where the regularity theory is addressed: decay and positivity,
Harnack inequalities, interior and boundary regularity, and asymptotic behavior are investigated. Also
fractional Schrödinger equations are receiving a good deal of attention, see, e.g., [7] and references
therein.

There exist already quite a number of contributions dealing with nonlocal variants of the Cahn–Hilliard
system. In [1], the problem of well-posedness for a nonlocal Cahn–Hilliard equation is established
by interpreting the problem as a Lipschitz perturbation of a maximal monotone operator in a suitable
Hilbertk space. A fractional variant of the Cahn–Hilliard equation settled in a bounded domain and
complemented with homogeneous Dirichlet boundary conditions of solid type is introduced in [4]: ex-
istence and uniqueness of weak solutions to the related initial-boundary value problem are proved
and some significant singular limits are investigated as the order of either of the fractional Laplacians
appearing in the system approaches zero. Moreover, in the recent paper [5], for fixed orders of the
operators the convergence as time goes to infinity of each solution to a (single) equilibrium is proved.
In [3], the authors derive a fractional Cahn–Hilliard equation by considering a gradient flow in the neg-
ative order Sobolev space H−α, α ∈ [0, 1], where the choice α = 1 corresponds to the classical
Cahn–Hilliard equation, while the choice α = 0 recovers the Allen–Cahn equation; existence and
stability estimates are derived in the case where the nonlinearity is a quartic polynomial, as in (1.4).
The paper [26] addresses the nonlocal Cahn–Hilliard equation with a singular potential and a con-
stant mobility: among a class of results, in particular the authors can establish the validity of the strict
separation property in two dimensions. Another interesting analysis of a nonstandard and nonlocal
Cahn–Hilliard system can be found in [17]. Next, in [24] a non-local version of the Cahn–Hilliard equa-
tion characterized by the presence of a fractional diffusion operator, and which is subject to fractional
dynamic boundary conditions, is studied. The articles [23, 25] treat a doubly nonlocal Cahn–Hilliard
equation with special kernels in the operators: well-posedness results, along with regularity, long-time
behavior, and global attractors, are investigated in connection with the interaction between the two
levels of nonlocality in the operators.

In our approach, which we develop in the subsequent sections, we work with fractional operators
defined via spectral theory. This position enables us to deal with powers of a second-order elliptic
operator with either Dirichlet or Neumann or Robin boundary conditions, allowing us a wide setting
in this respect. Moreover, other operators, such as fourth-order ones or systems involving the Stokes
operator, can be covered by the theory.

The aim of the present paper is to prove general well-posedness and regularity theorems that extend
the corresponding results known for either the non-fractional Laplacian with zero Neumann boundary
condition or the fractional Laplacian with zero Dirichlet condition (cf. [3, 4]). In the development of the
theory, one realizes that the first eigenvalue λ1 of A plays an important und not entirely obvious role.
Indeed, it turns out that if λ1 is positive, then the operators A and B may be completely unrelated.
On the other hand, in the case when λ1 = 0, then we have to assume that λ1 is a simple eigenvalue
and that the corresponding one-dimensional eigenspace consists of constant functions, on which the
proper fractional power of B should operate. This set of assumptions looks like a heavy restriction,
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but let us notice that the framework is strongly related to the structure of the Cahn–Hilliard system with
the natural Neumann homogeneous boundary conditions (that exactly imply conservation of mass).
In conclusion, it will turn out that we are able to show well-posedness and regularity results for both
the abovementioned situations, as well as for both the viscous and the nonviscous system, under very
general assumptions for the convex parts of the potential f (see (1.4)–(1.6)).

Here is a brief outline of the paper. Section 2 contains a precise statement of the problem along with
assumptions and main results; some remarks commenting the results and introducing examples of
operators are also included. Section 3 is intended to present some auxiliary material about relations
among the involved spaces and properties of the operators; all this turns to be a useful toolbox for
the following analysis. Section 4 deals with the continuous dependence of the solution on the data,
while Section 5 introduces an approximating problem based on the Moreau–Yosida regularizations
of the convex functions and on an implicit time discretization of the system, which is fully discussed
concerning existence of the discrete solution and uniform a priori estimates for it. Section 6 brings the
existence proof, which is carried out by taking the limits with respect to the approximation parameters.
Finally, Section 7 is devoted to show the proper estimates ensuring the regularity properties for the
solution.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First of all, the set
Ω ⊂ R3 is assumed to be bounded, connected and smooth, with outward unit normal vector field ν
on Γ := ∂Ω. Moreover, ∂ν stands for the corresponding normal derivative. We use the notation

H := L2(Ω) (2.1)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product of H . Now, we start introducing
our assumptions. We first postulate that

A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are

unbounded monotone selfadjoint linear operators with compact resolvents. (2.2)

This assumption implies that there are sequences {λj} and {λ′j} of eigenvalues and orthonormal
sequences {ej} and {e′j} of corresponding eigenvectors, that is,

Aej = λjej, Be′j = λ′je
′
j and (ei, ej) = (e′i, e

′
j) = δij for i, j = 1, 2, . . . (2.3)

with δij denoting the Kronecker index, such that

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ λ′1 ≤ λ′2 ≤ . . . with lim
j→∞

λj = lim
j→∞

λ′j = +∞, (2.4)

{ej} and {e′j} are complete systems in H. (2.5)

The above assumptions onA andB allow us to define the powers ofA andB for an arbitrary positive
real exponent. As far as the first operator is concerned, we have

V r
A := D(Ar) =

{
v ∈ H :

∞∑
j=1

|λrj(v, ej)|2 < +∞
}

and (2.6)

Arv =
∞∑
j=1

λrj(v, ej)ej for v ∈ V r
A, (2.7)
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the series being convergent in the strong topology of H , due to the properties (2.6) of the coefficients.
In principle, we endow V r

A with the (graph) norm and inner product

‖v‖2
gr,A,r := (v, v)gr,A,r and (v, w)gr,A,r := (v, w) + (Arv,Arw) for v, w ∈ V r

A. (2.8)

This makes V r
A a Hilbert space. However, we can choose any equivalent Hilbert norm. Later on, we

actually will do that. In the same way, starting from (2.2)–(2.5) for B, we can define the power Bσ of
B for every σ > 0. We therefore set

V σ
B := D(Bσ), with the norm ‖ · ‖B,σ associated to the inner product

(v, w)B,σ := (v, w) + (Bσv,Bσw) for v, w ∈ V σ
B . (2.9)

If ri and σi are arbitrary positive exponents, it is clear that

(Ar1+r2v, w) = (Ar1v, Ar2w) for every v ∈ V r1+r2
A and w ∈ V r2

A , (2.10)

(Bσ1+σ2v, w) = (Bσ1v,Bσ2w) for every v ∈ V σ1+σ2
B and w ∈ V σ2

B . (2.11)

From now on, we assume:

r and σ are fixed positive real numbers. (2.12)

Accordingly, we introduce a space with a negative exponent. We set

V −rA := (V r
A)∗ for r > 0, (2.13)

and use the symbol 〈 · , · 〉A,r for the duality pairing between V −rA and V r
A. Moreover, we identify H

with a subspace of V −rA in the usual way, i.e., such that

〈v, w〉A,r = (v, w) for every v ∈ H and w ∈ V r
A. (2.14)

Next, we make the following assumption:

Either λ1 > 0 or 0 = λ1 < λ2 and e1 is a constant. (2.15)

If λ1 = 0, the constant functions belong to V σ
B . (2.16)

Remark 2.1. Let us comment on the assumptions (2.15). The meaning of the first case is clear, and
such a condition is satisfied by the more usual elliptic operators with Dirichlet boundary conditions
(however, also mixed boundary conditions could be considered, with proper definitions of the do-
mains of the operators), for instance: i) A is the Laplace operator −∆ with domain D(−∆) =
H2(Ω) ∩H1

0 (Ω); ii) A is the bi-harmonic operator ∆2 with domain: D(∆2) = H4(Ω) ∩H2
0 (Ω).

The second case of (2.15), where the strict inequality means that the first eigenvalue λ1 = 0 is sim-
ple, happens in the following important situations: i) A is the Laplace operator −∆ with Neumann
boundary conditions, which corresponds to the choice D(−∆) = {v ∈ H2(Ω) : ∂νv = 0}; ii) A
is the bi-harmonic operator ∆2 with the boundary conditions corresponding to the following choice
of the domain: D(∆2) = {v ∈ H4(Ω) : ∂νv = ∂ν∆v = 0}. Indeed, Ω is assumed to be bounded,
smooth and connected.

Remark 2.2. We point out that (2.16) is the only condition that involves both operators A and B,
i.e., if λ1 > 0, these operators are completely unrelated. However, we notice that the assump-
tion on the constant functions is rather mild. Indeed, it holds for many operators whose domain
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involves Neumann boundary conditions. This is the case, for instance, if B is the Laplace operator
with domain D(−∆) = {v ∈ H2(Ω) : ∂νv = 0}. On the contrary, if B = −∆ with domain
D(−∆) := H2(Ω) ∩ H1

0 (Ω), then D(B) does not contain any nonzero constant functions. How-
ever, V σ

B does contain every constant function provided that σ ∈ (0, 1/4), since it coincides with the
usual Sobolev-Slobodeckij space H2σ(Ω). Indeed, the spaces V r

A and V σ
B can be seen in the frame-

work of interpolation theory. However, we prefer to avoid this check and deduce all the results we
need from our definitions.

Remark 2.3. We have chosen to take H := L2(Ω) once and for all, for simplicity. However, it is
clear that our assumptions are rather close to an abstract situation and can be adapted to other choices
of the spaceH as well. For instance, one could deal with the Stokes operator with Dirichlet boundary
conditions, by taking for H the space of vector-valued functions v ∈ (L2(Ω))3 satisfying div v = 0
in the sense of distributions and defining the operator A as follows: an element v ∈ H belongs to
D(A) if and only if v ∈ (H1

0 (Ω))3 and ∆v := (∆vi) ∈ (L2(Ω))3; for v ∈ D(A), Av is the
L2-projection on H of −∆v. In this case, the first assumption of (2.15) is satisfied. Of course, the
hypotheses on the structure of the nonlinear terms to be introduced below would have to be adapted
to this new situation.

We use assumption (2.15) to define a different Hilbert norm on V r
A. We set, for v ∈ V r

A,

‖v‖2
A,r :=


‖Arv‖2 =

∞∑
j=1

|λrj(v, ej)|2 if λ1 > 0,

|(v, e1)|2 + ‖Arv‖2 = |(v, e1)|2 +
∞∑
j=2

|λrj(v, ej)|2 if λ1 = 0.

(2.17)

In the next section we will show that this norm is equivalent to the graph norm defined in (2.8), and we
always will use the norm (2.17) rather than (2.8). Of course, we will also use the corresponding inner
product in V r

A and norm in V −rA . They are given by

(v, w)A,r = (Arv,Arw) or (v, w)A,r = (v, e1)(w, e1) + (Arv, Arw),

depending on whether λ1 > 0 or λ1 = 0, for v, w ∈ V r
A, (2.18)

‖ · ‖A,−r is the dual norm of ‖ · ‖A,r. (2.19)

Remark 2.4. We notice that in the case λ1 = 0 of (2.15) the constant value of e1 is equal to one of
the numbers ±|Ω|−1/2, where |Ω| is the volume of Ω. It follows for every v ∈ H that the first term
(v, e1)e1 of the Fourier series of v is the constant function whose value is the mean value of v, i.e.,

mean v :=
1

|Ω|

∫
Ω

v , (2.20)

and that the first terms of the sums appearing in (2.17) and (2.18) are given by

|(v, e1)|2 = |Ω| (mean v)2 for every v ∈ H,
(v, e1)(w, e1) = |Ω| (mean v)(meanw) for every v, w ∈ H.

For the other ingredients of our system, we postulate the following properties:

τ is a nonnegative real number. (2.21)

β̂ : R→ [0,+∞] is convex, proper and l.s.c. with β̂(0) = 0. (2.22)
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π̂ : R→ R is of class C1 with a Lipschitz continuous first derivative. (2.23)

It holds lim inf
|s|↗+∞

β̂(s) + π̂(s)

s2
> 0. (2.24)

We can suppose that τ ≤ 1 without loss of generality. We remark that the assumptions (2.22)–(2.24)
are fulfilled by all of the important potentials (1.4)–(1.6). We set, for convenience,

β := ∂β̂, π := π̂′, Lπ = the Lipschitz constant of π, and L′π := Lπ + 1 . (2.25)

Moreover, we termD(β̂) andD(β) the effective domains of β̂ and β, respectively, and, for r ∈ D(β),
we use the symbol β◦(r) for the element of β(r) having minimum modulus. Notice that β is a maximal
monotone graph in R× R.

At this point, we can state the problem under investigation. On account of (2.10)–(2.11), we give a
weak formulation of the equations (1.1)–(1.2). Moreover, we present (1.2) as a variational inequality.
For the data, we make the following assumptions:

u ∈ H1(0, T ;H) (2.26)

y0 ∈ V σ
B and β̂(y0) ∈ L1(Ω) (2.27)

if λ1 = 0, m0 := mean y0 belongs to the interior of D(β). (2.28)

Notice that no condition on m0 is required if λ1 > 0. Then, we set

Q := Ω× (0, T ) (2.29)

and look for a pair (y, µ) satisfying

y ∈ H1(0, T ;V −rA ) ∩ L∞(0, T ;V σ
B ) and τ∂ty ∈ L2(0, T ;H), (2.30)

µ ∈ L2(0, T ;V r
A), (2.31)

β̂(y) ∈ L1(Q), (2.32)

and solving the system

〈∂ty(t), v〉A,r + (Arµ(t), Arv) = 0 for every v ∈ V r
A and a.e. t ∈ (0, T ), (2.33)

τ
(
∂ty(t), y(t)− v

)
+
(
Bσy(t), Bσ(y(t)− v)

)
+

∫
Ω

β̂(y(t)) +
(
π(y(t))− u(t), y(t)− v

)
≤
(
µ(t), y(t)− v

)
+

∫
Ω

β̂(v)

for every v ∈ V σ
B and a.e. t ∈ (0, T ), (2.34)

y(0) = y0 . (2.35)

Of course, it is understood that∫
Ω

β̂(v) = +∞ whenever β̂(v) /∈ L1(Ω).

A similar agreement also holds for integrals of the type
∫
Q
β̂(v) whenever v ∈ L2(Q) but β̂(v) /∈

L1(Q).
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Now, let us notice that (2.34) is equivalent to its time-integrated variant, that is,

τ

∫ T

0

(
∂ty(t), y(t)− v

)
dt+

∫ T

0

(
Bσy(t), Bσ(y(t)− v(t))

)
dt

+

∫
Q

β̂(y) +

∫ T

0

(
π(y(t))− u(t), y(t)− v(t)

)
dt

≤
∫ T

0

(
µ(t), y(t)− v(t)

)
dt+

∫
Q

β̂(v) for every v ∈ L2(0, T ;V σ
B ). (2.36)

We also remark that, if λ1 = 0, then Ar(1) = 0 by (2.15), so that (2.33) implies that

d

dt

∫
Ω

y(t) = 0 for a.a. t ∈ (0, T ), i.e., mean y(t) = m0 for every t ∈ [0, T ]. (2.37)

Finally, let us note that if λ1 = 0, then the condition (2.28) on m0 ensures the existence of some
δ0 > 0 satisfying

[m0 − δ0,m0 + δ0] ⊂ D(β). (2.38)

Remark 2.5. According to the definition of subdifferential (cf., e.g., [12] or [6]), the precise meaning
of the inequality (2.34) is that there exists some element χ ∈ L2(0, T ; (V σ

B )∗) such that

χ := µ− τ∂ty −B2σy − π(y) + u ∈ ∂Φ(y) a.e. in (0, T ),

where ∂Φ is the subdifferential of the convex function Φ : V σ
B → [0,+∞] defined by

Φ(v) :=

∫
Ω

β̂(v) if β̂(v) ∈ L1(Ω), Φ(v) := +∞ otherwise,

and actually the subdifferential ∂Φ is a maximal monotone operator from V σ
B to (V σ

B )∗. In this sense,
(2.34) turns out to be a slight generalization of (1.2).

Here is our well-posedness and continuous dependence result.

Theorem 2.6. Let the assumptions (2.2), (2.12), (2.15)–(2.16) and (2.21)–(2.24) on the structure of
the system, and (2.26)–(2.28) on the data, be fulfilled. Then there exists a unique pair (y, µ) satisfying
(2.30)–(2.32) and solving problem (2.33)–(2.35). Moreover, this solution satisfies the estimate

‖y‖H1(0,T ;V −rA )∩L∞(0,T ;V σB ) + ‖µ‖L2(0,T ;V rA) + ‖β̂(y)‖L1(Q) + ‖τ 1/2∂ty‖L2(0,T ;H) ≤ K1, (2.39)

with a constant K1 that depends only on the structure of the system, the norms of the data corre-
sponding to (2.26)–(2.27), the width δ0 satisfying (2.38) if λ1 = 0, and T . Moreover, if ui, i = 1, 2,
are two choices of u and (yi, µi) are the corresponding solutions, then we have

‖y1 − y2‖L∞(0,T ;V −rA )∩L2(0,T ;V σB ) + ‖τ 1/2(y1 − y2)‖L∞(0,T ;H) ≤ K2‖u1 − u2‖L2(0,T ;H), (2.40)

with a constant K2 that depends only on the operators Ar and Bσ, the Lipschitz constant Lπ, and T .

Remark 2.7. More generally, we could take two different initial values y0,1 and y0,2, by assuming
that they have the same mean value if λ1 = 0. Then, the right-hand side of (2.40) has to be modified
by adding two contributions involving d0 := y0,1 − y0,2, which are proportional to ‖d0‖A,−r and to
τ 1/2‖d0‖.
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Under additional assumptions on the data, we have stronger regularity results in both the viscous and
nonviscous cases. Namely, we also assume that either τ > 0 and

y0 ∈ V 2σ
B and β◦(y0) ∈ H (2.41)

or τ = 0 and

y0 ∈ V 2σ
B and ‖µλ0(t)‖A,r ≤M0, where (2.42)

µλ0(t) := B2σy0 + (βλ + π)(y0)− u(t), (2.43)

for some constant M0 and every sufficiently small λ > 0 and t > 0, βλ being the Yosida approxi-
mation of β at the level λ (see, e.g., [12, p. 28]). More precisely, it is assumed that the element µλ0(t)
(which is well defined by (2.43) due to the first assumption on y0) belongs to V r

A and satisfies the above
estimate. Of course, this assumption is very restrictive. However, we can give sufficient conditions for it.
One possibility is to assume that each of the four contributions to the right-hand side of (2.43) satisfies
bounds like (2.42), separately, and that Ar is a local operator in order to deal with the term βλ(y0).
For instance, if Ar is the Laplace operator with Dirichlet boundary conditions and β is single-valued
and smooth in the interior of its domain, then one can assume that y0 ∈ H2(Ω) ∩ H1

0 (Ω) and that
min y0 > inf D(β) and max y0 < supD(β). These assumptions keep βλ(y0) bounded in H2(Ω),
indeed.

Theorem 2.8. In addition to the assumptions of Theorem 2.6, suppose that either τ > 0 and (2.41)
or τ = 0 and (2.42)–(2.43) are fulfilled. Then the unique solution (y, µ) also satisfies the regularity
properties

∂ty ∈ L∞(0, T ;V −rA ) ∩ L2(0, T ;V σ
B ) and µ ∈ L∞(0, T ;V r

A) if τ ≥ 0, (2.44)

∂ty ∈ L∞(0, T ;H) and µ ∈ L∞(0, T ;V 2r
A ) if τ > 0, (2.45)

as well as the estimate

‖∂ty‖L∞(0,T ;V −rA )∩L2(0,T ;V σB ) + ‖µ‖L∞(0,T ;V rA)

+ ‖τ 1/2∂ty‖L∞(0,T ;H) + ‖τ 1/2µ‖L∞(0,T ;V 2r
A ) ≤ K3, (2.46)

with a constant K3 that depends only on the structure of the system, the norms of the data, the width
δ0 satisfying (2.38) if λ1 = 0, the constant M0 satisfying (2.42) if τ = 0, and T .

The remainder of the paper is organized as follows. The next section collects some notations and tools
that will prove to be useful in the sequel. The uniqueness and continuous dependence result is proved
in Section 4, while the existence of a solution and its regularity are proved in the last two Sections 6
and 7 and are prepared by the study of the approximating problem introduced in Section 5.

3 Auxiliary material

Here, we add some comments on the spaces defined in the previous section. Moreover, we introduce
some new spaces and operators, as well as some notations and properties concerning interpolating
functions. First of all, we stress the following facts:

The embeddings V r2
A ⊂ V r1

A ⊂ H are dense and compact for 0 < r1 < r2. (3.1)

The embeddings H ⊂ V −r1A ⊂ V −r2A are dense and compact for 0 < r1 < r2. (3.2)

The embeddings V σ2
B ⊂ V σ1

B ⊂ H are dense and compact for 0 < σ1 < σ2. (3.3)
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Let us comment on just the first embedding of (3.1), since the second one and (3.3) are similar
and (3.2) follows as a consequence of (3.1). The density is clear. For compactness, notice that
limj→∞ λ

r1−r2
j = 0, so that the mapping that to each {cj} ∈ `2 associates {λr1−r2j cj} is compact

from `2 into itself.

From the continuous embedding H ⊂ V −rA and the compact embedding V σ
B ⊂ H given by (3.2)–

(3.3), it follows that, for every δ > 0, there exists a constant cδ such that

‖v‖2 ≤ δ ‖Bσv‖2 + cδ‖v‖2
V −rA

for every v ∈ V σ
B . (3.4)

Proposition 3.1. The norms (2.8) and (2.17) on V r
A are equivalent.

Proof. Take any v ∈ H . Then, v can be represented in the form

v =
∞∑
j=1

cjej in H , where cj := (v, ej) for all j ∈ N,

and where the sequence {cj}j≥1 belongs to `2. On the other hand, by the definition of V r
A, Ar

and ‖ · ‖gr,A,r, we have, for every v ∈ H ,

v ∈ V r
A if and only if

∞∑
j=1

|λrjcj|2 < +∞, and ‖v‖2
gr,A,r = ‖v‖2 +

∞∑
j=1

|λrjcj|2.

Therefore, by recalling (2.17), we conclude that

‖v‖A,r ≤ ‖v‖gr,A,r.

Now, suppose that λ1 > 0. Then we have

λ2r
1 ‖v‖2 = λ2r

1

∞∑
j=1

|cj|2 ≤
∞∑
j=1

|λrjcj|2 = ‖Arv‖2,

since λj ≥ λ1 for every j, whence immediately

‖v‖2
gr,A,r = ‖v‖2 + ‖Arv‖2 ≤

( 1

λ2r
1

+ 1
)
‖Arv‖2 =

( 1

λ2r
1

+ 1
)
‖v‖2

A,r .

If, instead, λ1 = 0, then we recall that Ar(1) = 0 and thus

‖v‖2
gr,A,r ≤ 2‖mean v‖2

gr,A,r + 2‖v −mean v‖2
gr,A,r

= 2‖mean v‖2 + 2
(
‖v −mean v‖2 + ‖Ar(v −mean v)‖2

)
= 2|Ω| |mean v|2 + 2‖v −mean v‖2 + 2‖Arv‖2 .

Thus, on accout of Remark 2.4, the desired inequality follows if we prove that, for some constant
ĉ > 0, it holds the Poincaré type inequality

‖v‖ ≤ ĉ ‖Arv‖ for every v ∈ V r
A with mean v = 0. (3.5)

This is an easy consequence of the compact embedding V r
A ⊂ H (see (3.1)). However, we prove it

for the reader’s convenience. By contradiction, there exists a sequence {vn} in V r
A satisfying

‖vn‖ > n‖Arvn‖ and mean vn = 0 for every n ≥ 1.
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Clearly, we have that vn 6= 0, so that we can define wn := vn/‖vn‖. Then, ‖wn‖ = 1, ‖Arwn‖ <
1/n and meanwn = 0 for every n. In particular, {wn} is bounded in V r

A, whence we have

wnk → w weakly in V r
A

for some subsequence and some w ∈ V r
A. By the compact embedding V r

A ⊂ H , we infer that wnk
converges to w strongly in H , whence ‖w‖ = 1 and meanw = 0. On the other hand, we also
have that Arw = 0 since ‖Arwn‖ < 1/n for every n. Therefore, w is a constant. Hence, the above
conclusions ‖w‖ = 1 and meanw = 0 yield a contradiction.

At this point, we introduce the Riesz isomorphism Rr : V r
A → V −rA associated with the inner prod-

uct (2.18), which acts as follows:

〈Rrv, w〉A,r = (v, w)A,r for every v, w ∈ V r
A. (3.6)

Moreover, we set

V r
0 := V r

A and V −r0 := V −rA if λ1 > 0,

V r
0 := {v ∈ V r

A : mean v = 0} and V −r0 := {v ∈ V −rA : 〈v, 1〉A,r = 0} if λ1 = 0 . (3.7)

Proposition 3.2. The Riesz isomorphism Rr maps V r
0 onto V −r0 . Moreover, Rr extends to V r

0 the
restriction of A2r to V 2r

0 .

Proof. Let us deal with the first assertion. If λ1 > 0, there is nothing to prove. Thus, assume that
λ1 = 0. Then, on account of Remark 2.4, we have that

〈Rrv, w〉A,r = (v, e1)(w, e1) + (Arv,Arw) = |Ω| (mean v)(meanw) + (Arv, Arw)

for every v, w ∈ V r
A. In particular, if v ∈ V r

0 , then we have mean v = 0. Moreover, Ar(1) = 0 since
λ1 = 0. Hence,

〈Rrv, 1〉A,r = (Arv,Ar(1)) = 0 for every w ∈ V r
A.

This shows that Rrv ∈ V −r0 for every v ∈ V r
0 . Now, we fix any f ∈ V −r0 and prove that the element

v := R−1
r f of V r

A belongs to V r
0 . We have, indeed,

0 = 〈f, 1〉A,r = 〈Rrv, 1〉A,r = |Ω| (mean v)(mean 1) + (Arv,Ar(1)) = |Ω| mean v.

This concludes the proof of the first assertion of the statement. The second one means that, for
every v ∈ V 2r

0 , the elements Rrv ∈ V −rA and A2rv ∈ H coincide in the sense of the embedding
H ⊂ V −rA . Thus, we fix v ∈ V 2r

0 and w ∈ V r
A. In both cases λ1 > 0 and λ1 = 0 (in the latter since

mean v = 0), we have by the definition (2.18) of the inner product that

〈Rrv, w〉A,r = (Arv, Arw) =
∞∑
j=1

(
λrj(v, ej)

)(
λrj(w, ej)

)
=
∞∑
j=1

(
λ2r
j (v, ej)

)
(w, ej) = (A2rv, w) = 〈A2rv, w〉A,r .

As w ∈ V r
A is arbitrary, we conclude that Rrv = A2rv.
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Due to the above result, it is reasonable to use a proper notation for the restrictions of Rr and R−1
r to

the subspaces V r
0 and V −r0 , respectively. We set

A2r
0 := (Rr)|V r0 and A−2r

0 := (R−1
r )|V −r0

, (3.8)

where the index 0 means nothing if λ1 > 0 (since then V ±r0 = V ±rA ), while it reminds the zero mean
value condition in the case λ1 = 0. We thus have

A2r
0 ∈ L(V r

0 , V
−r

0 ), A−2r
0 ∈ L(V −r0 , V r

0 ) and A−2r
0 = (A2r

0 )−1 , (3.9)

〈A2r
0 v, w〉A,r = (v, w)A,r = (Arv,Arw) for every v ∈ V r

0 and w ∈ V r
A , (3.10)

〈f, A−2r
0 f〉A,r = ‖A−2r

0 f‖2
A,r = ‖f‖2

A,−r for every f ∈ V −r0 . (3.11)

Notice that (3.11) implies that

〈f ′, A−2r
0 f〉A,r =

1

2

d

dt
‖f‖2

A,−r a.e. in (0, T ), for every f ∈ H1(0, T ;V −r0 ). (3.12)

Proposition 3.3. We have(
ArA−2r

0 f, Arv) = 〈f, v〉A,r for every f ∈ V −r0 and v ∈ V r
A. (3.13)

Proof. We first notice that (ei, ej)A,r = (λri ei, λ
r
jej) = λ2r

j δij for i, j ≥ 2, so that the system
{λ−rj ej}j≥2 is orthonormal in V r

A. It follows that

the series
∑∞

j=2 cjej =
∑∞

j=2(λrjcj)(λ
−r
j ej) converges in V r

A

if and only if
∑∞

j=2 |λrjcj|2 < +∞ or
∑∞

j=1 |λrjcj|2 < +∞ .

On the other hand, if v ∈ V r
A, we have both

∞∑
j=1

|λrj(v, ej)|2 < +∞ and
∞∑
j=1

(v, ej)ej = v in H.

We conclude that
∞∑
j=1

(v, ej)ej = v in V r
A for every v ∈ V r

A. (3.14)

In particular, if we set, for convenience,

j0 = 1 if λ1 > 0 and j0 = 2 if λ1 = 0, (3.15)

then we have that
∞∑
j=j0

(v, ej)ej = v in V r
0 for every v ∈ V r

0 . (3.16)

Next, notice that ej ∈ V 2r
A ∩ V r

0 = V 2r
0 if j ≥ j0, whence, by Proposition 3.2,

A2r
0 ej = Rrej = A2rej = λ2r

j ej for every j ≥ j0.

Now, take any f ∈ V −r0 and set z := A−2r
0 f . Then z ∈ V r

0 so that (3.16) holds for z. Therefore,
since A2r

0 ∈ L(V r
0 , V

−r
0 ), we deduce that

f = A2r
0 z =

∞∑
j=j0

(z, ej)A
2r
0 ej =

∞∑
j=j0

λ2r
j (z, ej)ej in V −r0 ,
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whence also

〈f, ei〉A,r =
∞∑
j=j0

λ2r
j (z, ej)〈ej, ei〉A,r =

∞∑
j=j0

λ2r
j (z, ej)(ej, ei) = λ2r

i (z, ei) for every i ≥ j0.

Hence, the above series expansion becomes

f =
∞∑
j=j0

〈f, ej〉A,r ej in V −r0 for every f ∈ V −r0 . (3.17)

At this point, we can easily conclude. Indeed, on the one side, the formulas (3.17) and (3.14), combined
with A−2r

0 ∈ L(V −r0 , V r
0 ) and Ar ∈ L(V r

A, H), ensure that(
ArA−2r

0 f, Arv) =
(
ArA−2r

0

∑∞
j=j0
〈f, ej〉A,rej, Ar

∑∞
j=1(v, ej)ej

)
=
(∑∞

j=j0
〈f, ej〉A,r ArA−2r

0 ej,
∑∞

j=1(v, ej)A
rej

)
=
(∑∞

j=j0
〈f, ej〉A,rλ−rj ej,

∑∞
j=1(v, ej)λ

r
jej

)
=
∑∞

j=j0
〈f, ej〉A,r(v, ej)

= 〈f,
∑∞

j=j0
(v, ej)ej〉A,r for every f ∈ V −r0 , v ∈ V r

A.

On the other hand, the last expression is equal to 〈f, v〉A,r in both the cases λ1 > 0 and λ1 = 0,
since the assumption f ∈ V −r0 implies that 〈f, 1〉A,r = 0 in the latter.

Proposition 3.4. The operator A2r ∈ L(V 2r
A , H) can be extended in a unique way to a continuous

linear operator, still termed A2r, from V r
A into V −r0 . Moreover,

‖A2rv‖A,−r ≤ ‖Arv‖ for every v ∈ V r
A. (3.18)

Proof. For v ∈ V 2r
A and w ∈ V r

A, we have that

〈A2rv, w〉A,r = (A2rv, w) =
∞∑
j=1

(λ2r
j (v, ej))(w, ej)

=
∞∑
j=1

(λrj(v, ej))(λ
r
j(w, ej)) = (Arv,Arw) ≤ ‖v‖A,r‖w‖A,r .

We deduce that
‖A2rv‖A,−r ≤ ‖v‖A,r for every v ∈ V 2r

A .

This shows that the mapping V 2r
A 3 v 7→ A2rv ∈ V −rA is continuous if V 2r

A is endowed with the
topology induced by V r

A. On the other hand, V 2r
A is dense in V r

A (see (3.1)). Thus, the existence of a
unique extension A2r ∈ L(V r

A, V
−r
A ) follows, and we have

〈A2rv, w〉A,r = (Arv,Arw) for every v, w ∈ V r
A. (3.19)

We immediately infer that

|〈A2rv, w〉A,r| ≤ ‖Arv‖ ‖Arw‖ ≤ ‖Arv‖ ‖w‖A,r for every v, w ∈ V r
A,

whence (3.18) clearly follows. Thus, it remains to verify that A2rv ∈ V −r0 for every v ∈ V r
A if λ1 = 0

(since there is nothing to prove if λ1 > 0). For every v ∈ V r
A, we have

〈A2rv, 1〉A,r = (Arv,Ar(1)) = 0,

since λ1 = 0 implies that Ar(1) = 0 by (2.15). Hence, it turns out that A2rv ∈ V −r0 , as claimed.
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Proposition 3.5. For every f ∈ V −rA , we have the representations

‖f‖2
A,−r =

∞∑
j=1

|λ−rj 〈f, ej〉A,r|2 if λ1 > 0, (3.20)

‖f‖2
A,−r = |〈f, e1〉A,r|2 +

∞∑
j=2

|λ−rj 〈f, ej〉A,r|2 if λ1 = 0. (3.21)

Proof. Assume first that λ1 > 0 and set w := R−1
r f . Then the definition (2.17) yields that

‖w‖2
A,r =

∞∑
j=1

|λrj(w, ej)|2 .

On the other hand, by the definition of the Riesz operator Rr, we have that

〈Rrw, v〉A,r = (w, v)A,r = (Arw,Arv) =
∞∑
j=1

λ2r
j (w, ej)(v, ej) for every v ∈ V r

A.

In particular, it also holds the identity

〈f, ei〉A,r = λ2r
i (w, ei) for every i ≥ 1.

Therefore, by recalling (2.17), we deduce that

‖f‖2
A,−r = ‖w‖2

A,r =
∞∑
j=1

|λrj(w, ej)|2 =
∞∑
j=1

|λrj λ−2r
j 〈f, ej〉A,r|2 =

∞∑
j=1

|λ−rj 〈f, ej〉A,r|2 ,

that is, (3.20) is valid. If, instead, λ1 = 0, then the same calculation with λ1 replaced by 1 yields that

‖f‖2
A,−r = |(w, e1)|2 +

∞∑
j=2

|λ−rj 〈f, ej〉A,r|2.

On the other hand, we have that

〈f, e1〉A,r = 〈Rrw, e1〉A,r = (w, e1)A,r = (w, e1)(e1, e1) + (Arw,Are1) = (w, e1),

since Are1 = 0. Therefore, (3.21) follows as well.

Proposition 3.6. For every η > 0 and v ∈ V η
A , there holds the interpolation inequality

‖v‖ ≤ ‖v‖ϑA,η ‖v‖1−ϑ
A,−r, where ϑ =

r

r + η
. (3.22)

Proof. Set cj := (v, ej) for j ≥ 1, for brevity, and first assume that λ1 > 0. Then we have

‖v‖2
A,η =

∞∑
j=1

|ληj cj|2 and ‖v‖2
A,−r =

∞∑
j=1

|λ−rj cj|2,
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thanks to (3.20). Therefore, by using the Hölder inequality for infinite sums and noticing that (1 −
ϑ)r/ϑ = η, we find that

‖v‖2 =
∞∑
j=1

c2
j =

∞∑
j=1

λ
2(1−ϑ)r
j c2ϑ

j λ
−2(1−ϑ)r
j c

2(1−ϑ)
j

≤
( ∞∑
j=1

|λ2(1−ϑ)r
j c2ϑ

j |
1
ϑ

)ϑ( ∞∑
j=1

|λ−2(1−ϑ)r
j c

2(1−ϑ)
j |

1
1−ϑ

)1−ϑ

=
( ∞∑
j=1

|ληj cj|2
)ϑ( ∞∑

j=1

|λ−rj cj|2
)1−ϑ

= ‖v‖2ϑ
A,η ‖v‖

2(1−ϑ)
A,−r .

Assume now that λ1 = 0. Then the same calculation with λ1 replaced by 1 yields that

‖v‖2 =
∞∑
j=1

c2
j ≤

(
c2

1 +
∞∑
j=2

|ληj cj|2
)ϑ(

c2
1 +

∞∑
j=2

|λ−rj cj|2
)1−ϑ

= ‖v‖2ϑ
A,η ‖v‖

2(1−ϑ)
A,−r .

Hence, the inequality (3.22) holds true in any case.

Remark 3.7. By simply applying the above result and owing to the Hölder inequality, we deduce that

‖v‖L2(0,T ;H) ≤ ‖v‖ϑL2(0,T ;V ηA) ‖v‖
1−ϑ
L2(0,T ;V −rA )

for every v ∈ L2(0, T ;V η
A), (3.23)

with the same ϑ as in (3.22).

Now, we introduce some notations concerning interpolating functions.

Notation 3.8. Let N be a positive integer and Z be one of the spaces H , V r
A, V σ

B . We set h := T/N
and In := ((n − 1)h, nh) for n = 1, . . . , N . Given z = (z0, z1, . . . , zN) ∈ ZN+1, we define the
piecewise constant and piecewise linear interpolants

zh ∈ L∞(0, T ;Z), zh ∈ L∞(0, T ;Z) and ẑh ∈ W 1,∞(0, T ;Z)

by setting

zh(t) = zn and zh(t) = zn−1 for a.a. t ∈ In, n = 1, . . . , N, (3.24)

ẑh(0) = z0 and ∂tẑh(t) =
zn − zn−1

h
for a.a. t ∈ In, n = 1, . . . , N. (3.25)

For the reader’s convenience, we summarize the relations between the finite set of values and the
interpolants in the following proposition, whose proof follows from straightforward computation:

Proposition 3.9. With Notation 3.8, we have that

‖zh‖L∞(0,T ;Z) = max
n=1,...,N

‖zn‖Z , ‖zh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn‖Z , (3.26)

‖∂tẑh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖(zn+1 − zn)/h‖Z , (3.27)

‖zh‖2
L2(0,T ;Z) = h

N∑
n=1

‖zn‖2
Z , ‖zh‖2

L2(0,T ;Z) = h

N−1∑
n=0

‖zn‖2
Z , (3.28)

DOI 10.20347/WIAS.PREPRINT.2509 Berlin 2018



P. Colli, G. Gilardi, J. Sprekels 16

‖∂tẑh‖2
L2(0,T ;Z) = h

N−1∑
n=0

‖(zn+1 − zn)/h‖2
Z , (3.29)

‖ẑh‖L∞(0,T ;Z) = max
n=1,...,N

max{‖zn−1‖Z , ‖zn‖Z} = max{‖z0‖Z , ‖zh‖L∞(0,T ;Z)} , (3.30)

‖ẑh‖2
L2(0,T ;Z) ≤ h

N∑
n=1

(
‖zn−1‖2

Z + ‖zn‖2
Z

)
≤ h‖z0‖2

Z + 2‖zh‖2
L2(0,T ;Z) . (3.31)

Moreover, it holds that

‖zh − ẑh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn+1 − zn‖Z = h ‖∂tẑh‖L∞(0,T ;Z) , (3.32)

‖zh − ẑh‖2
L2(0,T ;Z) =

h

3

N−1∑
n=0

‖zn+1 − zn‖2
Z =

h2

3
‖∂tẑh‖2

L2(0,T ;Z) , (3.33)

and similar identities for the difference zh − ẑh. As a consequence, we have the inequalities

‖zh − zh‖L∞(0,T ;Z) ≤ 2h ‖∂tẑh‖L∞(0,T ;Z) , (3.34)

‖zh − zh‖2
L2(0,T ;Z) ≤

4h2

3
‖∂tẑh‖2

L2(0,T ;Z) . (3.35)

Finally, we have that

h
N−1∑
n=0

‖(zn+1 − zn)/h‖2
Z ≤ ‖∂tz‖2

L2(0,T ;Z)

if z ∈ H1(0, T ;Z) and zn = z(nh) for n = 0, . . . , N. (3.36)

Throughout the paper, we make use of the elementary identity and inequalities

a(a− b) =
1

2
a2 +

1

2
(a− b)2 − 1

2
b2 ≥ 1

2
a2 − 1

2
b2 for every a, b ∈ R, (3.37)

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (3.38)

and quote (3.38) as the Young inequality. We also take advantage of the summation by parts formula

k−1∑
n=0

an+1(bn+1 − bn) = akbk − a1b0 −
k−1∑
n=1

(an+1 − an)bn , (3.39)

which is valid for arbitrary real numbers a1, . . . , ak and b0, . . . , bk. We also account for the discrete
Gronwall lemma in the following form (see, e.g., [31, Prop. 2.2.1]): for nonnegative real numbers M
and an, bn, n = 0, . . . , N ,

ak ≤M +
k−1∑
n=0

bnan for k = 0, . . . , N implies

ak ≤M exp
(k−1∑
n=0

bn

)
for k = 0, . . . , N. (3.40)
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In (3.39)–(3.40) it is understood that a sum vanishes if the corresponding set of indices is empty.

Finally, we state a general rule that we follow throughout the paper as far as the constants are con-
cerned. We always use a small-case italic c without subscripts for different constants that may only
depend on the final time T , the operatorsAr andBσ, the shape of the nonlinearities β and π, and the
properties of the data involved in the statements at hand. Thus, the values of such constants do not
depend on τ , nor on the regularization parameter λ or the time step h we introduce in Section 5, and
it is clear that they might change from line to line and even in the same formula or chain of inequali-
ties. In contrast, we use different symbols (e.g., capital letters like M0 in (2.42)) for precise values of
constants we want to refer to.

4 Continuous dependence and uniqueness

This section is devoted to the proof of the uniqueness and the continuous dependence stated in
Theorem 2.6. More precisely, we prove just the continuous dependence, since uniqueness follows as
a consequence. Moreover, we consider only the case of the same initial datum, for simplicity. However,
the case of different initial data sketched in Remark 2.7 could be treated in the same way with only
minor changes.

We pick two data ui, i = 1, 2, and the corresponding solutions (yi, µi), and set for convenience
u := u1 − u2, y := y1 − y2 and µ := µ1 − µ2. Now, we write equation (2.33) at the time s for these
solutions and take the difference. Then, we test it by v = A−2r

0 y(s) by observing that y(s) ∈ V −r0

since y ∈ L2(0, T ;H) and mean y(s) = 0 if λ1 = 0 by the conservation property (2.37), so that
v is a well-defined element of V r

A. Moreover, A−2r
0 y ∈ L∞(0, T ;V r

A), since y ∈ L∞(0, T ;V −rA )
by (2.30). Integrating over (0, t) with respect to s, where t ∈ (0, T ) is arbitrary, we obtain the identity∫ t

0

〈∂ty(s), A−2r
0 y(s)〉A,r ds+

∫ t

0

(
Arµ(s), ArA−2r

0 y(s)
)
ds = 0 .

Now, we apply (3.12) and (3.13), noting that µ ∈ L2(0, T ;V r
A). Thus, the above identity becomes

1

2
‖y(t)‖2

A,−r +

∫ t

0

(y(s), µ(s)) ds = 0 (4.1)

where the duality product of (3.13) has been replaced by the inner product here, since both y and µ
are H-valued. At the same time, we write (2.34) for ui and (yi, µi), i = 1, 2, test them by y2 and y1,
respectively, add the resulting inequalities to each other, and integrate over (0, t) as before. Then, the

terms involving β̂ cancel out, and we obtain (after rearranging) that

τ

2
‖y(t)‖2 +

∫ t

0

‖Bσy(s)‖2 ds−
∫ t

0

(
µ(s), y(s)

)
ds

≤
∫ t

0

(
u(s), y(s)

)
ds −

∫ t

0

(
π(y1(s))− π(y2(s)), y(s)

)
ds .

By adding this to (4.1), and accounting for the Lipschitz continuity of π and the Schwarz and Young
inequalities, we deduce that (with L′π given by (2.25))

1

2
‖y(t)‖2

A,−r +
τ

2
‖y(t)‖2 +

∫ t

0

‖Bσy(s)‖2 ds ≤ 1

4

∫ t

0

‖u(s)‖2 ds+ L′π

∫ t

0

‖y(s)‖2 ds. (4.2)
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At this point, we recall the compacness inequality (3.4). Thus, we have that

L′π

∫ t

0

‖y(s)‖2 ds ≤ 1

2

∫ t

0

‖Bσy(s)‖2 ds+ c

∫ t

0

‖y(s)‖2
A,−r ds.

By combining this with (4.2) and applying the Gronwall lemma, we conclude that the desired estimate
(2.40) holds true with a constant K2 as in the statement.

5 Approximation

In this section we deal with an approximation of problem (2.33)–(2.35) and solve it by a time discretiza-
tion procedure. We first introduce the Moreau–Yosida regularizations β̂λ and βλ of β̂ of β at the level
λ > 0 (see, e.g., [12, p. 28 and p. 39]). By accounting for assumptions (2.22)–(2.24), we have

β̂λ(s) =

∫ s

0

βλ(s
′) ds′ and 0 ≤ β̂λ(s) ≤ β̂(s) for every s ∈ R. (5.1)

β̂λ(s) + π̂(s) ≥ α s2 − C
for some constants α,C > 0, every s ∈ R and λ > 0 small enough. (5.2)

Moreover, we recall that βλ is Lipschitz continuous, so that β̂λ grows at most quadratically, and that
the following properties hold true:

β̂λ′(s) ≥ β̂λ′′(s) if λ′ ≤ λ′′ and lim
λ↘0

β̂λ(s) = β̂(s) for every s ∈ R, (5.3)

|βλ(s)| ≤ |β◦(s)| for every s ∈ D(β). (5.4)

By replacing β̂ in (2.34) by β̂λ, we obtain the following system:

〈∂tyλ(t), v〉A,r + (Arµλ(t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ), (5.5)

τ
(
∂ty

λ(t), yλ(t)− v
)

+
(
Bσyλ(t), Bσ(yλ(t)− v)

)
+

∫
Ω

β̂λ(y
λ(t)) +

(
π(yλ(t))− u(t), yλ(t)− v

)
≤
(
µλ(t), yλ(t)− v

)
+

∫
Ω

β̂λ(v) for every v ∈ V σ
B and for a.a. t ∈ (0, T ), (5.6)

yλ(0) = y0. (5.7)

We stress that (5.6) is equivalent to both the time-integrated variational inequality

τ

∫ T

0

(
∂ty

λ(t), yλ(t)− v(t)
)
dt+

∫ T

0

(
Bσyλ(t), Bσ(yλ(t)− v(t))

)
dt

+

∫
Q

β̂λ(y
λ) +

∫ T

0

(
π(yλ(t))− u(t), yλ(t)− v(t)

)
dt

≤
∫ T

0

(
µλ(t), yλ(t)− v(t)

)
dt+

∫
Q

β̂λ(v) for every v ∈ L2(0, T ;V σ
B ), (5.8)

and the pointwise variational equation (since β̂λ is differentiable and βλ is its derivative)(
Bσyλ(t), Bσv

)
+
(
βλ(y

λ(t)) + π(yλ(t))− u(t), v
)

=
(
µλ(t), v

)
for every v ∈ V σ

B and for a.a. t ∈ (0, T ). (5.9)
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Theorem 5.1. Under the assumptions of Theorem 2.6, problem (5.5)–(5.7) has a unique solution
satisfying (2.30)–(2.31).

Uniqueness follows from Theorem 2.6, since βλ and β̂λ satisfy the properties we have postulated
for β and β̂. So, we just have to prove the existence of a solution, and the remainder of the section
is devoted to this proof. To this end, we solve a proper discrete problem and take the limits of the
interpolants as the time step tends to zero.

The discrete problem. We fix an integer N > 1 and set h := T/N . Then, the discrete problem
consists in finding two (N + 1)-tuples (y0, . . . , yN) and (µ0, . . . , µN) satisfying

y0 = y0 , µ0 = 0, (y1, . . . , yN) ∈ (V 2σ
B )N and (µ1, . . . , µN) ∈ (V 2r

A )N (5.10)

and solving

yn+1 − yn

h
+ µn+1 + A2rµn+1 = µn, (5.11)

τ
yn+1 − yn

h
+ (L′πI +B2σ + βλ + π)(yn+1) = L′πy

n + µn+1 + un+1, (5.12)

for n = 0, 1, . . . , N − 1, where I : H → H is the identity, L′π is given by (2.25), and

un := u(nh) for n = 0, 1, . . . , N. (5.13)

This problem can be solved inductively for n = 0, . . . , N − 1 in the following way: let (yn, µn) be
given in V σ

B × V 2r
A . We first rewrite the above equations in the form

h(I + A2r)µn+1 + yn+1 = yn + hµn, (5.14)

((L′π + (τ/h))I +B2σ + βλ + π)(yn+1) = (L′π + (τ/h))yn + µn+1 + un+1. (5.15)

Next, we observe that the operator Aλ := LπI+βλ+π : H → H is monotone and continuous. On
the other hand, the unbounded operator B2σ is monotone in H , and I + B2σ is surjective, whence
it follows that B2σ is maximal monotone. Therefore, the sum Aλ + B2σ is also maximal monotone
(see, e.g., [6, Cor. 2.1 p. 35]). It follows that (1 + (τ/h))I + Aλ + B2σ, i.e., the operator that acts
on yn+1 in (5.12), is surjective and one-to-one from V 2σ

B onto H . Therefore, (5.12) can be rewritten in
the equivalent form

yn+1 = (LhI +B2σ + βλ + π)−1
(
Lhy

n + µn+1 + un+1), (5.16)

where, for brevity, we have set Lh := L′π+(τ/h). By accounting for (5.14), we conclude that problem
(5.11)–(5.12) is equivalent to the system obtained by coupling (5.16) with the equation

h(I + A2r)µn+1 + (LhI +B2σ + βλ + π)−1
(
Lhy

n + µn+1 + un+1) = yn + hµn. (5.17)

Arguing as before, we see that the operator acting on µn+1 on the left-hand side of (5.17) is surjective
and one-to-one from V 2r

A onto H , so that the equation can be uniquely solved for µn+1 in V 2r
A .

Inserting the solution in (5.16), we directly find that yn+1 ∈ V 2σ
B .

Once the discrete problem is solved, we can start estimating. According to the general rule stated
at the end of Section 3, the (possibly different) values of the constants termed c are independent
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of the three parameters h, λ and τ . Moreover, we also express the bounds we find in terms of the
interpolants. According to Notation 3.8, and recalling that y0 = y0 ∈ V σ

B and that µ0 = 0 (see (2.27)
and (5.10)), we remark at once that the discrete problem also reads

ŷh ∈ W 1,∞(0, T ;V σ
B ), y

h
∈ L∞(0, T ;V σ

B ) and yh ∈ L∞(0, T ;V 2σ
B ), (5.18)

µ
h
, µh ∈ L∞(0, T ;V 2r

A ), (5.19)

∂tŷh + µh + A2rµh = µ
h

a.e. in (0, T ), (5.20)

τ ∂tŷh + (L′πI +B2σ + βλ + π)(yh) = L′πyh + µh + uh a.e. in (0, T ), (5.21)

ŷh(0) = y0 . (5.22)

First a priori estimate. We test (5.11) and (5.12) (by taking the scalar product in H) by hµn+1 and
yn+1−yn, respectively, and add the resulting identities. Noting an obvious cancellation, we obtain the
equation

h(µn+1 − µn, µn+1) + h(A2rµn+1, µn+1) +
τ

h
‖yn+1 − yn‖2

+ (B2σyn+1, yn+1 − yn) +
(
(L′πI + βλ + π)(yn+1), yn+1 − yn

)
= L′π(yn, yn+1 − yn) + (un+1, yn+1 − yn).

Now, we observe that the function r 7→ L′π
2
r2 + β̂λ(r) + π̂(r) is convex on R, since β̂λ is convex

and |π′| ≤ Lπ. Thus, we have that(
(L′πI + βλ + π)(yn+1), yn+1 − yn

)
≥ L′π

2
‖yn+1‖2 +

∫
Ω

(
β̂λ(y

n+1) + π̂(yn+1)
)
− L′π

2
‖yn‖2 −

∫
Ω

(
β̂λ(y

n) + π̂(yn)
)
.

By using this inequality and formulas (2.10)–(2.11), and applying the identity (3.37) in two terms on
the left-hand side and in the first one on the right-hand side, we deduce that

h

2
‖µn+1‖2 +

h

2
‖µn+1 − µn‖2 − h

2
‖µn‖2 + h‖Arµn+1‖2

+
τ

h
‖yn+1 − yn‖2 +

1

2
‖Bσyn+1‖2 +

1

2
‖Bσ(yn+1 − yn)‖2 − 1

2
‖Bσyn‖2

+
L′π
2
‖yn+1‖2 +

∫
Ω

(
β̂λ(y

n+1) + π̂(yn+1)
)
− L′π

2
‖yn‖2 −

∫
Ω

(
β̂λ(y

n) + π̂(yn)
)

≤ L′π
2
‖yn+1‖2 − L′π

2
‖yn‖2 − L′π

2
‖yn+1 − yn‖2 + (un+1, yn+1 − yn).

Then, we first rearrange and then sum up for n = 0, . . . , k − 1 with k ≤ N , employing summation
by parts (see (3.39)) in the last term. Using (5.3), we then arrive at the inequality

h

2
‖µk‖2 +

k−1∑
n=0

h

2
‖µn+1 − µn‖2 +

k−1∑
n=0

h‖Arµn+1‖2

+ τ

k−1∑
n=0

h
∥∥∥yn+1 − yn

h

∥∥∥2

+
1

2
‖Bσyk‖2 +

k−1∑
n=0

1

2
‖Bσ(yn+1 − yn)‖2

+

∫
Ω

(
β̂λ(y

k) + π̂(yk)
)
−
∫

Ω

(
β̂(y0) + π̂(y0)

)
+
L′π
2

k−1∑
n=0

‖yn+1 − yn‖2
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≤ (uk, yk)− (u1, y0)−
k−1∑
n=1

(un+1 − un, yn). (5.23)

Now, we observe that (5.2) implies that∫
Ω

(
β̂λ(y

k) + π̂(yk)
)
≥ 1

2

∫
Ω

(
β̂λ(y

k) + π̂(yk)
)

+
α

2
‖yk‖2 − c ,

for sufficiently small λ > 0. In particular, the above integral is bounded from below. We treat the right-
hand side of (5.23) by using the Young and Schwarz inequalities for finite sums, as well as (3.36). We
obtain

(uk, yk)− (u1, y0)−
k−1∑
n=1

(un+1 − un, yn)

≤ α

4
‖yk‖2 + c ‖uk‖2 + ‖y0‖2 + ‖u1‖2 +

k−1∑
n=1

h
∥∥∥un+1 − un

h

∥∥∥2

+
k−1∑
n=1

h‖yn‖2

≤ α

4
‖yk‖2 + ‖y0‖2 + c ‖u‖2

L∞(0,T ;H) + ‖∂tu‖2
L2(0,T ;H) +

k−1∑
n=1

h‖yn‖2.

By combining the last two estimates with (5.23) and (2.27) and recalling that L′π ≥ 1, we infer that

h

2
‖µk‖2 +

k−1∑
n=0

h

2
‖µn+1 − µn‖2 +

k−1∑
n=0

h‖Arµn+1‖2 + τ
k−1∑
n=0

h
∥∥∥yn+1 − yn

h

∥∥∥2

+
1

2
‖Bσyk‖2 +

α

4
‖yk‖2 +

1

2

∫
Ω

(
β̂λ(y

k) + π̂(yk)
)

+
k−1∑
n=0

1

2
‖Bσ(yn+1 − yn)‖2 +

1

2

k−1∑
n=0

‖yn+1 − yn‖2

≤
k−1∑
n=1

h‖yn‖2 + c .

Since this holds for k = 0, . . . , N , and as the last integral on the left-hand side is bounded from
below, we can apply the discrete Gronwall lemma (3.40) and conclude that

h ‖µk‖2 +
k−1∑
n=0

h

2
‖µn+1 − µn‖2 +

k−1∑
n=0

h‖Arµn+1‖2 + τ
k−1∑
n=0

h
∥∥∥yn+1 − yn

h

∥∥∥2

+ ‖yk‖2
B,σ +

∫
Ω

(
β̂λ(y

k) + π̂(yk)
)

+
k−1∑
n=0

‖Bσ(yn+1 − yn)‖2 +
k−1∑
n=0

‖yn+1 − yn‖2

≤ c for k = 0, . . . , N. (5.24)

In terms of the interpolants, by neglecting the first contribution and recalling that µ0 = 0, we have on
account of Proposition 3.9 that

‖µh − µh‖L2(0,T ;H) + ‖Arµh‖L2(0,T ;H) + ‖Arµ
h
‖L2(0,T ;H)

+ ‖y
h
‖L∞(0,T ;V σB ) + ‖yh‖L∞(0,T ;V σB ) + ‖ŷh‖L∞(0,T ;V σB )

+ τ 1/2‖∂tŷh‖L2(0,T ;H) + ‖β̂λ(yh) + π̂(yh)‖L∞(0,T ;L1(Ω))

+ h−1/2‖Bσ(yh − yh)‖L2(0,T ;H) + h−1/2‖yh − yh‖L2(0,T ;H) ≤ c . (5.25)
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Due to (2.23), we easily infer that ‖π̂(yh)‖L∞(0,T ;L1(Ω)) ≤ c (‖yh‖2
L∞(0,T ;H) + 1) ≤ c, whence we

deduce that
‖β̂λ(yh)‖L∞(0,T ;L1(Ω)) ≤ c . (5.26)

Second a priori estimate. By recalling (5.20) and applying Proposition 3.4, we immediately obtain

‖∂tŷh‖L2(0,T ;V −rA ) ≤ ‖µh − µh‖L2(0,T ;V −rA ) + ‖A2rµh‖L2(0,T ;V −rA )

≤ c ‖µ
h
− µh‖L2(0,T ;H) + c ‖Arµh‖L2(0,T ;H) .

Hence, (5.25) implies that
‖∂tŷh‖L2(0,T ;V −rA ) ≤ c . (5.27)

Consequence. By combining (5.25) and (5.27) with the application of (3.33) and its analogue to yh,
y
h

and ŷh, we deduce that

‖yh − ŷh‖L2(0,T ;V −rA ) + ‖y
h
− ŷh‖L2(0,T ;V −rA ) ≤ c h. (5.28)

Third a priori estimate. We want to improve the estimate for Arµh given by (5.25) and show that

‖µh‖L2(0,T ;V rA) + ‖µ
h
‖L2(0,T ;V rA) ≤ c . (5.29)

By recalling (2.15) and (2.17), we see that there is nothing to prove if λ1 > 0. On the contrary, if
λ1 = 0, we have to estimate the mean value of µh. Thus, we assume λ1 = 0 and first derive an
estimate of βλ(yh). To this end, we recall that m0 ∈ V σ

B by (2.16) and that we have postulated the
interior assumption (2.28). Then, we test (5.12) by yn+1 −m0 (see (2.28)) and use the inequality

βλ(s)(s−m0) ≥ δ0|βλ(s)| − C0, (5.30)

which holds for some C0 > 0 and every s ∈ R and λ ∈ (0, 1), where δ0 is the same as in (2.38)
(cf. [33, Appendix, Prop. A.1]; see also [27, p. 908] for a detailed proof). By partially using (5.24) as
well, we have∫

Ω

(
δ0|βλ(yn+1)| − C0

)
≤
∫

Ω

βλ(y
n+1)(yn+1 −m0)

= −τ
(yn+1 − yn

h
, yn+1 −m0

)
− L′π(yn+1 − yn, yn+1 −m0)

−
(
B2σyn+1, yn+1 −m0

)
−
(
π(yn+1), yn+1 −m0

)
+ (µn+1 + un+1, yn+1 −m0)

≤ c τ
∥∥∥yn+1 − yn

h

∥∥∥ (‖yn+1‖+ 1) + c(‖yn+1‖2 + ‖yn‖2 + 1) + c ‖un+1‖ (‖yn+1‖+ 1)

+
∣∣(B2σyn+1, yn+1 −m0

)∣∣+ (µn+1, yn+1 −m0)

≤ c τ
∥∥∥yn+1 − yn

h

∥∥∥+ c ‖un+1‖+ c

+
∣∣(B2σyn+1, yn+1 −m0

)∣∣+ (µn+1, yn+1 −m0) . (5.31)

We now estimate the last two terms. For the first one, we owe to assumption (2.16) just mentioned
and property (2.11). By recalling (5.24) once more, we see that∣∣(B2σyn+1, yn+1 −m0

)∣∣ =
∣∣(Bσyn+1, Bσyn+1 −Bσm0

)∣∣ ≤ c .
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We deal with the other term by first observing that (5.11) and the assumption λ1 = 0 in (2.15) imply
that

mean(yn+1 + hµn+1)−mean(yn + hµn) = − h

|Ω|
(Arµn+1, Ar(1)) = 0 ,

for n = 0, . . . , N −1, whence mean(yn+1 +hµn+1) = m0 for every n, since µ0 = 0 (see (5.10)).
Hence, by taking advantage of the the Poincaré inequality (3.5) and (5.24), we obtain the estimate

(µn+1, yn+1 −m0) = (µn+1 −meanµn+1, yn+1 −m0) + (meanµn+1, yn+1 −m0)

≤ ĉ ‖Arµn+1‖ ‖yn+1 −m0‖+ (meanµn+1,−hµn+1)

≤ c ‖Arµn+1‖ − |Ω|h (meanµn+1)2 ≤ c ‖Arµn+1‖ .

Therefore, (5.31) becomes

‖βλ(yn+1)‖L1(Ω) ≤ c
(
τ
∥∥∥yn+1 − yn

h

∥∥∥+ ‖un+1‖+ ‖Arµn+1‖+ 1
)
. (5.32)

Now, we square (5.32), multiply by h and sum up over n = 0, . . . , k − 1 with k ≤ N . We deduce
that

k−1∑
n=0

h‖βλ(yn+1)‖2
L1(Ω)

≤ c τ h
k−1∑
n=0

∥∥∥yn+1 − yn

h

∥∥∥2

+ c h
k−1∑
n=0

‖un+1‖2 + c h
k−1∑
n=0

‖Arµn+1‖2 + c .

Thanks to (5.24), the right-hand side is bounded, and we conclude that

‖βλ(yh)‖L2(0,T ;L1(Ω)) ≤ c . (5.33)

At this point, we simply integrate (5.21) over Ω and have a.e. in (0, T )

|Ω|meanµh = τ

∫
Ω

∂tŷh + L′π

∫
Ω

(yh − yh) +
(
Bσyh, B

σ(1)
)

+

∫
Ω

βλ(yh) +

∫
Ω

π(yh)−
∫

Ω

uh .

Thus, meanµh is bounded in L2(0, T ), thanks to (5.25), (5.33) and (2.26). This completes the proof
of the desired estimate (5.29) as far as µh is concerned. Since Arµ0 = Ar0 = 0 and µh − µh is
bounded in L2(0, T ;H) by virtue of (5.25), the same estimate holds for µ

h
. Hence, (5.29) holds also

in the case λ1 = 0.

Limit. Collecting the estimates (5.25)–(5.29), and using standard weak and weak-star compactness
results, we see that there are functions yλ and µλ such that

yh → yλ , y
h
→ yλ , and ŷh → yλ weakly star in L∞(0, T ;V σ

B ), (5.34)

∂tŷh → ∂ty
λ weakly in L2(0, T ;V −rA ), (5.35)

∂tŷh → ∂ty
λ weakly in L2(0, T ;H) if τ > 0, (5.36)

µh → µλ weakly in L2(0, T ;V r
A), (5.37)
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as h ↘ 0 (more precisely, as N → ∞), at least for some (not relabeled) subsequence, provided
that λ > 0 is small enough. By letting h tend to zero in (5.22), we see that yλ satisfies (5.7). Now, we
prove that

µ
h
→ µλ weakly in L2(0, T ;V r

A). (5.38)

By (5.25) and (5.37), it suffices to check that

L2(0,T ;V −rA )〈v, µh − µh〉L2(0,T ;V rA) → 0 as h↘ 0, (5.39)

for every v belonging to a dense subspace S of L2(0, T ;V −rA ), where we can take S = C1
c (0, T ;H)

since H is dense in V −rA (see (3.2)). So, we fix v ∈ C1
c (0, T ;H) and choose δ > 0 such that

v(t) = 0 for t ∈ [0, T ] \ (δ, T − δ). If h ∈ (0, δ/2), then we have

|L2(0,T ;V −rA )〈v, µh − µh〉L2(0,T ;V rA)| =
∣∣∣∫ T

h

(µh − µh)(t) v(t) dt
∣∣∣

=
∣∣∣∫ T

h

(
µh(t)− µh(t− h)

)
v(t) dt

∣∣∣ =
∣∣∣∫ T

h

µh(t) v(t) dt−
∫ T−h

0

µh(t) v(t+ h) dt
∣∣∣

=
∣∣∣∫ T−h

h

µh(t) (v(t)− v(t+ h)) dt
∣∣∣ ≤ ‖µh‖L2(0,T ;H) ‖v′‖L∞(0,T ;H) h

1/2 ,

and (5.39) follows. Therefore, (5.38) is proved and the pair (yλ, µλ) solves (5.5). In order to deal with
the nonlinear terms of (5.21), we owe to the compact embedding V σ

B ⊂ H (see (3.3)) and to well-
known strong compactness results (see, e.g., [43, Sect. 8, Cor. 4]). From (5.34)–(5.35) we deduce
that

ŷh → yλ strongly in L∞(0, T ;H). (5.40)

This and (5.25) (see the last term on the left-hand side) imply that

yh → yλ strongly in L2(0, T ;H). (5.41)

By Lipschitz continuity, we infer that also

(βλ + π)(yh)→ (βλ + π)(yλ) strongly in L2(0, T ;H).

Moreover, as we can assume that yh converges to yλ a.e. in Q and β̂λ grows at most quadratically,
we can also apply (5.26) and Fatou’s lemma to deduce that∫

Ω

β̂λ(y
λ(t)) ≤ lim inf

h↘0

∫
Ω

β̂λ(yh(t)) ≤ c for a.a. t ∈ (0, T ), (5.42)

whence

‖β̂λ(yλ)‖L∞(0,T ;L1(Ω)) ≤ c . (5.43)

Therefore, we can pass to the limit in the time-integrated version of (5.21) (written with time-dependent
test functions) and deduce that the pair (yλ, µλ) also solves (5.8), which is equivalent to (5.6). This
concludes the proof of Theorem 5.1.
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6 Existence

This section is devoted to the proof of the existence part of Theorem 2.6. Just by the semicontinuity of
the norms, all of the uniform estimates we have established for the interpolants of the discrete solution
hold true for the (unique) solution to the approximating problem. Therefore, from (5.25)–(5.27), (5.29)
and (5.43), we deduce that

‖yλ‖H1(0,T ;V −rA )∩L∞(0,T ;V σB ) + ‖µλ‖L2(0,T ;V rA)

+τ 1/2‖∂tyλ‖L2(0,T ;H) + ‖β̂λ(yλ)‖L∞(0,T ;L1(Ω)) ≤ c (6.1)

for λ > 0 small enough. We infer that there exist a strictly decreasing sequence λn ↘ 0 and a pair
(y, µ) satisfying, as n↗∞,

yλn → y weakly star in H1(0, T ;V −rA ) ∩ L∞(0, T ;V σ
B ) , (6.2)

µλn → µ weakly in L2(0, T ;V r
A) , (6.3)

∂ty
λn → ∂ty weakly in L2(0, T ;H) if τ > 0 . (6.4)

Then, it is immediately seen that (y, µ) solves (2.33) and that y satisfies the initial condition (2.35).
Now, we prove that the variational inequality (2.34) holds true as well. To this end, we first owe to the
compact embedding V σ

B ⊂ H (see (3.3)) and, e.g., to [43, Sect. 8, Cor. 4]), and deduce that we also
have, at least for another subsequence, that

yλn → y strongly in L∞(0, T ;H) and a.e. in Q. (6.5)

This implies that π(yλn) converges to π(y) in the same space, by Lipschitz continuity. Now, we use
(6.5) once more to show that ∫

Q

β̂(y) ≤ lim inf
n→∞

∫
Q

β̂λn(yλn) < +∞. (6.6)

We notice that the right-hand side of (6.6) actually is finite thanks to the bound for β̂λ(yλ) given

by (6.1). In particular, the requirement β̂(y) ∈ L1(Q) (see (2.32)) is fulfilled once the first inequality
of (6.6) is established. In order to prove it, we take arbitrary indices m and n with n > m. Then
λn < λm, and we can apply (5.3). We deduce that

β̂λm(yλn) ≤ β̂λn(yλn) a.e. in Q, for every n > m,

whence also (since β̂λm is continuous)

β̂λm(y) = lim
n→∞

β̂λm(yλn) = lim inf
n→∞

β̂λm(yλn) ≤ lim inf
n→∞

β̂λn(yλn) a.e. in Q.

On the other hand, we have, by virtue of the second property stated in (5.3),

β̂(y) = lim
m→∞

β̂λm(y) a.e. in Q. (6.7)

Thus,
β̂(y) ≤ lim inf

n→∞
β̂λn(yλn) a.e. in Q, (6.8)
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and (6.6) follows from Fatou’s lemma. Next, we have that∫ T

0

(
Bσy(t), Bσ(y(t)− v(t))

)
dt

≤ lim inf
n→∞

∫ T

0

(
Bσyλn(t), Bσyλn(t)

)
dt− lim

n→∞

∫ T

0

(
Bσyλn(t), Bσv(t)

)
dt

= lim inf
n→∞

∫ T

0

(
Bσyλn(t), Bσ(yλn(t)− v(t))

)
dt

for every v ∈ L2(0, T ;V σ
B ), since Bσyλ converges to Bσy weakly in L2(0, T ;H) by (6.2). At this

point, we can let n tend to infinity in (5.8) written with λ = λn. By also accounting for (6.3), (6.5)
and (5.3), we see that, for every v ∈ L2(0, T ;V σ

B ), we have∫
Q

β̂(y) +

∫ T

0

(
Bσy(t), Bσ(y(t)− v(t))

)
dt

≤ lim inf
n→∞

∫
Q

β̂λn(yλn) + lim inf
n→∞

∫ T

0

(
Bσyλn(t), Bσ(yλn(t)− v(t))

)
dt

≤ lim inf
n→∞

(∫
Q

β̂λn(yλn) +

∫ T

0

(
Bσyλn(t), Bσ(yλn(t)− v(t))

)
dt
)

≤ lim
n→∞

(∫ T

0

(
− τ∂tyλn(t)− π(yλn(t)) + u(t) + µλn(t), yλn(t)− v(t)

)
dt+

∫
Q

β̂λn(v)
)

=

∫ T

0

(
− τ∂ty(t)− π(y(t)) + u(t) +µ(t), y(t)− v(t)

)
dt+

∫
Q

β̂(v).

Thus, (2.36) holds true. Since (2.36) is equivalent to (2.34), the proof of Theorem 2.6 is complete.

7 Regularity

This section is devoted to the proof of Theorem 2.8. Coming back to the proofs of Theorems 2.6
and 5.1, we see that it is sufficient to establish some estimates on the solution to the discrete problem
in one of the forms (5.11)–(5.12) and (5.20)–(5.21), uniformly with respect to both h and λ. Of course,
we can account for the estimates proved in Section 5.

First regularity estimate. We prove the uniform estimate

‖Arµh‖L∞(0,T ;H) + ‖Bσ∂tŷh‖L2(0,T ;H) + τ 1/2‖∂tŷh‖L∞(0,T ;H) ≤ c , (7.1)

with a constant c that does not depend on h, λ and τ (like the constant K3 in the statement of the
theorem). We test (5.11) by µn+1 − µn. On account of (2.10), we obtain(yn+1 − yn

h
, µn+1 − µn

)
+ ‖µn+1 − µn‖2 +

(
Arµn+1, Ar(µn+1 − µn)

)
= 0. (7.2)

Now, we perform a discrete differentiation on (5.12). Precisely, we write it for both (yn, µn) and
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(yn−1, µn−1), take the difference, divide by h and rearrange. We have for 1 ≤ n < N

1

h

(
τ
yn+1 − yn

h
− τ y

n − yn−1

h

)
+ L′π

(yn+1 − yn

h
− yn − yn−1

h

)
+B2σ y

n+1 − yn

h
+

1

h

(
βλ(y

n+1)− βλ(yn)
)

=
µn+1 − µn

h
+
un+1 − un

h
− 1

h

(
π(yn+1)− π(yn)

)
and test this equality by yn+1 − yn. On account of (2.11), we obtain

τ
(yn+1 − yn

h
,
yn+1 − yn

h
− yn − yn−1

h

)
+ L′πh

(yn+1 − yn

h
,
yn+1 − yn

h
− yn − yn−1

h

)
+ h

∥∥∥Bσ y
n+1 − yn

h

∥∥∥2

+
1

h

(
βλ(y

n+1)− βλ(yn), yn+1 − yn
)

=
(µn+1 − µn

h
, yn+1 − yn−1

)
+
(un+1 − un

h
, yn+1 − yn

)
− 1

h

(
π(yn+1)− π(yn), yn+1 − yn

)
. (7.3)

Now, we add this to (7.2) and notice that two terms cancel each other and that the term involving βλ
is nonnegative by monotonicity. Thus, thanks to the identity (3.37), applying the Schwarz and Young
inequalities to the remaining terms on the right-hand side, and accounting for the Lipschitz continuity
of π, we deduce that

‖µn+1 − µn‖2 +
1

2
‖Arµn+1‖2 +

1

2
‖Ar(µn+1 − µn)‖2 − 1

2
‖Arµn‖2

+
τ

2

(∥∥∥yn+1 − yn

h

∥∥∥2

−
∥∥∥yn − yn−1

h

∥∥∥2)
+
τ

2

∥∥∥yn+1 − yn

h
− yn − yn−1

h

∥∥∥2

+ L′π
h

2

(∥∥∥yn+1 − yn

h

∥∥∥2

−
∥∥∥yn − yn−1

h

∥∥∥2)
+ L′π

h

2

∥∥∥yn+1 − yn

h
− yn − yn−1

h

∥∥∥2

+ h
∥∥∥Bσ y

n+1 − yn

h

∥∥∥2

≤ h

2

∥∥∥un+1 − un

h

∥∥∥2

+
h

2

∥∥∥yn+1 − yn

h

∥∥∥2

+
Lπh

2

∥∥∥yn+1 − yn

h

∥∥∥2

.

Summing up for n = 1, . . . , k − 1 with k ≤ N , and omitting a number of nonnegative terms on the
left-hand side, we infer that

1

2
‖Arµk‖2 +

τ

2

∥∥∥yk − yk−1

h

∥∥∥2

+
k−1∑
n=1

h
∥∥∥Bσ y

n+1 − yn

h

∥∥∥2

≤ 1

2
‖Arµ1‖2 +

τ

2

∥∥∥y1 − y0

h

∥∥∥2

+ L′π
h

2

∥∥∥y1 − y0

h

∥∥∥2

+
k−1∑
n=1

h
∥∥∥un+1 − un

h

∥∥∥2

+
L′π
2

k−1∑
n=1

h
∥∥∥yn+1 − yn

h

∥∥∥2

.
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At this point, we use (3.36), the compactness inequality (3.4) and the estimate (5.27), to control the
last two terms on the right-hand side:

k−1∑
n=1

h
∥∥∥un+1 − un

h

∥∥∥2

+
L′π
2

k−1∑
n=1

h
∥∥∥yn+1 − yn

h

∥∥∥2

≤ ‖∂tu‖2
L2(0,T ;H) +

1

2

k−1∑
n=1

h
∥∥∥Bσ y

n+1 − yn

h

∥∥∥2

+ c
k−1∑
n=1

h
∥∥∥yn+1 − yn

h

∥∥∥2

A,−r

= c+
1

2

k−1∑
n=1

h
∥∥∥Bσ y

n+1 − yn

h

∥∥∥2

+ c ‖∂tŷh‖2
L2(0,T ;A,−r) ≤

1

2

k−1∑
n=1

h
∥∥∥Bσ y

n+1 − yn

h

∥∥∥2

+ c .

Therefore, on account of Proposition 3.9, the above inequality becomes

‖Arµh‖2
L∞(0,T ;H) + τ

∥∥∥∂tŷh∥∥∥2

L∞(0,T ;H)
+ ‖Bσ∂tŷh‖2

L2(0,T ;H)

≤ c
(
‖Arµ1‖2 + τ

∥∥∥y1 − y0

h

∥∥∥2

+ h
∥∥∥y1 − y0

h

∥∥∥2

+ 1
)
, (7.4)

and (7.1) will follow whenever we estimate the right-hand side of (7.4). To this end, we write (5.11)
and (5.12) with n = 0. We also rearrange the latter, recall that y0 = y0 and µ0 = 0, and set for
convenience Aλ := L′πI + βλ + π. We have

y1 − y0

h
+ µ1 + A2rµ1 = 0 (7.5)

τ
y1 − y0

h
+ Aλ(y

1)−Aλ(y0) +B2σ(y1 − y0)

= µ1 +
(
u1 −B2σy0 − βλ(y0)− π(y0)

)
. (7.6)

Now, we test (7.5) by µ1 and (7.6) by (y1 − y0)/h = −(µ1 + A2rµ1), by choosing the first or
second expression according to our convenience. In view of (2.10)–(2.11), and noting that (Aλ(y

1)−
Aλ(y0), y1 − y0) ≥ 0 since βλ is monotone and Lπ is the Lipschitz constant of π, we obtain(y1 − y0

h
, µ1
)

+ ‖µ1‖2 + ‖Arµ1‖2 = 0 (7.7)

first, and then

τ
∥∥∥y1 − y0

h

∥∥∥2

+ h ‖Bσ(y1 − y0)‖2

≤
(
µ1,

y1 − y0

h

)
+
(
u1 −B2σy0 − βλ(y0)− π(y0),

y1 − y0

h

)
(7.8)

or, alternatively,

τ
∥∥∥y1 − y0

h

∥∥∥2

+ h ‖Bσ(y1 − y0‖2

≤
(
µ1,

y1 − y0

h

)
−
(
u1 −B2σy0 − βλ(y0)− π(y0), µ1 + A2rµ1

)
. (7.9)

Now, we distinguish the two cases of the statement of Theorem 2.8. We first assume τ > 0 and
(2.41). Then, we add (7.7) and (7.8), by noticing that two terms cancel each other. Moreover, we
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omit a nonnegative term on the left-hand side and use the Schwarz and Young inequalities on the
right-hand side. We then have that

‖µ1‖2 + ‖Arµ1‖2 + τ
∥∥∥y1 − y0

h

∥∥∥2

≤ τ

2

∥∥∥y1 − y0

h

∥∥∥2

+
1

2τ
‖u1 −B2σy0 − βλ(y0)− π(y0)‖2.

By accounting for (2.26), which implies that ‖u1‖ = ‖u(h)‖ ≤ c, (2.41) and (5.4), we see that the
last norm is bounded uniformly with respect to λ. Therefore, the right-hand side of (7.4) is bounded,
too. Now, we assume τ = 0 and (2.42)–(2.43). Then, we add (7.7) and (7.9) and similarly have that

‖µ1‖2 + ‖Arµ1‖2 ≤ −
(
u1 −B2σy0 − βλ(y0)− π(y0), µ1 + A2rµ1

)
≤ 1

2
‖µ1‖2 +

1

2
‖u1 −B2σy0 − βλ(y0)− π(y0)‖2

+
1

2
‖Arµ1‖2 +

1

2
‖Ar(u1 −B2σy0 − βλ(y0)− π(y0))‖2.

Hence, the sought bound is ensured by (2.42)–(2.43), since u1 = u(h). Therefore, (7.1) is established
in any case.

Consequence. By applying the compactness inequality (3.4), we obtain

‖∂tŷh(t)‖2 ≤ ‖Bσ∂tŷh(t)‖2 + c ‖∂tŷh(t)‖2
A,−r for a.a. t ∈ (0, T ).

On the other hand, we have that ‖∂tŷh‖L2(0,T ;V −rA ) ≤ c, by virtue of (5.27). Therefore, we deduce
from (7.1) that

‖∂tŷh‖2
L2(0,T ;H) ≤ ‖Bσ∂tŷh‖2

L2(0,T ;H) + c ‖∂tŷh‖2
L2(0,T ;V −rA )

≤ c ,

as well as
‖∂tŷh‖2

L2(0,T ;V σB ) = ‖∂tŷh‖2
L2(0,T ;H) + ‖Bσ∂tŷh‖2

L2(0,T ;H) ≤ c .

This implies that
∂ty ∈ L2(0, T ;V σ

B ) and ‖∂ty‖L2(0,T ;V σB ) ≤ c ,

which is a part of (2.44) and (2.46).

Second regularity estimate. We now prove the inequalities

‖µh‖L∞(0,T ;H) ≤ c and ‖µ
h
‖L∞(0,T ;H) ≤ c , (7.10)

the latter being a consequence of the former since µ0 = 0. If λ1 > 0, then ‖v‖ ≤ ‖Arv‖ for every
v ∈ V r

A, so that (7.1) also implies that

‖µh‖L∞(0,T ;H) ≤ c ‖Arµh‖L∞(0,T ;H) ≤ c ,

and the first claim of (7.10) is proved for the case λ1 > 0. In the case λ1 = 0, we only have (see
(2.17) and Remark 2.4)

‖µh −meanµh‖L∞(0,T ;H) ≤ c ‖Arµh‖L∞(0,T ;H) ≤ c .

Thus, in order to achieve (7.10), we have to estimate the mean value. To this end, we recall (5.32),
which can be written in the form

‖βλ(yh(t))‖L1(Ω) ≤ c
(
τ ‖∂tŷh(t)‖+ ‖uh(t)‖+ ‖Arµh(t)‖+ 1

)
≤ c for a.a. t ∈ (0, T ).
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From (7.1) and (2.26), we deduce that

‖βλ(yh)‖L∞(0,T ;L1(Ω)) ≤ c .

At this point, we simply integrate (5.21) over Ω to obtain, almost everywhere in (0, T ),

|Ω|meanµh = τ

∫
Ω

∂tŷh + L′π

∫
Ω

(yh − yh) +
(
Bσyh, B

σ(1)
)

+

∫
Ω

βλ(yh) +

∫
Ω

π(yh)−
∫

Ω

uh .

Thus, meanµh is bounded inL∞(0, T ) thanks to (5.25) and (2.26). This concludes the proof of (7.10).

Conclusion. From (7.1) and (7.10), we infer that

µ ∈ L∞(0, T ;V r
A) and ‖µ‖L∞(0,T ;V rA) ≤ c ,

which is another claim of (2.44) and (2.46). Moreover, by recalling (5.20) and Proposition 3.4, we
deduce that

‖∂tŷh‖L∞(0,T ;V −rA ) ≤ ‖A
2rµ̂h‖L∞(0,T ;V −rA ) + c ‖µ

h
− µh‖L∞(0,T ;H)

≤ ‖Arµ̂h‖L∞(0,T ;H) + c ≤ c ,

which yields that
∂ty ∈ L∞(0, T ;V −rA ) and ‖∂ty‖L∞(0,T ;V −rA ) ≤ c .

Now, we assume that τ > 0, in addition. Then (5.21), (2.46) and (7.10) give that

τ 1/2‖A2rµh‖L∞(0,T ;H) ≤ τ 1/2‖∂tŷh‖L∞(0,T ;H) + τ 1/2‖µ
h
− µh‖L∞(0,T ;H) ≤ c ,

whence

∂ty ∈ L∞(0, T ;H), µ ∈ L∞(0, T ;V 2r
A ) and ‖τ 1/2∂ty‖L∞(0,T ;H) + ‖τ 1/2µ‖L∞(0,T ;V 2r

A ) ≤ c .

This concludes the proof of Theorem 2.8.
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