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Probing the spectral density of a dissipative qubit via quantum synchronization
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The interaction of a quantum system, which is not accessible by direct measurement, with an external probe can
be exploited to infer specific features of the system itself. We introduce a probing scheme based on the emergence
of spontaneous quantum synchronization between an out-of-equilibrium qubit, in contact with an external
environment, and a probe qubit. Tuning the frequency of the probe leads to a transition between synchronization
in phase and antiphase. The sharp transition between these two regimes is locally accessible by monitoring the
probe dynamics alone and allows one to reconstruct the shape of the spectral density of the environment.
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I. INTRODUCTION

Probing individual quantum systems interacting with their
environments is instrumental for their exploitation and control
in many applications. Starting from the 1990s, different strate-
gies to probe the dynamical features of microscopic systems
have been implemented that infer oscillation frequency and
dissipation at the atomic level and in nanodevices either
optically or electrically [1–3].

A probe is a physical object interacting with a hardly
accessible or measurable complex system in such a way
that, by monitoring the probe itself, it is possible to extract
information about the system. Proposed schemes include,
but are not limited to, probing of temperature [4], work
distribution [5], non-Markovianity [6], Hamiltonian tomog-
raphy [7], phase transitions [8], excitation spectra [9], and
spectral densities [10].

Most techniques are hybrid, with the probe and the system
being different in their physical natures. Furthermore, the
probes are usually classical objects (for instance, laser beams).
An alternative approach consists of coupling two similar units,
one of them monitoring the other one. This happens, for
example, in the case of an ion (the system to be probed)
interacting with an auxiliary one confined in a trap, which
serves as a probe because it is more favorable for precision
spectroscopy [11]. As a second example, a boson (whose
dynamics is recorded) is used to probe the structure of a
complex bosonic network [12]. Indeed, the key question is
to establish which features of the system can be extracted
accessing only the probe and how favorable a scheme is.

In this paper, we propose to probe the evolution of a
single, dissipative, out-of-equilibrium qubit through a second
detuned qubit, exploiting the phenomenon of spontaneous
synchronization (SS). This is a paradigmatic and widely
explored phenomenon in physical, biological, chemical, and
social contexts [13–15], whose extension to the quantum world
has become the object of extensive studies during the last few
years. The initial approaches dealt with synchronization as a
response to an external driving field, a phenomenon known as
entrainment [16]. These studies were followed by the investi-
gation of quantum SS in mechanical resonators [17], harmonic
networks [18,19], coupled ultracold atomic gases [20], van der
Pol oscillators [21], cold ions in microtraps [22], ensembles of
quantum dipoles [23], and uncoupled spin systems dissipative
through a common environment [24].

The phenomenon of quantum SS is of twofold interest:
on the one hand, it naturally arises in extended systems due
to the interaction between their components that leads to
collective coherence, and on the other hand, it can serve as
a tool in different applications, an avenue open to exploration
with important antecedents for classical SS [25]. Here, we
demonstrate quantum SS in a system-probe setup (widening
what was found in previous works [19,24,26]) with an
interesting abrupt transition between synchronization in phase
and antiphase. This is exploited in a quantum probing scheme
where this sharp instability enables the reconstruction of the
dissipative qubit spectral density.

II. MODEL

Let us consider a qubit q immersed in an external dissipative
environment with the microscopic Hamiltonian

H0 = ωq

2
σ z

q +
∑

k

�ka
†
kak +

∑
k

gk(a†
k + ak)σx

q , (1)

with σ i
q (i = x,y,z) being Pauli matrices and bosonic bath

eigenmodes ak with energies �k (� is set to 1 throughout
the paper). The dissipative process is fully determined by
the spectral density J (ω) = ∑

k g2
k δ(ω − �k). Is it possible

to reconstruct the features of this dissipative qubit by coupling
it with another qubit (a quantum probe p) instead of directly
measuring it? We assume that the system and the probe interact
through an Ising-like coupling. Then, the total Hamiltonian is

H = H0 + ωp

2
σ z

p + λσx
q σ x

p . (2)

This kind of interaction has been experimentally reported in
different physical contexts [27–30]. The extension to the more
general class of anisotropic XY coupling would give similar
results. A schematic representation of the model is presented
in Fig. 1.

We point out that even though the environment directly
interacts with only the system qubit q, the effects over the full
qubit-probe system HS = ωq

2 σ z
q + ωp

2 σ z
p + λσx

q σ x
p need to be

accounted for in order to work out a master equation valid for
any system-probe coupling strength λ.

Assuming weak dissipation, the dynamics of the pair
of qubits can be studied in the Born-Markov and sec-
ular approximations with the Lindblad master equation
ρ̇(t) = −i[HS + HLS,ρ(t)] + D[ρ(t)], where the Lamb shift
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FIG. 1. Schematics of the model: a system q, interacting with its
own thermal environment, is connected to an external probe p.

HLS commutes with HS and D[ρ(t)] is the standard dissipa-
tor [31].

In order to calculate ρ(t), we diagonalize HS through
the standard Jordan-Wigner technique, which maps spins
into spinless fermions [32]. This leads to (see Appendix A)
HS = E1(η†

1η1 − 1/2) + E2(η†
2η2 − 1/2), with

2E1 =
√

4λ2 + ω2+ +
√

4λ2 + ω2−, (3)

2E2 =
√

4λ2 + ω2+ −
√

4λ2 + ω2−, (4)

where ω± = ωq ± ωp and the quasiparticle vacuum |0,0〉 is the
ground state. In terms of fermions, the operator σx

q appearing
in the system-bath Hamiltonian becomes

σx
q = cos(θ+ + θ−)(η†

1 + η1) + sin(θ+ + θ−)(η†
2 + η2), (5)

where θ± = arcsin(2λ/
√

4λ2 + ω2
± )/2. Under the secular

approximation, the dissipative part of the master equation is

D(ρ) =
2∑

i=1

γ̃ +
i L[ηi](ρ) +

2∑
i=1

γ̃ −
i L[η†

i ](ρ), (6)

with γ̃ +
1 = cos2(θ+ + θ−)J (E1)[1 + n(E1)], γ̃ −

1 = cos2(θ+ +
θ−)J (E1), γ̃ +

2 = sin2(θ+ + θ−)J (E2)[1 + n(E2)], and γ̃ −
2 =

sin2(θ+ + θ−)J (E2), where n(·) stands for the Bose factor and
the Lindblad superoperator is, as usual, L[X̂](ρ) = X̂ρX̂† −
{ρ̂,X̂†X̂}/2. We stress that the present master description is
also valid for strong coupling λ between probe and system
qubits (as long as the system-bath coupling is kept small)
and that we consider generic initial conditions (in contrast to
Refs. [33,34]). In this broader scenario, dynamical SS emerges
between detuned qubits [35] as described qualitatively and
analytically in the following.

III. QUANTUM SYNCHRONIZATION

The emergence of dissipation-induced quantum SS has
been discussed in the cases of bosons and noninteracting spins
in the presence of a common environment [18,19,24]. The
model we are discussing here shows a different scenario as SS
between the system qubit and the probe is predicted in spite of
the absence of a common bath (see Fig. 2).
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FIG. 2. Dynamical synchronization of 〈σx
q 〉 (red solid line) and

〈σ x
p 〉 (black dashed line) for ωp = 1.2 ωq and λ = 0.2 ωq . The

bath spectral density is Ohmic: J (ω) = 2 γ0 ω ω2
c/(ω2

c + ω2) with
cutoff frequency ωc = 20 ωq and γ0 = 10−2ωq and T = 0. The
initial state is |ψ(0)〉 = (|0〉 + |1〉)(|0〉 + |1〉)/2. The inset shows the
synchronization measure Cσx

p ,σx
q

(t) for ωp/ωq = 1.2 (black solid line),
ωp/ωq = 0.8 (red dashed line), and ωp/ωq = 1 (gray dotted line)
as examples of SS in phase and antiphase and the absence of SS,
respectively.

In the presence of competition between different oscillating
modes, synchronization is achieved whenever there is appre-
ciable separation between the two largest decay times charac-
terizing the dynamics. Then, slowly decaying local degrees of
freedom experience monochromatic oscillations at the same
surviving frequency, while the relative phases among them are
locked (see Appendix C). The argument can be made quanti-
tative by noticing that any observable O can be decomposed
in terms of its frequency jumps: O = ∑

ω O(ω) [31], where
O(ω) = ∑

ε 
(ε)O 
(ε + ω) and ε is the set of eigenvalues
of HS , while 
(ε) is the projection onto the corresponding
eigenspace. In the presence of degeneracy (which is the case
under study as there are pairs of transitions at energies E1

and E2) the time evolution in the Heisenberg picture takes the
general form 〈O(t)〉 = ∑

k,ω〈Ok(ω)〉e−iωt e−�k (ω)t , where the
index k spans the degeneracy subset. The normal operators
Ok(ω) are obtained by diagonalizing the dynamical equations
of motion within the degeneracy subspace. Taking any couple
of local observables O(1) and O(2), they will experience
synchronization if the smallest nonzero decaying rate �k̄ is
“seen” by both of them and, at the same time, is much
smaller than any other �k . While the presence of two separate,
identical environments may hinder synchronization [18], here,
the interaction with one local environment favors SS for
almost any choice of the system’s parameters; therefore, this
phenomenon is a robust feature of this model. Indeed, in
the proposed setup, strongly detuning the two spins favors
the emergence of SS, as it causes an imbalance among the
couplings of the eigenmodes of HS to the bath and then a
marked separation of the �k . This peculiar effect is desirable as,
otherwise, ascertaining the proper tuning of the probe would
be problematic for unknown system frequency.

The local variables we monitor are 〈σx
q (t)〉 and 〈σx

p (t)〉,
whose decomposition in terms of fermionic quasiparticles is
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given by Eq. (5) and by

σx
p = sin(θ+ − θ−)(η̃†

1 + η̃1) + cos(θ+ − θ−)(η̃†
2 + η̃2), (7)

with η̃i = Pηi , where P = (1 − 2η
†
1η1)(1 − 2η

†
2η2) is the

parity operator.
Due to the form of the dissipator, the quasiparticle operators

in the interaction picture obey

〈η̇i〉 = − 1
2 (γ̃ +

i + γ̃ −
i + 2γ̃ +

j + 2γ̃ −
j )〈ηi〉 − (γ̃ −

j − γ̃ +
j )〈η̃i〉,

〈 ˙̃ηi〉 = − 1
2 (γ̃ +

i + γ̃ −
i )〈η̃i〉, (8)

with i,j = 1,2 and i �= j . Then, after a transient, we
have 〈η̃i(t)〉 = 〈η̃i(0)〉 exp [−(γ̃ +

i + γ̃ −
i )t/2] together with

〈ηi(t)〉 ∼ 〈η̃i(t)〉 × (γ̃ −
j − γ̃ +

j )/(γ̃ −
j + γ̃ +

j ). The evolutions
simplify in the zero-temperature limit, when γ̃ −

i = 0, as in
this case

〈
σx

q (t)
〉 ∼ 2 cos(θ+ + θ−)e−γ̃ +

1 t/2Re[eiE1t 〈η̃1(0)〉]
+ 2 sin(θ+ + θ−)e−γ̃ +

2 t/2Re[eiE2t 〈η̃2(0)〉], (9)

〈
σx

p (t)
〉 ∼ 2 sin(θ+ − θ−)e−γ̃ +

1 t/2Re[eiE1t 〈η̃1(0)〉]
+ 2 cos(θ+ − θ−)e−γ̃ +

2 t/2Re[eiE2t 〈η̃2(0)〉]. (10)

Then, synchronization takes place whenever γ̃1 � γ̃2 or
γ̃1 � γ̃2. Apart from the special cases where the two decaying
rates are of the same order of magnitude, after the faster mode
has decayed, 〈σx

q 〉 and 〈σx
p 〉 oscillate at the same frequency

ωsync, with the synchronization frequency being close to either
E1 or E2 (up to the negligible correction Lamb shift). It turns
out that when ωsync 	 E1, the two spins are antisynchronized,
while they are synchronized when ωsync 	 E2. This is due
to the sign of the ratio between the trigonometric prefactors
entering Eqs. (9) and (10). Indeed, up to unobservable rota-
tions, 0 � θ+ � θ− � π/4. Then, we always have cos(θ+ +
θ−)/ sin(θ+ − θ−) � 0 and sin(θ+ + θ−)/ cos(θ+ − θ−) � 0.
The analysis is similar for temperature T �= 0, as detailed in
Appendix C. All the qualitative description given so far still
holds. However, we must take into account that, as all the decay
rates become faster, for very high temperature the dissipation
can become so fast with respect to the frequency that it may
become impossible to observe any oscillation. Then a natural
limit to observe synchronization is obtained by comparing the
smallest rate to the number of cycles needed to actually observe
SS. An example is given in Appendix C.

Synchronization between the two local observables
〈σx

p,q(t)〉 can be quantified by looking at their normalized time
correlation C [18,24] (alternative approaches [23,36] will be
discussed later). Given two time-dependent functions f and g,
it is defined as

Cf,g(t,�t) = δf δg√
δf 2 δg2

, (11)

where the bar stands for the time average

f = 1

�t

∫ t+�t

t

f (t ′)dt ′ (12)

performed over the time window �t and δf = f − f . An
absolute value of C close to 1 would indicate a high degree
of synchronization, while C ∼ 0 indicates the absence of syn-
chronization. In the inset of Fig. 2, we show both synchronized
and antisynchronized regimes as well as the absence of SS by
varying ωp.

IV. SYNCHRONIZATION AS A PROBING TOOL

We are now going to characterize a key feature for the prob-
ing scheme, namely, the dependence of the transition between
SS in phase and antiphase on the environment features. Let us
start from the case of a power-law spectrum J (ω) ∼ ωs with a
high-energy cutoff (later, we will discuss generic densities J ).
The condition for the absence of synchronization γ̃1/γ̃2 = 1 is
satisfied along a line in the ωp-s diagram which corresponds to

logĒ1/Ē2
tan2(θ̄+ + θ̄−) = s, (13)

where the bar indicates that all the parameters must
be calculated at a given probe frequency ωp = ω̄p.
Synchronization C as evaluated from the dynamical equations
is shown in Fig. 3(b) after a transient time. We see that it fits
the analytic prediction of Eq. (13) (white line) up to a slight
displacement due to the spectral cutoff. A second key aspect
for a probing scheme is that the presence of SS manifests itself
in the local dynamics of the probe. As we have anticipated
before, the sharp transition between in-phase and antiphase
SS leads also to a change in synchronization frequency. This is
a key feature represented in Fig. 3 that will be exploited in the
probing protocol in order to reconstruct the spectral density.

Assuming full control of the probe qubit (ωp and the cou-
pling λ), we need first to infer the unknown system frequency
ωq from the probe dynamics. This can be achieved either in
the transient dynamics or after synchronization arises. In the
first case, the two eigenfrequencies of HS can be measured
locally from the probe dynamics, e.g., monitoring 〈σx

p (t)〉 in

FIG. 3. (a) Synchronization frequency as a function of ωp/ωq for
s = 2 and (b) absolute value of Cσx

p ,σx
q

(t,τ ) as a function of ωp/ωq and
s for λ = 0.2 ωq and spectral density J (ω) = 2 γ0 ωs ω2

c/(ω2
c + ω2s).

The white line in (b) is the analytical solution of Eq. (13).
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FIG. 4. Absolute value of the Fourier transform F (ω) of 〈σx
p (t)〉.

The three panels refer to the three synchronization lines of Fig. 7:
(a) ωp/ωq = 0.8, (b) ωp/ωq = 1, and (c) ωp/ωq = 1.2. As in Fig. 7,
the bath is Ohmic, and λ = 0.2 ωq . The blue dotted lines are taken
calculating F (ω) during the time window T1 = {0, 110 ωq}, the red
dashed lines concern the time window T2 = {100, 210 ωq}, and,
finally, the black solid lines refer to T3 = {200, 310 ωq}.

the initial transient time window. The frequency spectrum
of the probe is peaked around two values corresponding to
E1,2, from which both ωq and the spin-spin coupling λ can
be inferred. Otherwise, after SS arises, oscillations become
monochromatic and last during a long transient: then the probe
signal 〈σx

p (t)〉 can be measured on the two sides of the in-phase
and antiphase synchronization. With these two measurements
at different probe frequencies, again, one can infer both ωq

and λ. Examples of probe frequency spectra are shown in
Fig. 4, where we show the typical form of the absolute value
of the Fourier transform F (ω) of 〈σx

p (t)〉 in the presence of
in-phase SS, in the absence of SS, and in the presence of
antiphase SS. The spectra are obtained from the signal in
different time windows, and after an initial transient the three
regimes are clearly recognized. During the first stage of the
dissipative dynamics, the presence of both the eigenmodes
can be clearly observed. Afterwards, in the case where
synchronization is not expected to take over [Fig. 4(b)] the
two peaks die with very similar time scales. In the other cases,
after a transient, one of the peaks is still present, while the
other has already disappeared.

We have now all the elements for a protocol to reconstruct
the whole profile J (ω) exploiting the critical behavior observed
in the passage from synchronization to antisynchronization,
across which a macroscopic frequency jump from E1 to E2

takes place. We have seen that in the case of a power-law

={ }

={ }

/

(
)(

)

FIG. 5. Absolute value of the Fourier transform F (ω) of 〈σx
p (t)〉

in the initial transient (black solid line) and after SS has occurred (red
dashed line). In the last case the peak linewidth can be determined.
In the case simulated here the system-bath coupling is stronger than
in the previous cases (γ0 = 2.5 × 10−2ωq ).

spectrum (Fig. 3), finding the value of the qubit energy split ω̄p

around which the discontinuity occurs allows us to determine
the value of s and then infer the complete shape of J (ω),
Eq. (13). What about generic spectral densities? In the absence
of any prior knowledge about the shape of the spectral density
J (ω), the value ω̄p gives us the value of the ratio J (E1)/J (E2).
In this case, a collection of different values of ω̄p can be
obtained by varying the system-probe coupling strength λ and
can then be used through numerical fit to complete the full
reconstruction of J (ω).

An approach generally used to reconstruct the spectral
density of a thermal bath consists of measuring the linewidth
of the frequency components of the dissipative system. Here,
however, we are discussing the case where q cannot be directly
accessed. Still, one can monitor the quantum probe linewidth,
relative, for instance, to the two-time correlation functions
〈σ+(0)σ−(τ )〉ss averaged over the steady state and then Fourier
transform it [37]. In this case the reconstruction of J (ω) is
limited by the precision in assessing such a FWHM in the
frequency peaks. In fact, the lack of a clear separation forbids
a precise FWHM measurement of such peaks, making the
precise estimation of the damping rates and the consequent
reconstruction of J (ω) difficult. The advantage of our proposed
scheme, instead, is that it is based on a switch detection: the
measurement upon which the probing is based needs only to
resolve a sharp transition in the frequency of the oscillatory
dynamics when tuning the probe [Fig. 3(a)]. As a further
consideration, SS can be of help also within standard probing
strategies, as it would filter out the fast-decaying mode and
make the linewidth evaluation possible, as displayed in Fig. 5.

Comparison with other synchronization indicators

With SS being the basis of this protocol, it is interesting to
assess the role played by the indicator chosen to characterize
it. In Ref. [36], the asymptotic mutual information (MI) was
proposed as an order parameter to discriminate the presence
of synchronization. However, this SS measure is not of help
in our case. Indeed, its failure is pretty evident for T = 0,
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where the asymptotic state depends on only the parameters of
HS , irrespective of the shape of J (ω). Furthermore, the MI
smoothly varies only as a function of ωp, without showing any
signature either of the critical behavior reported in Fig. 3(a)
or of the corresponding absence of synchronization shown in
Fig. 3(b). We have also checked the preasymptotic behavior of
the MI without finding any relationship with synchronization.
SS is sometimes also associated with the presence of classical
and quantum correlations. A similar approach was taken, for
instance, in Ref. [23], where synchronization was studied
between clouds of dipoles of different species (a and b).
There, the quantity 〈σa

+σb
−〉, averaged over all possible pairs

of dipoles, was used to infer the existence of a synchro-
nized phase. Although 〈σ (q)

+ σ
(p)
− 〉 does not need to coincide

with C, we found qualitative agreement between them (see
Appendix E).

V. CONCLUSIONS AND OUTLOOK

In this paper we have proposed a probing scheme for an
out-of-equilibrium system (namely, a dissipative qubit) based
on spontaneous synchronization. Possible implementations of
such a scheme, consisting of coupled spins and bosons, even
in the strong-coupling regime, are arrays of trapped ions [38]
or setups with superconducting circuits and qubits [39].
Quantum simulation of the phase-antiphase transition could be
observed by employing ultracold atoms in optical lattices [40],
adding local dissipation to a two-site effective spin chain
as proposed in Ref. [41]. The problem of characterizing
the dynamics of dissipative two-level fluctuators of unclear
physical origin is especially important in superconducting
quantum bit circuits based on Josephson phase junctions [42].
An external qubit was used to probe the temperature of
such two-level systems in Ref. [43]. More recently, their
dissipative dynamics was probed by monitoring the Josephson
phase qubit using standard interferometric techniques [44].
The protocol presented in this paper would offer an alternative
route to performing this kind of task based on a simple switch
measurement.
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APPENDIX A: MODEL

Let us consider two interacting spins, whose free Hamilto-
nian reads

HS = ωq

2
σ z

q + ωp

2
σ z

p + λσx
q σ x

p , (A1)

and assume that the qubit q is immersed in a bosonic
environment through

HI =
∑

k

γk(a†
k + ak)σx

q . (A2)

HS can be diagonalized through the Jordan-Wigner trans-
formation that, in the case of two qubits, reads

σ z
q = 1 − 2c

†
1c1, (A3)

σ z
p = 1 − 2c

†
2c2, (A4)

σx
q = c

†
1 + c1, (A5)

σx
p = (1 − 2c

†
1c1)(c†2 + c2). (A6)

In the new fermionic space, the system Hamiltonian is

HS = ωq

2
(1 − 2c

†
1c1) + ωp

2
(1 − 2c

†
2c2)

+ λ (c†1 − c1)(c†2 + c2). (A7)

The diagonalization is then obtained by combining the Bogoli-
ubov transformation

c1 = cos θ+ξ1 + sin θ+ξ
†
2 , (A8)

c2 = cos θ+ξ2 − sin θ+ξ
†
1 , (A9)

together with the rotation

ξ1 = cos θ−η
†
1 + sin θ−η

†
2, (A10)

ξ2 = cos θ−η
†
2 − sin θ−η

†
1. (A11)

The conditions that bring HS to its diagonal form

HS = E1(η†
1η1 − 1/2) + E2(η†

2η2 − 1/2) (A12)

are

tan 2θ+ = 2λ

�
(A13)

and

tan 2θ− = 2λ

δ
, (A14)

where � = √
4λ2+(ωq+ωp)2 and δ = √

4λ2+(ωq−ωp)2. Fi-
nally, the single-fermion energies are given by E1 = (� +
δ)/2 and E2 = (� − δ)/2.

APPENDIX B: MASTER EQUATION

In terms, of fermionic quasiparticles, the system operator
σx

q entering in HI , written in the interaction picture with
respect to HS , admits the simple form

σ̃ x
q (t) = cos(θ+ + θ−)(η†

1e
iE1t + η1e

−iE1t )

+ sin(θ+ + θ−)(η†
2e

iE2t + η2e
−iE2t ). (B1)

Then, under the secular approximation, the dissipative part of
the master equation will be simply given by the sum of terms

052121-5



GIORGI, GALVE, AND ZAMBRINI PHYSICAL REVIEW A 94, 052121 (2016)

in which each term corresponds to one of the frequencies
±Ei [31]:

D(ρ) = cos2(θ+ + θ−)γ (E1)
[
η1ρη

†
1 − 1

2 {η†
1η1,ρ}]

+ cos2(θ+ + θ−)γ (−E1)
[
η
†
1ρη1 − 1

2 {η1η
†
1,ρ}]

+ sin2(θ+ + θ−)γ (E2)
[
η2ρη

†
2 − 1

2 {η†
2η2,ρ}]

+ sin2(θ+ + θ−)γ (−E2)
[
η
†
2ρη2 − 1

2 {η2η
†
2,ρ}].

(B2)

Here, we have defined

γ (Ei) = 2πJ (Ei)[1 + n(Ei)], (B3)

γ (−Ei) = 2πJ (Ei)n(Ei), (B4)

where n(x) = 1/(ex/T − 1) and T is the temperature in units
of the Boltzmann constant.

It is useful to absorb the trigonometric factors
in Eq. (B2) and define the decay rates γ̃ +

1 =
cos2(θ+ + θ−)J (E1)[1 + n(E1)], γ̃ −

1 = cos2(θ+ + θ−)J (E1),
γ̃ +

2 = sin2(θ+ + θ−)J (E2)[1 + n(E2)], and γ̃ −
2 = sin2

(θ+ + θ−)J (E2). Then, we can write a complete set of
equations of motion for the density-matrix elements of the
system in the fermionic basis. In the interaction picture with
respect to HS we have the following blocks of equations
relevant for SS:

dρ00,01

dt
= γ̃ +

1 ρ10,11 − 1

2
(2γ̃ −

1 + γ̃ +
2 + γ̃ −

2 )ρ00,01, (B5)

dρ10,11

dt
= γ̃ −

1 ρ00,01 − 1

2
(2γ̃ +

1 + γ̃ +
2 + γ̃ −

2 )ρ10,11, (B6)

dρ00,10

dt
= γ̃ +

2 ρ01,11 − 1

2
(2γ̃ −

2 + γ̃ +
1 + γ̃ −

1 )ρ00,10, (B7)

dρ01,11

dt
= γ̃ −

2 ρ00,10 − 1

2
(2γ̃ +

2 + γ̃ +
1 + γ̃ −

1 )ρ01,11, (B8)

together with their conjugate equations.

APPENDIX C: SPONTANEOUS SYNCHRONIZATION

We need to study the evolution of
〈
σx

q (t)
〉 = cos(θ+ + θ−)Tr[(η†

1 + η1)ρ(t)]

+ sin(θ+ + θ−)Tr[(η†
2 + η2)ρ(t)] (C1)

and 〈
σx

p (t)
〉 = − cos(θ+ − θ−)Tr[P(η†

2 − η2)ρ(t)]

− sin(θ+ − θ−)Tr[P(η†
1 − η1)ρ(t)], (C2)

where P = (1 − 2η
†
1η1)(1 − 2η

†
2η2) is the parity operator.

We have

〈η†
1 + η1〉 = (ρ00,10 + ρ10,00) + (ρ01,11 + ρ11,01),

〈η†
2 + η2〉 = (ρ00,01 + ρ01,00) + (ρ10,11 + ρ11,10),

〈P(η†
1 − η1)〉 = −(ρ00,10 + ρ10,00) + (ρ01,11 + ρ11,01),

〈P(η†
2 − η2)〉 = −(ρ00,01 + ρ01,00) + (ρ10,11 + ρ11,10).

Considering, for instance, Eqs. (B5) and (B6), the two decay
rates are (γ̃ +

2 + γ̃ −
2 )/2 and (γ̃ +

2 + γ̃ −
2 )/2 + (γ̃ +

1 + γ̃ −
1 ). Then,

it is immediately possible to find the slowest one. After the
first transient, the evolution of these matrix elements (now
we also consider, apart from the negligible Lamb shift, the
Hamiltonian part of the evolution) is given by

ρ00,01(t) ∼ eiE2t e−(γ̃ −
2 +γ̃ +

2 )t/2 γ +
1

γ −
1 + γ +

1

[ρ10,11(0) + ρ00,01(0)],

(C3)

ρ10,11(t) ∼ eiE2t e−(γ̃ −
2 +γ̃ +

2 )t/2 γ −
1

γ −
1 + γ +

1

[ρ10,11(0) + ρ00,01(0)]

(C4)

and

ρ00,10(t) ∼ eiE1t e−(γ̃ −
1 +γ̃ +

1 )t/2 γ +
2

γ −
2 + γ +

2

[ρ01,11(0) + ρ00,10(0)],

(C5)

ρ01,11(t) ∼ eiE1t e−(γ̃ −
1 +γ̃ +

1 )t/2 γ −
2

γ −
2 + γ +

2

[ρ01,11(0) + ρ00,10(0)].

(C6)

Combining these elements, we have

〈
σx

q (t)
〉 ∼ 2 cos(θ+ − θ−)e−(γ̃ −

1 +γ̃ +
1 )t/2

× Re{eiE1t [ρ01,11(0) + ρ11,10(0)]}
+ 2 sin(θ− − θ−)e−(γ̃ −

2 +γ̃ +
2 )t/2

× Re{eiE2t [ρ10,11(0) + ρ00,01(0)]} (C7)

and

〈σx
p (t)〉 ∼ 2

sin(θ+ − θ−)

coth[E2/(2T )]
e−(γ̃ −

1 +γ̃ +
1 )t/2

× Re{eiE1t [ρ01,11(0) + ρ11,10(0)]}

+ 2
cos(θ+ − θ−)

coth[E1/(2T )]
e−(γ̃ −

2 +γ̃ +
2 )t/2

× Re{eiE2t [ρ10,11(0) + ρ00,01(0)]}. (C8)

The zero-temperature limit of these expressions is given in
the main text. The temperature effect over synchronization is
illustrated in Fig. 6

APPENDIX D: SYNCHRONIZATION DIAGRAM

Unlike the case of a common bath [18,19,24], here, the
emergence of synchronization is favored by a strong detuning
between the dissipative qubit and the probe. This is illustrated
for the case of an Ohmic environment in Fig. 7. This result can
be explained by observing that the system operator interacting
with the bath σx

q can induce two kinds of transitions (at
frequencies Ei) between the eigenmodes. In the presence
of strong detuning, the matrix elements corresponding to
the two transitions have highly unbalanced weights. This
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−

−

( − )

FIG. 6. Dynamical synchronization as a function of the temper-
ature. The probe frequency is set to ωp/ωq = 0.8 (see Fig. 2) for the
initial state and the bath. The red dashed line is the one obtained at
T = 0. It is compared with the case where T = 1 (black line) and
with T = 10 (gray solid line). As we can notice, in principle, the
finite-temperature regime does not necessarily prevent the system
from becoming synchronized. However, if T is too high, the system
reaches the effective stationary state before synchronization can take
place. To give a rough estimation, considering a spin-spin coupling
around 	100 MHz (see, for instance, Ref. [29]), T = 1 (in our units)
would correspond to a few dozen μK.

makes the whole dynamics slower, but the reason the system
achieves synchronization relies on the fact that the decay
rates are related to the square of such coupling coefficients
[see Eq. (B2)]. Figure 7 also shows that the synchronization-
antisynchronization transition gets less sharp for moderately
strong values of λ.

FIG. 7. Synchronization diagram as a function of the ratio ωp/ωq

and of the coupling λ. The synchronization has been measured at t =
350ω−1

q assuming an Ohmic bath with a frequency cutoff ωc = 20ωq .

APPENDIX E: SYNCHRONIZATION AND SPIN-SPIN
CORRELATIONS

As suggested in Ref. [23], a reliable measure of synchro-
nization of two spins (or families of spins) q and p is given by
the correlation 〈σ (q)

+ σ
(p)
− 〉, which quantifies the phase locking

between them. In our model, such an indicator is related
to a set of equations of motion autonomous with respect to
Eqs. (B5)–(B8):

dρ00,00

dt
= γ̃ +

1 ρ10,10 + γ̃ +
2 ρ01,01 − (γ̃ −

1 + γ̃ −
2 )ρ00,00,

dρ01,01

dt
= γ̃ +

1 ρ11,11 + γ̃ −
2 ρ00,00 − (γ̃ −

1 + γ̃ +
2 )ρ01,01,

dρ10,10

dt
= γ̃ +

2 ρ11,11 + γ̃ −
1 ρ00,00 − (γ̃ +

1 + γ̃ −
2 )ρ10,10,

dρ11,11

dt
= γ̃ −

1 ρ01,01 + γ̃ −
2 ρ10,10 − (γ̃ +

1 + γ̃ +
2 )ρ11,11, (E1)

together with

dρ00,11

dt
= −1

2
(γ̃ +

1 + γ̃ −
1 + γ̃ +

2 + γ̃ −
2 )ρ00,11,

dρ11,00

dt
= −1

2
(γ̃ +

1 + γ̃ −
1 + γ̃ +

2 + γ̃ −
2 )ρ11,00,

dρ01,10

dt
= −1

2
(γ̃ +

1 + γ̃ −
1 + γ̃ +

2 + γ̃ −
2 )ρ01,10,

dρ10,01

dt
= −1

2
(γ̃ +

1 + γ̃ −
1 + γ̃ +

2 + γ̃ −
2 )ρ10,01. (E2)

Actually, a tight relationship between the sets of solutions of
the two problems can be expected as together they describe
the dynamics of a density matrix. Indeed, in Fig. 8 we
compare C to 〈σ (q)

+ (t)σ (p)
− (t)〉 in the long-time regime and

−

−

/

FIG. 8. Comparison between C (thick lines) and
102〈σ (q)

+ (t)σ (p)
− (t)〉 (thin lines). The environment is assumed to

have the power-law spectral density J (ω) ∼ ωs away from the
frequency cutoff. The colors correspond to different values of s:
s = 0.5 (black lines), s = 1 [blue (gray) dashed lines], s = 1.5 [red
(dark gray) solid lines], and s = 2 [green (light gray) solid lines].
The qubit-probe coupling is set to λ = 0.2ωq , and all the data are
taken at t = 300ωq .
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observe that when the system is synchronized, the spin-spin
correlations are remarkably stronger than when there is no

synchronization. This happens irrespective of the type of
environment considered.
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