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The simulation of planar elongational flow in a nonequilibrium steady state for arbitrarily long times has
recently been made possible, combining the SLLOD algorithm with periodic boundary conditions for the simu-
lation box. We address the fundamental questions regarding the chaotic behavior of this type of flow, compar-
ing its chaotic properties with those of the well-established SLLOD algorithm for planar shear flow. The spectra
of Lyapunov exponents are analyzed for a number of state points where the energy dissipation is the same for
both flows, simulating a nonequilibrium steady state for isoenergetic and isokinetic constrained dynamics. We
test the conjugate-pairing rule and confirm its validity for planar elongation flow, as is expected from the
Hamiltonian nature of the adiabatic equations of motion. Remarks about the chaoticity of the convective part
of the flows, the link between Lyapunov exponents and viscosity, and phase space contraction for both flows
complete the study.
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I. INTRODUCTION

For the last 15 years, there has been a continuous interest
in the chaotic behavior of many-body systems in the frame-
work of nonequilibrium molecular dynamics �NEMD� �1–6�.
In this sense, one of the most widely accepted requirements
for a system to be chaotic is that it has at least one positive
Lyapunov exponent. Lyapunov exponents measure the mean
exponential rate of expansion and contraction of initially
nearby phase space trajectories. Not only do they provide
information about the geometry of the phase space, but they
can also be used to extract the values of some key dynamical
quantities of the system, such as viscosity and entropy pro-
duction rate.

In this study, we present the Lyapunov spectra for non-
equilibrium steady state systems of simple atoms interacting
via a pairwise additive Weeks-Chandler-Anderson �WCA�
potential �7� and subjected to either planar shear flow �PSF�
or planar elongational flow �PEF�. In the former case, we
simulate a planar Couette flow regime via the well-
established non-Hamiltonian SLLOD algorithm and Lees-
Edwards periodic boundary conditions �PBCS� �8�. In the
latter, we employ the Hamiltonian SLLOD algorithm for PEF
with “deforming-brick” PBCS �9–11� and use an Arnold cat
map scheme �12,13� to impose the periodicity relations on
the unit lattice. The cat map was recently shown �12� to be
related to the Kraynik-Reinelt conditions �14� for the com-
patibility and reproducibility of the simulation box.

Since heat must be periodically removed from the system
for it to reach a steady state, we use Gauss’ principle of least
constraint �8� to keep either the kinetic temperature or the
total energy of the system constant, via a thermostat or an
ergostat. To our knowledge these are the first results for the

Lyapunov spectrum for a system in a steady state subjected
to an elongational flow.

A very interesting property of a dynamical system is the
so-called conjugate-pairing rule �CPR�, which reflects the
symmetry of its Lyapunov spectrum. If we order the expo-
nents according to their value and form pairs coupling the
highest with the lowest, the second highest with the second
lowest, and so on, the CPR is satisfied when each sum of
pairs has the same value. As repeatedly stressed in the litera-
ture, the satisfaction of this property is not only important
per se, but it leads to a dramatic reduction in the amount of
calculation required to compute the dynamical properties of
the system related to the sum of the exponents.

It is still under debate �15–17� if the SLLOD algorithm for
PSF effectively satisfies the CPR, as any formal proof for the
existence of sufficient conditions for the CPR to hold is lack-
ing. In this sense, we shall see that our results suggest PEF
obeys CPR in the thermodynamic limit whereas CPR is vio-
lated in PSF. This is understandable from the fact that the
structure of the adiabatic �i.e., without the thermostat or er-
gostat term� equations of motion is not symplectic for the
latter �see Ref. �6� for a discussion on the effect of adding a
thermostatting or ergostatting term to the equations of mo-
tion�.

The paper is organized as follows. In Sec. II we revise the
features of PSF and PEF and their algorithms, along with
some of the dynamical properties of the systems under con-
sideration. In Sec. III we describe the procedure for the com-
putation of Lyapunov exponents, illustrate the connections
between the exponents and nonequilibrium viscosity, and
give indications about the exponents associated with the con-
served properties of the systems under study. In Sec. IV we
present and discuss our results for isokinetic �IK� and isoen-
ergetic �IE� simulations for both flows. Some final remarks
conclude the paper.
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II. GENERAL FEATURES OF THE SYSTEMS UNDER
STUDY

Using nonequilibrium molecular dynamics methods, we
simulate two-dimensional systems of eight and 32 simple
�i.e., pointlike� atoms undergoing PSF and PEF. The atoms
interact via a pairwise additive WCA potential �7�, which is a
truncated and shifted version of the Lennard-Jones potential:

��rij� = �4��� �

rij
�12

− � �

rij
�6	 + �c for rij � rc,

0 for rij � rc,

 �1�

where rij = �qi−q j�, where qi is the position vector of particle
i,� is the well depth, and � is the value at which the Lennard-
Jones potential is zero. �c is the value of the unshifted po-
tential at the cutoff distance rc=21/6�, so that the WCA po-
tential is continuous. We use reduced quantities, such that the
reduced density is �*=��3, the reduced temperature is T*

=kBT /�, where kB is the Boltzmann constant, the reduced
energy is E*=E /�, and the reduced time is t
= t* / ���m /��1/2�, where m is the mass of the particle. The
reduced shear rate �see the following subsection� is �̇*

= �̇��m /��1/2 and similarly for the reduced elongation rate
�̇*. For convenience we drop the asterisks and set m=�=�
=1.

A. SLLOD algorithm for planar shear flow

The SLLOD algorithm is a well-known procedure �8� used
for the simulation of many-body systems under PSF. The
equations of motion for a system of simple atoms with
streaming velocity in the x direction and gradient in the y
direction are

q̇i =
pi

m
+ i�̇yi,

ṗi = Fi − i�̇pyi − 	
pi, �2�

where m denotes the mass of the particle �we assume that all
particles have the same mass�, qi is the laboratory position
and pi is the peculiar momentum �i.e., the momentum taken
with respect to the streaming momentum mu� of the particle
i, i is the unit vector in the x direction, Fi is the total inter-
molecular force acting on particle i, �̇=

�ux

�y is the shear rate,
and 	
 is the Gaussian multiplier. 
 denotes whether the
kinetic temperature �isokinetic �IK�� or the total energy �IE�
is held constant, so that

	IK =

�
i=1

N

Fi · pi − �̇pxipyi

�
i=1

N

pi · pi

�3�

for IK simulations and

	IE = −
�̇PxyV

�
i=1

N
pi · pi

m

�4�

for IE, where V is the volume of the simulation box and Pxy
is the xy component of the instantaneous pressure tensor,
defined via the Irving-Kirkwood procedure �8�

P =
1

V
��

i=1

N
pipi

m
+ �

i=1

N

�
j�i

N

rijFij� �5�

where Fij =−
��ij

�ri
is the force on particle i due to particle j and

rij =qi−q j. To simulate a steady state consistently, the system
must obey Lees-Edwards PBCs �8�. The adiabatic equations
of motion are non-Hamiltonian, whereas the temporal peri-
odicity in the boundary conditions makes the system nonau-
tonomous �18�.

B. SLLOD algorithm for planar elongation flow

To simulate a system undergoing planar elongational flow,
we implement the SLLOD algorithm, as done in earlier work
by Todd and Daivis �9,10� and Baranyai and Cummings �11�,
with expansion in the x direction and contraction in the y
direction. The equations of motion for the system are

q̇i =
pi

m
+ �̇�ixi − jyi� ,

ṗi = Fi − �̇�ipxi − jpyi� − 	
pi, �6�

where i and j are the unit vectors in the x and y directions,
respectively, and �̇=

�ux

�x =−
�uy

�y is the elongation rate. In this
case, 	
 has the form

	IK =

�
i=1

N

Fi · pi − �̇�pxi
2 − pyi

2 �

�
i=1

N

pi · pi

�7�

for IK simulations and

	IE = −
�̇�Pxx − Pyy�V

�
i=1

N
pi · pi

m

�8�

for IE, where Pxx and Pyy are the diagonal components of the
instantaneous pressure tensor �5�.

Kraynik and Reinelt �14� were the first to explain the
conditions that have to be imposed over the periodicity of the
simulation box to allow a reproducibility of the lattice cell.
This reproducibility was exploited by Todd and Daivis �9,10�
and Baranyai and Cummings �11� in the first steady-state
NEMD simulations of indefinite PEF. These conditions were
recently recast �12� in an elegant scheme, exploiting their
analogy with the well-know Arnold cat map �13�. We use this
latter formulation and impose “deforming-brick” PBCs �9�
over the system. The adiabatic equations of motion are
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Hamiltonian, but still nonautonomous because of the PBCs.
It has been shown �19� that it is necessary to reset the y

component of the momentum of each particle at each time
step to compensate for numerical roundoff errors, in a similar
way that it is necessary to rescale or include a feedback
mechanism to ensure that the kinetic energy or the total en-
ergy are kept constant when a Gaussian thermostat or er-
gostat is used. This procedure has no effect on the properties
that are calculated. The roundoff error grows exponentially
in the direction of contraction and is solely a consequence of
finite precision numerics. If not constrained it will lead to a
catastrophic unphysical phase transition in the fluid which is
induced by the thermostat. In this work we rezero the total
momentum at each time step, as proposed in �19�.

We note there that there has recently been some debate
over whether or not the SLLOD equations of motion are cor-
rect for elongational flow. Tuckerman et al. �20� and more
recently Edwards and colleagues �21,22� suggest that the so-
called GSLLOD equations of motion should be used. How-
ever, we disagree with this assertion. The GSLLOD algorithm
is known to suffer from inconsistencies �23,24� and a formal
mathematical proof that the SLLOD equations of motion are
correct for elongational flow is forthcoming �25�; we refer
readers to these references for greater detail.

III. DEFINITIONS AND METHODS

A. Definitions of Lyapunov exponents and the CPR

Consider the equation of motion of a dynamical system as

�̇ = G��, t� �9�

where ��t�= �q�t� ,p�t��T represents a vector in the phase
space. We can define displacement vectors �� between two
points in the phase space, i.e., ��=�1−�2. Taking the limit
��→0, the vectors become tangent to the phase space tra-
jectory and obey the linearized equation

��̇ = T · �� �10�

where T is the so-called stability matrix, given by �G /��. A
definition for the Lyapunov exponents �i that is practical for
use in simulations is

�i = lim
t→

lim
��→0

1

t

���i�t��
���i�0��

�11�

where ���i�t�� is the length of the displacement vectors at
time t, and the displacement vectors are kept orthogonal.
Lyapunov exponents are expressed in units of 1 / t.

The CPR �1,6,15� states that in the limit as t→, for
every exponent �i there is a conjugate �i� such that �i+�i�
=�, where � is constant for every i, i�. A small number of
exponents, that does not grow with N, might be excluded due
to their association with conserved quantities or if they cor-
respond to displacement vectors in the direction of flow.
Whereas it is possible to prove that CPR must hold �6,26� for
a thermostatted system whose adiabatic equations of motion
are Hamiltonian �as for systems under PEF�, it is still under
debate �15–17� whether some non-Hamiltonian systems such

as SLLOD PSF obey it. In Sec. IV we will show that diver-
gences from CPR for PSF are higher than for PEF, for either
IK or IE constrained dynamics, suggesting that CPR is vio-
lated for SLLOD PSF.

B. Simulation details and definitions for dynamical quantities
of the systems

For our simulations, we choose convenient state points for
a comparison between PSF and PEF results. Since for PEF
the simulation box undergoes periodic contraction propor-
tional to the exponential of the elongation rate, we choose a
density �=0.3 for both eight- and 32-particle systems. This
prevents the system from violating the minimum image con-
vention �8� when the unit lattice undergoes maximum con-
traction. The second scalar invariant � �27�, is defined as
2�̇2 for PSF and 8�̇2 for PEF. It is a measure of energy
dissipation in a viscous fluid. Equal values of � for PSF and
PEF imply equivalent rates of energy dissipation and hence
make direct comparisons between PSF and PEF simulations
physically more meaningful. We simulate systems with �
=0.0, 2.0, and 8.0, corresponding to �̇=0.0, 1.0, and 2.0 for
PSF and �̇=0.0, 0.5, and 1.0 for PEF.

We use a fourth-order Gear predictor-corrector integrator
to evaluate Eq. �11� and a Gram-Schmidt orthogonalization
scheme �28,29� at each time step to preserve the orthogonal-
ity of the set of tangent vectors ��i. The length of the
timestep we use is �t=10−4 for eight and 32 particles, for a
total simulation time of t=10 000 for eight particles and
2000 for 32, i.e., 108 total steps for eight particles and 2
�107 for 32 particles. Each state point is sampled via ten
independent runs starting from an initial fcc lattice, where
for each run the initial momenta are chosen randomly. We
note that the simulation times are much greater than those
used previously in �1–6,15,16�.

For IK simulations, we choose a temperature T=1.0 and
we run IE simulations at the average internal energy result-
ing from the corresponding IK simulation �i.e., the one at the
same ��. The difference in the final temperature of IE simu-
lations and the set temperature for IK were of order 7
�10−3 for eight particles and 10−3 for 32 particles.

To be confident of the validity of our results, we use the

definition of the phase space compression factor �=�� · �̇
and perform checks on the sum of all the exponents every
t=100. It is straightforward to show that the following rela-
tions hold for PSF:

�IK� = �
i=1

2dN

�i =�− 	IK�dN − 1� + �̇

�
i=1

N

pxipyi

�
i=1

N

pi · pi
� �12�

for IK simulations and

CHAOTIC PROPERTIES OF PLANAR ELONGATIONAL¼ PHYSICAL REVIEW E 73, 046206 �2006�

046206-3



�IE� = �
i=1

2dN

�i =�− 	IE�dN − 2� + 2�̇

�
i=1

N

pxipyi

�
i=1

N

pi · pi
� �13�

for IE simulations, where d is the dimension of the system
�i.e., 2�, N is the number of particles, and the angular brack-
ets denote time averages over the steady state. We will refer
to the second term in the right-hand side of Eqs. �12� and
�13� as the deviation. In the same fashion, we have for PEF

�IK� = �
i=1

2dN

�i =�− 	IK�dN − 1� + �̇

�
i=1

N

�pxi
2 − pyi

2 �

�
i=1

N

pi · pi
�

�14�

for IK simulations and

�IE� = �
i=1

2dN

�i =�− 	IE�dN − 2� + 2�̇

�
i=1

N

�pxi
2 − pyi

2 �

�
i=1

N

pi · pi
�

�15�

for IE simulations. In Tables I and II we indicate the maxi-
mum value of the deviation at the end of the runs as a per-
centage of the sum of the exponents, for each state point: the
disagreement for each of the four above equations was at
most 0.25% of the value of the sum at each check. The
maximum difference does not change considerably after t
=100.

There is an established link between the sum of the
Lyapunov exponents and the viscosity of systems under PSF
or PEF. Defining the shear viscosity as

TABLE I. Summary of results for IK simulations at equilibrium and for PSF and PEF at different rates. �max and �min are the maximum
and minimum Lyapunov exponents, ��i; �i�0 is the sum of the positive Lyapunov exponents, max dev is the deviation �Eqs. �12� and �14��
expressed as a percent of the sum of the max and min Lyapunov exponents, �NEMD is the viscosity calculated with NEMD simulations �Eqs.
�16� and �17��, �L is the viscosity calculated with Eqs. �18� and �19�, �CPR is the viscosity calculated using the CPR for the maximum and
minimum Lyapunov exponents, and DKY is the Kaplan-Yorke dimension from Eq. �20�. Uncertainties at 2� where � is the standard error,
are next to the value of each quantity.

N Type Rate 	 �max �min ��i; �i�0
max
dev�%� �NEMD �L�sum� �L�max� DKY

8 Equil. 1.776 0.003 −1.774 0.003 14.91 0.03 27.0 0.1

PSF 1.0 0.408 0.002 1.751 0.002 −2.148 0.002 13.45 0.03 0.25 0.199 0.001 0.199 0.008 0.238 0.002 24.3 0.1

2.0 1.241 0.005 1.784 0.003 −3.008 0.004 12.01 0.04 0.15 0.151 0.001 0.161 0.003 0.184 0.001 20.6 0.1

PEF 0.5 0.442 0.001 1.795 0.003 −2.229 0.003 15.61 0.03 0.24 0.216 0.001 0.238 0.003 0.260 0.004 24.2 0.1

1.0 1.360 0.003 1.910 0.002 −3.250 0.003 16.66 0.04 0.14 0.166 0.001 0.188 0.001 0.201 0.001 20.8 0.1

32 Equil. 1.960 0.003 −1.958 0.003 63.99 0.17 123.0 0.3

PSF 1.0 0.394 0.001 1.951 0.004 −2.340 0.004 56.47 0.17 0.18 0.225 0.001 0.225 0.004 0.233 0.005 111.2 0.3

2.0 1.130 0.003 1.984 0.007 −3.111 0.008 49.42 0.22 0.11 0.162 0.001 0.163 0.001 0.169 0.002 95.3 0.4

PEF 0.5 0.430 0.001 1.976 0.006 −2.401 0.005 64.72 0.19 0.17 0.246 0.001 0.251 0.004 0.255 0.007 110.5 0.3

1.0 1.259 0.001 2.066 0.005 −3.316 0.006 67.17 0.18 0.09 0.180 0.001 0.185 0.001 0.188 0.002 95.8 0.3

TABLE II. Summary of results for IE simulation at equilibrium and for PSF and PEF at different rates as in Table I. Results at �
=8.0 for eight particles are absent because of the instability of the simulations.

N Type Rate 	 �max �min ��i; �i�0
max
dev �%� �NEMD �L�sum� �L�max� DKY

8 Equil. 0.0 1.776 0.004 −1.775 0.004 14.60 0.03 27.0 0.1

PSF 1.0 0.461 0.002 1.792 0.003 −2.197 0.005 13.38 0.04 0.13 0.197 0.001 0.222 0.003 0.243 0.000 24.1 0.1

PEF 0.5 0.497 0.001 1.818 0.002 −2.277 0.002 15.92 0.04 0.12 0.213 0.001 0.281 0.002 0.278 0.003 23.9 0.1

32 Equil. 0.0 1.958 0.004 −1.955 0.004 64.56 0.15 123.0 0.3

PSF 1.0 0.394 0.001 1.961 0.004 −2.346 0.005 56.23 0.18 0.14 0.226 0.001 0.229 0.004 0.231 0.005 111.0 0.3

2.0 1.130 0.003 2.131 0.007 −3.192 0.008 49.74 0.18 0.09 0.161 0.001 0.167 0.001 0.159 0.002 95.3 0.4

PEF 0.5 0.439 0.001 1.987 0.005 −2.415 0.005 65.18 0.19 0.14 0.246 0.001 0.255 0.003 0.257 0.006 110.3 0.3

1.0 1.293 0.003 2.221 0.005 −3.415 0.005 67.33 0.18 0.09 0.179 0.001 0.188 0.001 0.179 0.001 95.7 0.3
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�PSF = −
Pxy�

�̇
�16�

and the elongation viscosity as

�PEF = −
Pxx� − Pyy�

4�̇
�17�

it can be shown �30� that, neglecting terms of order O�1/N�,
we have

�PSF = −
kBT�
�̇2V

�
i=1

2dN

�i �18�

for PSF systems and

�PEF = −
kBT�
4�̇2V

�
i=1

2dN

�i �19�

for PEF systems, where the angular brackets indicate a time
average of temperature over the steady state. If we assume
that the system obeys the CPR, we can replace the term for
the sum of the exponents with a single sum of exponents of
our choosing. For example, if we use the maximum and the
minimum exponents we can substitute into Eq. �18� �i=1

2dN�i
→dN��max+�min�. Results for viscosities from direct NEMD
calculations �Eqs. �16� and �17��, from expressions involving
the sum of the exponents �Eqs. �18� and �19��, and from
application of CPR with ��max+�min� are shown in Tables I
and II.

FIG. 1. Spectra of Lyapunov exponents for systems of eight and 32 particles in equilibrium and in a nonequilibrium steady state, at
different shear rates. In �a�, systems of eight particles undergoing isokinetic constrained dynamics are depicted. The values of exponents are
indicated by open symbols; the values of the sums of pair numbers are indicated by filled triangles. In �b�, eight particles under isoenergetic
dynamics are represented. In �c�, 32 particles under isokinetic dynamics and in �d�, 32 particles under isoenergetic dynamics are shown.

FIG. 2. Differences between the values of the exponents in a
nonequilibrium steady state for PSF ��i�NEq�� and the correspond-
ing value at equilibrium ��i�Eq��. In �a�, systems of eight particles
under isokinetic and isoenergetic dynamics are shown. In �b�, sys-
tems of 32 particles are depicted: ��̇ indicates the shift between
equilibrium and nonequilibrium shear rates and IK �IE� shows the
constrained dynamics.
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Lyapunov exponents can be used to evaluate the fractal
dimension of the attractor that the phase space collapses on
when the system is in a steady state �2–5�. This dimension
can be calculated using the Kaplan-Yorke conjecture �31�,
which leads to the following formula for the embedded di-
mension of the attractor in the phase space:

DKY = M +

�
i=1

M

�i

��M+1�
�20�

where the exponents are ordered such that �1��2��3¯

and M is the largest integer for which �i=1
M �i�0.

We finally point out that we are not able to perform simu-
lations for IE dynamics at �=8.0 for eight- particle systems,
for either flow. We observe that the system becomes unstable
very soon in the simulation run with the time step used, as
the ergostat fails to keep the total internal energy constant.
We believe that this size-related effect is partly associated
with the appearance of a string phase, which causes the par-
ticles in the system to travel in “stringlike” structures, mini-
mizing the entropy �32�. This is an artifact that results from
the action of the PBCs and the profile-biased Gaussian er-
gostat. These structures have relatively high potential energy
and therefore adjustment of the momentum by the ergostat
may not be sufficient to ensure that the energy remains con-
stant. To our knowledge, this is the first time that this effect
is noticed for the systems under study.

C. Lyapunov exponents associated with conserved properties
of the systems

The actual phase space dimension of the systems under
study is �2dN−2d−1�, where N is the number of particles,
because fixed total momentum and either the kinetic or total
internal energy of the systems are required, and a fixed cen-
ter of mass is chosen. However, we note that if the total
momentum or the center of mass is not initially zero, then
they will not be necessarily conserved by Eqs. �2� and �6�. If
we wish to use arbitrary initial conditions, the equations of
motion can easily be modified so that the total momentum
and center of mass are conserved: pi→pi− �1/N��i=1

N pi; qi

→qi− �1/N��i=1
N qi. While the dynamics of the trajectory will

be unchanged by the transformation, the Lyapunov spectrum
will, as the tangent trajectories in Eqs. �2� and �6� will not
necessarily conserve the required quantities. The Lyapunov
exponents associated with displacements in these directions
will therefore be affected by this choice. Selection of the
equations of motion to be examined is somewhat arbitrary,
and here we choose to use the equations of motion in the
form �2� and �6�. An alternative approach is to prevent dis-
placement vectors from pointing in directions orthogonal to
the constraint planes. We prefer to consider the full 2dN
phase space so that no false constraint is inadvertently im-
posed.

For simple tangent vectors, it is possible to determine �or
approximate� the value of the Lyapunov exponents from di-
rect consideration of the linearized tangent vector equations
of motion Eq. �10�. In terms of the “trivial exponents” asso-

FIG. 3. Differences between the sum of maximum and minimum Lyapunov exponents and the sums of scaled pairs for systems of eight
and 32 particles under planar shear flow at �̇=1.0 and 2.0. The values of the differences are indicated by filled triangles with error bars.
Systems under isokinetic dynamics are in �a� and �b� and under isoenergetic dynamics in �c� and �d�. Plots at the same shear rate have the
same scale. The error bars are twice the standard error of the mean of ten independent runs.
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ciated with the conserved quantities, it can be seen that there
is an important distinction between PSF and PEF, due to the
different symmetries of the respective equations of motions.
Inspection of Eq. �2� for q̇i shows that no exponential sepa-
ration of the trajectories results from translation of x and y
components of the qi and the Lyapunov spectrum presents
two exponents that are exactly zero. On the other hand, the 	
term in ṗi in Eq. �2� results in two exponents whose values
are −	�

The dynamics of PEF given by Eq. �6� will be affected by
translation of qi and pi and the trivial exponents have values
�̇ and −�̇ for the q̇i term and �̇− 	� and −�̇− 	� for the ṗi

term. The above values are independent of the type of con-
strained dynamics for either flows. Nevertheless in each case,
these exponents produce two pairs that sum to −	�.

The last two trivial exponents are associated with dis-
placements orthogonal to the constant energy or temperature
surface and parallel to the direction of flow. The exponent
associated with displacement in the direction of flow is
sometimes referred to as the “unpaired exponent” �1�. In au-
tonomous systems it has value 0, while in nonautonomous
systems, its value always seems to be related to −	�, in
either IK and IE constrained dynamics for either flow. Inter-
estingly, the other exponent for this pair has different values
for PSF and PEF, depending on the type of constrained dy-
namics.

Consider an initial displacement of �� in the direction
orthogonal to the total energy or kinetic energy constraint
surface of the system. If we imagine that Fi and 	 are ne-
glected in the equations of motion, the value of the exponent
can be roughly predicted if we look for the greatest exponen-
tial growth along the directions that change the constrained
energy. In the case of PEF under IK, the constraint on the
kinetic energy involves only the momenta and the dominant
contribution will be from the y component of the ṗi. This
term is equal to �̇−	, which is almost zero: the contribution
is very small and the exponent is practically zero. In the case
of PEF under IE dynamics �see Eq. �6��, a nonzero contribu-
tion comes from the x component of the q̇i, because of the
term �̇x. This causes the exponent to have a value similar to
�̇, but not exactly equal because of the actual corrections due
to the force and the �time-dependent� ergostat terms.

For PSF, no positive contributions are present in either IK
and IE dynamics: the form of the right-hand side of Eq. �2�
does not contain positive terms for q̇i or ṗi that can lead to an
exponential growth so the value of the exponent in both
cases is exactly zero.

It should be noticed that there might be some ambiguity in
the way the last two trivial exponents are identified from the
numerical data. This is particularly true in a system of 32
particles because the values of the exponents are very close
to each other. In any case, variations are small and do not
affect any of our conclusions.

IV. RESULTS AND DISCUSSION

We evaluate the spectra for PSF for �=0.0, 2.0, and 8.0
in IK and IE constrained dynamics and present the cumula-
tive spectra in Fig. 1, omitting the trivial exponents. A visual

inspection of Fig. 1 shows good agreement with previous
findings �16�: the deviation from CPR increases as we go
from �̇=1.0 to �̇=2.0. For eight-particle IK and IE simula-
tions �Figs. 1�a� and 1�b�� and for 32-particle IK and IE
simulations �Figs. 1�c� and 1�d�� the sum of the exponents
�filled triangles� at �̇=2.0 shows deviations from linearity in
low pair numbers �beginning of the spectra� and tends to
increase for high pair numbers.

In Fig. 2 we plot the differences between the value of the
exponents in nonequilibrium states and the corresponding
value at equilibrium, neglecting the unpaired exponent. The
maximum exponent has the label 1, the second highest has
the label 2, and so on. For eight particles �Fig. 2�a��, our IK
results agree with those of Fig. 2 in �1�, showing a practically
linear shift proportional to the exponent number. IE data for
eight particles show a behavior quite similar to IK results,
although the shift is more marked at the end and less promi-
nent at the beginning. For 32 IK particles �Fig. 2�b��, differ-
ences are almost linear for �̇=1.0, but linearity is lost at �̇
=2.0, with the appearance of a jump for medium exponent
numbers and a steeper curvature than for �̇=1.0. For 32 IE
particles �Fig. 2�b��, the jump is present also for �̇=1.0 and
seems to increase linearly with the shear rate. In general, the
width of the jump and the steepness of the curvature are
greater for nonequilibrium states in IE than for states in IK.

FIG. 4. Sums of exponents for eight and 32 particles in nonequi-
librium steady-state conditions under PSF at different shear rates
and constrained dynamics. The sums for the smaller system are
shifted appropriately to take size effects into account. �a� shows
systems under isokinetic and �b� under isoenergetic dynamics. The
error bars represent twice the standard error of the mean of ten
independent runs.
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Furthermore, differences in IE data in lower exponent num-
bers are positive, whereas for IK they are almost zero for
�̇=1.0 and negative for �̇=2.0.

To thoroughly test the CPR, we plot the differences be-
tween the sum of the maximum and minimum exponents
��max+�min� and the other pairs in Fig. 3 and rescale the pair
numbers to compare systems of different sizes. Pair number
1.0 corresponds to the second highest and the second lowest
exponent, following then the same order as Fig. 1.

In the first plot �Fig. 3�a��, a small deviation from CPR is
evident in some pairs of exponents. On average, the devia-
tion is less than 2% of ��max+�min� for eight particles and
less than 1% for 32, tending to zero with the increase of pair
number. Whereas there is a size-related effect for low pair
numbers, there is no clear evidence for the same effect in the
very first pair numbers, as they remain high for eight and 32
particles alike. For �̇=2.0 �Fig. 3�b��, the maximum devia-
tion is around 5% for eight and 10% for 32 particles, with an
average about 2.5% for eight and 4% for 32 particles.

A similar trend is seen for IE simulations �Figs. 3�c� and
3�d��, with higher average deviations than IK: about 5% for
�̇=1.0 for eight particles and 3% and 8.5% for �̇=1.0 and 2.0
for 32 particles. The differences mainly reside in the positive
domain, as for IE dynamics ��max+�min� is the largest of all
the sums. We stress that the maximum deviation for IE simu-
lations is around 5% and 15% for 32 particles at �̇=1.0 and
2.0 respectively, and about 6.5% for eight particles at �̇
=1.0.

Finally, we plot the sum of exponents for PSF in Fig. 4.
To take size dependence into account, the data for the

smaller system is modified so that we have a meaningful
comparison with the data for the larger system. In fact, we
shift the data for the former so that the mean value of the
sum of pairs for the smaller system is equal to that of the
larger system. The scaled pair number index runs from 0 to 1
independently of N, where the index corresponding to the
maximal and minimal exponent pair is 1, as in �15�. Gener-
ally, violations of the CPR increase with strain rate for both
IK and IE PSF dynamics and are higher in IE dynamics.
Maximum divergences are up to 10% of the average value of
the sums at high shear rate and cannot be attributed to small-
size effects, as one can clearly see from the plots.

Results for PEF are different. We plot the cumulative
spectra in Fig. 5. Note that the y-axis scale is somewhat
reduced compared to the corresponding PSF data in many
cases. The sums show some divergence, but it decreases
greatly with increasing N as expected, except the ones for 32
particles undergoing IE dynamics �Fig. 5�d��, where the sum
for �̇=1.0 shows a symmetric shift at both edges. Nonethe-
less, we notice that the majority of the pair numbers show a
linear behavior and follow CPR very well. There are two
interesting features in Fig. 5. First, in the positive part of the
spectra the nonequilibrium branch crosses the equilibrium
one at around one-third of the spectrum and then stays above
it as the exponent number increases. Second, the negative
nonequilibrium exponents undergo a roughly constant shift
with respect to the equilibrium values, which is approxi-
mately proportional to the square of �̇ in either constrained
dynamics. If CPR is obeyed, and the positive exponents do

FIG. 5. Spectra of Lyapunov exponents for systems of eight and 32 particles in equilibrium and in a nonequilibrium steady state, at
different elongational rates. In �a�, systems of eight particles undergoing isokinetic constrained dynamics are depicted. The values of
exponents are indicated by open symbols; the values of the sums of pair numbers are indicated by filled triangles. In �b�, eight particles under
isoenergetic dynamics are represented. In �c�, 32 particles under isokinetic dynamics and in �d� 32 particles under isoenergetic dynamics are
shown.
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not change greatly, this shift will be equal to the value of the
thermostat multiplier, to O�1/N�. Futhermore, examination
of Eqs. �8� and �17� shows that in the linear regime 	 will
vary as �̇2�.

These trends are also reflected in Fig. 6, where we plot
differences in the same fashion as in Fig. 2. In Fig. 6�a�,
eight particles show an almost constant shift at �=2.0 for
high exponent numbers and a symmetric curve for �=8.0.
Figures 6�a� and 6�b� are interesting in that they seem to
show a mirror inversion symmetry at the discontinuity at
exponent number 13 for the former and at exponent number
60 for the latter. This is expected if CPR is obeyed. At equi-
librium, the upper and lower arms of the spectrum will be
related by a factor −1, whereas away from equilibrium they
will be related by multiplication by −1 and subtraction of a
constant. Therefore the difference between the equilibrium
and nonequilibrium results will produce arms that are related
by a reflection and a shift. Some semblance of this symmetry
is also observed in Fig. 2.

In Fig. 6�b�, 32 particles denote a less prominent slope for
medium exponent numbers if compared with Fig. 2�b�. The
jump is in general higher for PEF, except for �=2.0 IE
simulations. These observations are in agreement with Figs.
3 and 4 of �1�, which show analogous features for DOLLS

PSF, which has adiabatic Hamiltonian equations like those of
SLLOD PEF.

Differences between ��max+�min� and the other pairs are
plotted in Fig. 7. Consideration of the data for the IK dynam-
ics �Figs. 7�a� and 7�b�� suggests that for large systems the
CPR will be obeyed. At a system size of N=32, very small
departure from CPR is still observed, which is consistent
with the results obtained for the DOLLS equations of motion
�1,15�. These departures can be attributed to the expected
O�1/N� deviations of Gaussian thermostatted nonautono-
mous equations of motion, but the results indicate that CPR
will be satisfied in the large-system limit, as predicted by
noting the symplectic nature of the unthermostatted equa-
tions of motion. At low fields, the IE results are similar to
those for IK dynamics. The deviation from pairing for IK
dynamics �Figs. 7�a� and 7�b�� is on average 1.4% and 2.1%
for eight particles for �̇=0.5 and 1.0 respectively, dropping
remarkably to 0.4% and 0.3% on average for 32 particles at
the same elongational rates. Moreover, maximum deviations
are around 1% for 32 particles under PEF IK. This can be
compared with maximum deviations of approximately 10%
for a PSF system with similar dissipation. Also, the greatest
occurrence of divergence is concentrated in the first part of
the spectrum �Fig. 7�b��, with an evident 1 /N dependence for
either rates �Figs. 7�a� and 7�b��. This trend is absent in PSF,
as high divergences �as previously noted� take place in the
middle of the spectrum �see Fig. 3�b��.

IE simulations show a good agreement with CPR for �̇
=0.5 �Fig. 7�c�� with an average deviation around 0.8% for
eight particles and 0.9% for 32 particles. A maximum diver-
gence of 1.9% is present in eight particles and the first dif-
ference for 32 particles has a divergence of 3.3%, but there is
a clear size-related behavior for increasing pair-numbers. For
�̇=1.0 �Fig. 7�d��, divergence is higher, but almost constant
on the average. This is due to the fact that ��max+�min� is the
highest sum of all. In any case, the highest deviation from

the mean sum is just around 5% and concentrated in few
exponents at very low or very high pair numbers.

All these features are also evident in Fig. 8 where, apart
from small size-dependant deviations, CPR is obeyed for
�=2.0,8.0 for IK simulations and for IE simulations viola-
tions are only observed at the beginning and at the end of the
spectra. These violations appear only at high elongation rate.

On the other hand, we note that deviations for PSF are
present independent of the shear rate or the dynamics: maxi-
mum deviations from the mean of sums increase for IK dy-
namics from 2% and 5% for eight particles to 9% and 10%
for 32 particles at �=2.0,8.0 respectively. For IE dynamics
at �=2.0 they are 5% for eight particles and 32 particles
alike and 10% for 32 particles at �=8.0. These deviations do
not seem to be removed either by increasing the size or by
changing the thermostatting mechanism.

We conclude this section with three final observations. In
Tables I and II, we collate data for the systems under study.
As we expect, Eqs. �18� and �19� give values for viscosities
for PSF and PEF which are in good agreement with results
from direct NEMD calculations only if the system is suffi-
ciently large, clearly showing 1/N dependence. Even when
CPR is not satisfied, using ��max+�min� to simplify the for-
mula for viscosities gives good results, as noticed in �15�.

Next, we note that there are no significant differences out
of statistical uncertainties between the Kaplan-Yorke dimen-

FIG. 6. Differences between the values of the exponents in a
nonequilibrium steady-state for PEF ��i�NEq�� and the correspond-
ing value at equilibrium ��i�Eq��. In �a�, systems of 8 particles
under isokinetic and isoenergetic dynamics are shown. In �b�, sys-
tems of 32 particles are depicted: ��̇ indicates the shift between
equilibrium and nonequilibrium elongational rates and IK/IE shows
the constrained dynamics.
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sions of analogous PEF and PSF phase space points in the
same regimes. Thus we conclude that the phase space under-
goes a similar contraction for both flows, only dependent on
the second scalar invariant � in the linear regime.

Finally, we make an interesting observation about the
chaoticity of PSF and PEF systems. It has recently been sug-
gested �24� that PEF is an inherently more chaotic flow than
PSF, based upon the relationship of the Arnold cat map and
the convective part �i.e., the macroscopic streaming momen-
tum� of PEF that the cat map effectively describes. The cat
map has a relatively large positive Lyapunov exponent, indi-
cating a chaotic macroscopic flow, whereas the correspond-
ing dynamical map for the convective part of the flow for
PSF �12� has zero Lyapunov exponent, indicating no macro-
scopic chaos, even though from a microscopic perspective
both flows are of course chaotic. It was thus suggested that
the superposition of a chaotic convective flow and chaotic
microscopic dynamics for PEF would make PEF an inher-
ently more unstable flow than PSF. In Fig. 9 we plot the sum
of the positive exponents for the IE and IK systems studied
and find that indeed it is always greater for PEF than PSF.
Indeed, as strain rate increases, this measure of the chaoticity
for PSF decreases as expected, but increases for PEF for
increasing elongational rate, which may reflect the fact that
for elongational flow an external field must exist to maintain
the flow. It is this field that leads to hyperbolic streaming
velocity profiles and exponentially diverging or converging
points in space, which contribute to a greater degree of mi-
croscopic chaos at higher rates of elongation. For PSF, no
such external field is present at t�0 and a resulting decrease

in this measure of chaoticity is observed, which may be be-
cause there is no direct contribution to the Lyapunov expo-
nents from the macroscopic streaming velocity. Also the
maximum Lyapunov exponent is always greater for PEF, as
can be seen from Tables I and II. While not a rigorous proof
of this conjecture, these considerations do lend support to it.
This in turn adds further weight to the observations made
earlier by Todd and Daivis �19� that sensitive dependence to
initial conditions is critical for numerical stability in NEMD
simulations of PEF, whereas they are nowhere as important
for equivalent PSF simulations.

V. CONCLUSIONS

In this paper we have presented an extensive analysis of
the chaotic properties of many-body systems of simple atoms
in a nonequilibrium steady state, driven either by a planar
shear or elongational flow and undergoing either isokinetic
or isoenergetic constrained dynamics. The comparison be-
tween numerical data shows that the conjugate-pairing rule
�small size-related effects aside� clearly holds for SLLOD

equations of motion for elongational flow, whereas the con-
vergence for SLLOD equations for shear flow is definitely
problematic. This is the first time, to our knowledge, that
numerical data support the fact that the conjugate-pairing
rule is obeyed by planar elongational flow, given the Hamil-
tonian nature of the governing adiabatic equations of motion.

Furthermore, given the same rate of energy dissipation,
the nonequilibrium phase space contraction is the same for
either type of flow, but systems under planar elongational

FIG. 7. Differences between the sum of maximum and minimum Lyapunov exponents and the sums of scaled pairs for systems of eight
and 32 particles under PEF at �̇=0.5 and 1.0. The values of the differences are indicated by filled triangles with error bars. Systems under
isokinetic dynamics are in �a� and �b� and under isoenergetic dynamics in �c� and �d�. Plots at �̇=0.5 have the same scale; plots at �̇=1.0 have
different scales. The error bars represent twice the standard error of the mean of ten independent runs.

FRASCOLI, SEARLES, AND TODD PHYSICAL REVIEW E 73, 046206 �2006�

046206-10



flow show greater maximum exponents and bigger sums of
the positive Lyapunov exponents and hence exhibit an intrin-
sically more chaotic nature. Although the periodic boundary
conditions for planar elongational flow imposed over the unit
lattice are intimately related to the well-known Arnold cat
map, which is in turn related to the chaotic nature of the
convective part of the flow, there is no clear evidence of the
presence of the map in the Lyapunov spectra we proposed.

The actual existence of such an “imprint” and its eventual
relation with the so-called unpaired exponent in the
Lyapunov spectra are objects of a forthcoming study.
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