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Abstract
The use of oncolytic viruses as cancer treatment has received considerable attention
in recent years, however the spatial dynamics of this viral infection is still poorly
understood. We present here a stochastic agent-based model describing infected and
uninfected cells for solid tumours, which interact with viruses in the absence of an
immune response. Two kinds of movement, namely undirected random and pressure-
driven movements, are considered: the continuum limit of the models is derived and
a systematic comparison between the systems of partial differential equations and
the individual-based model, in one and two dimensions, is carried out. In the case
of undirected movement, a good agreement between agent-based simulations and the
numerical and well-known analytical results for the continuum model is possible.
For pressure-driven motion, instead, we observe a wide parameter range in which the
infection of the agents remains confined to the center of the tumour, even though the
continuum model shows traveling waves of infection; outcomes appear to be more
sensitive to stochasticity and uninfected regions appear harder to invade, giving rise to
irregular, unpredictable growth patterns. Our results show that the presence of spatial
constraints in tumours’ microenvironments limiting free expansion has a very signifi-
cant impact on virotherapy. Outcomes for these tumours suggest a notable increase in
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variability. All these aspects can have important effects when designing individually
tailored therapies where virotherapy is included.

Keywords Anti-tumour therapies · Oncolytic virus · Pressure-driven cell movement ·
Individual-based models · Continuum models

1 Introduction

Oncolytic viruses constitute a targeted cancer therapy, that uses viral particles prefer-
entially infecting tumour cells while mostly sparing healthy tissues (Blanchette and
Teodoro 2023; Fountzilas et al. 2017; Kelly and Russell 2007; Lawler et al. 2017; Rus-
sell and Peng 2018). Although the potential of this therapy has been stressed for a long
time, the clinical use still faces many challenges; one of them is the lack of understand-
ing of the tumour microenvironment’s role in viral diffusion (Jin et al. 2021; Wojton
and Kaur 2010). The difficulties in creating a set of rules and practises that make this
therapy reliable, reproducible and clinically mainstream are generally associated with
“stochastic”, hard-to-predict events, that affect consistency in viral delivery, tumour
invasion, viral replication and diffusion.

Several mathematical models have previously been adopted for the study of
oncolytic viruses, including ordinary differential equations (ODEs) (Jenner et al. 2019,
2018b; Komarova and Wodarz 2010; Novozhilov et al. 2006; Wodarz 2001), partial
differential equations (PDEs) (Alzahrani et al. 2019; Friedman and Tao 2003; Kim
et al. 2014; Pooladvand et al. 2021;Wu et al. 2001, 2004), stochastic agent-basedmod-
els (Jenner et al. 2020; Wodarz et al. 2012) and hybrid discrete-continuous multi-scale
models (Jenner et al. 2022; Paiva et al. 2009). InWodarz (2016) a reviewof the different
modeling approaches is presented. As it is well-known, individual-basedmodels allow
to track individual cells and consider randomness in the processes, but are also associ-
ated to higher computational cost and do not allow to easily obtain analytical results.
On the other hand, deterministic continuum models are amenable both to numerical
simulations and analytical results, but cannot easily include stochastic events; fur-
thermore, the phenomenological assumptions commonly used in this approach may
also hinder the biological interpretation of the mathematical assumptions. For these
reasons, in recent years the derivation of continuum macroscopic models from under-
lying discrete stochastic models has attracted the attention of an increasing number
of researchers [see, for example, Champagnat and Méléard (2007); Johnston et al.
(2015); Lorenzi et al. (2020); Macfarlane et al. (2022); Penington et al. (2011); we
refer to the introduction of Chaplain et al. (2020) for a more comprehensive literature
review]. This allows to understand clearly the modeling assumptions for a continuum
model, gain some theoretical intuition on the behavior of an individual-based model
and, as a consequence, reach a more comprehensive understanding of the biological
system under study.

With the exception of Wodarz et al. (2012), we are not aware of any other work
comparing agent-based and continuous models in relation to oncolytic viruses. In this
paperwe bridge such a gap by developing an original,minimal spatial individual-based
model for the infection of tumour cells due to engineered viruses. Our model takes
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into account proliferation and death of uninfected tumour cells, death of uninfected
tumour cells, infection of infected cells and cell movement. We present two alternative
sets of rules governing the latter process [namely, undirected random cell movement
and pressure-driven cell movement (Chaplain et al. 2020)] and show how this choice
strongly influences therapy outcomes. Our intent is to compare different mechanisms
for tumour development, capturing some of the constraints that diverse microenviron-
ments pose on tumours’ development. Viral responses and pattern of invasion appear
to be clearly affected, often in unpredictable ways.

While it is known that oncolytic viruses are able to infect through specific receptors
that are highly expressed on cancer cells (Lawler et al. 2017), the exact mechanisms
of the infection are not well understood. Viruses enter target cells with a combination
of dynamics, whose effectiveness depends on a number of factors (Kalia and Jameel
2011). In recent years it has also become clear that some viruses (such as human
immunideficency virus type 1 and hepatitis C virus) may infect both through direct
cell-to-cell trasmission and cell-free trasmission mediated by diffusing virions; the
actual combination of the two processes is hard to establish in full detail [see Graw
and Perelson (2016) and the references therein]. There are also newly investigated
mechanisms that allow cell-to-cell transmission: for example, some viruses such as
influenza virus exploit tunneling nanotubes between cells (Kumar et al. 2017). Since
all these dynamics for oncolytic viruses are mostly unknown, for the sake of simplicity
we assume that the infection happens when an uninfected cell has a contact with an
infected cell and viral spread far from infected cells can be neglected (Wodarz et al.
2012). This approach has been commonly used for nonspatial models of oncolytic
viruses (Komarova andWodarz 2010; Novozhilov et al. 2006). In the context of spatial
models, this choice allows to model a virus that faces some difficulties in propagating
in the tumour microenvironment (Wojton and Kaur 2010) and thus the infection is
mainly driven by cell-to-cell contact and close range free virions. Similarly, we do not
include virus clearance due to the immune systemand assume that no immune response
is present. The dynamics of viruses and immune system are somewhat implicitly taken
into account in the definition of the infection rate (see Appendix B), although clearly
the influence of the immune system is much more complicated and its analysis goes
beyond the scope of the present work. Finally, we postulate that a limited viral load is
injected at the centre of the tumour, in line with typical clinical practices (Russell and
Peng 2018).

The resulting systems fall in the category of classical spatial Lotka–Volterra models
for preys and predators. In the ecological setting the comparison between discrete and
continuum models of this form has been widely studied [for example, in Aronson
(1980); Keeling et al. (2002); Wilson et al. (1993)]. In the case of undirected cell
movement, the corresponding continuum model is a diffusive Lotka–Volterra model
with logistic growth: this allows us to partially rely on previous analytical results on the
subject (Dunbar 1984).On the other hand, in the case of pressure-driven cellmovement
the corresponding continuum model is a local cross-diffusion Lotka–Volterra model
that we could not find in the literature [although it is similar to the systems studied
in Bubba et al. (2020b); Carrillo et al. (2018); Gwiazda et al. (2019); Lorenzi et al.
(2017)]. Our results suggest that stochastic events may hinder the propagation of the
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infection even in situations in which the continuous model shows the formation of a
traveling infection wave.

The article is organised as follows. In Sect. 2, we introduce the two agent-based
models and present their continuum counterpart (a formal derivation is presented
in Appendix A). In Sect. 3 we present some classical analytical results for traveling
wave solutions of the continuum models. In Sects. 4 and 5 we compare the results
of numerical simulations of the two agent-based models and the numerical solutions
of the corresponding PDEs, showing their consistency with the analytical results. In
Sect. 6, we discuss the main findings in light of existing experimental evidence in vitro
and provide some hints for future research.

2 Description of the Agent-BasedModels and Formal Derivation of
the ContinuumModels

In this section we describe the stochastic dynamics of the two agent-based models and
introduce the different expressions of the probability for the cell movement. We then
present the corresponding continuumcounterparts, obtained inAppendixAusing tech-
niques analogous to those employed in various references (Champagnat and Méléard
2007; Johnston et al. 2015; Lorenzi et al. 2020; Macfarlane et al. 2022; Penington
et al. 2011; Chaplain et al. 2020; Almeida et al. 2022, 2023).

2.1 Agent-BasedModels

In the agent-based modeling framework, each cell is an agent occupying a position
on a discrete lattice. We consider two cell populations, uninfected and infected; the
infection of a cell then corresponds to an agent passing from the former to the latter
population. Cells can also move, reproduce and die. For ease of presentation, in this
sectionwe only consider cells arranged along the one-dimensional real lineR, but there
would be no additional difficulty in considering higher spatial dimensions. Since we
carry out the comparisons between discrete and continuum models also in two spatial
dimensions, in Remarks 1 and 2 we explain the small changes of the two-dimensional
models.

Let us consider the temporal discretisation tn = τn with n ∈ N0, 0 < τ � 1 and
the spatial discretisation x j = δ j , with j ∈ Z, 0 < δ � 1; we assume τ to be small
enough to guarantee that all the probabilities defined hereafter are smaller than 1. We
denote the number of uninfected and infected cells that occupy position x j at time tn
respectively by Un

j and I nj ; the corresponding densities are

unj := Un
j

δ
, inj := I nj

δ

The local pressure is assumed to be given by a barotropic relation of the form ρn
j :=

�(unj + inj ). In the next sections we restrict to the case �(z) = z (so the pressure
is actually the total cell density), but the discussion of this section is valid also for
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Fig. 1 Schematic representation of the rules governing cell dynamics in the stochastic models. Uninfected
cells are represented in blue and infected cells in red. Uninfected cells may proliferate or die according to
the pressure value, move and become infected upon contact with infected cells. Infected cells maymove and
die with constant probability. We consider different expressions for the probabilities of movement, given
respectively in Eqs. (2) and (3) (Color figure online)

more general nondecreasing smooth functions � : [0,+∞) → [0,+∞) such that
�(0) = 0: for example, one could think of the functional form proposed in Perthame
et al. (2014). Although there might be differences in the way the system reaches the
carrying capacity and how the model appears in the continuum limit, it seems that
the overall behaviour of the tumour is not profoundly affected by different functional
forms (Macfarlane et al. 2022).

Figure1 summarises the rules governing the dynamics of the agents. We consider
two different movement mechanism, i.e. undirected and pressure-driven, giving rise
to different models. The rules for proliferation and death of uninfected cells, death of
infected cells and infection are common for both models.
Pressure-Dependent Proliferation of Uninfected Cells

We assume that the proliferation probability decreases as the pressure increases
and stops at some homeostatic pressure P > 0; a pressure value greater than P
results in the cell’s death. Given a smooth decreasing function G : [0,+∞) → R

such that G(P) = 0, we let an uninfected cell that occupies position x j at time
tn reproduce with probability τG(ρn

j )+, die with probability τG(ρn
j )−, and remain

quiescentwith probability 1−τG(ρn
j )+−τG(ρn

j )− = 1−τ |G(ρn
j )|. In these formulas,

z+ := max{z, 0} and z− := max{−z, 0}. When a reproduction takes place, a new cell
is placed at the same lattice site. The fact that proliferation stops above P guarantees
that, as τ → 0, a population of cells whose initial pressure is below the homeostatic
value becomes less likely to acquire a pressure value above this level at later times.
This kind of probabilities has already been employed in Chaplain et al. (2020).

For the sake of simplicity, in the following sections we restrict our analysis to the
logistic growth, i.e.

G(ρ) = p
(
1 − ρ

P

)
(1)
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where p > 0 is the maximal duplication rate. Let us observe that the carrying capacity
of the system is K := �−1(P); since in the case of our interest�(z) = z, we actually
have P = K .
Death of Infected Cells

We do not model proliferation of infected cells, as the virus disrupts the cellular
machinery. Some time after the infection, the cell undergoes lysis and dies: we assume
that at every time step this happens with probability τq, where q > 0 is a constant
death rate.
Infection

We do not model explicitly the oncolytic virus, as we assume that its dynamics are
faster than cellular dynamics and can thus be approximated by a quasi-steady state
[as in Komarova and Wodarz (2010); Novozhilov et al. (2006); see also Appendix
B]. Thus, we assume that infection takes place upon contact between infected and
uninfected cells with probability proportional to the density of infected cells. This
means that an uninfected cell that occupies position x j at time tn becomes infected
with probability τβinj /K , where K is the carrying capacity and β > 0 is a constant
death rate. Although the carrying capacity could be easily incorporated in the infection
parameter, this formulation allows to easily rescale the cell densities by onlymodifying
K and the initial conditions. This process is similar to the interaction between the
tumour and the immune system described, for example, in Almeida et al. (2022,
2023).
Cell Movement

Aswe alreadymentioned,we consider two different rules governing cellmovement.
In view of the formal derivation of the continuummodels, it is convenient to adopt the
same notation for both processes. We thus state that an uninfected cell that occupies
position x j at time tn moves to the lattice point x j±1 with probability Fn

j→ j±1 and
remains at its initial position with probability 1 − Fn

j→ j−1 − Fn
j→ j+1. The same

happens for the infected cells, but with probabilities F̃n
j→ j±1 that in principle may be

different from Fn
j→ j±1.

Let us now give the explicit expressions for these probabilities. The simplest model
of movement assumes no influence of the cell density and no preferential direction of
motion; in this case we set

Fn
j→ j±1 := θu

2
, F̃n

j→ j±1 := θi

2
(2)

with θu, θi ∈ [0, 1]. This is a standard unbiased random walk.
On the other hand, since cellular proliferation is limited by a carrying capacity, it also

makes sense to take into account a reduction of motility in crowded environment and
allow cells to only move following the pressure gradient: the probability of movement
thus depends on the difference between the pressure at the initial position of the cell
and the pressure at the target point. In this case we set

Fn
j→ j±1 := θu

(ρn
j − ρn

j±1)+
2P

, F̃n
j→ j±1 := θi

(ρn
j − ρn

j±1)+
2P

(3)
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where z+ := max{z, 0}, P is the homeostatic pressure and θu, θi ∈ [0, 1] as before.
Observe that, if ρn

j ≤ P for every j , then all the probabilities are between 0 and 1.
This kind of reasoning and the probabilities associated have already been employed
in Chaplain et al. (2020).

In the special case ρn
j = P and ρn

j−1 = ρn
j+1 = 0 the two definitions give the same

probability values; in any other case, the probabilities of movement given in Eq. (2)
are higher than the ones given in Eq. (3). This, as we will see shortly, strongly affects
the therapy outcomes.

2.2 ContinuumModel in the Case of UndirectedMovement

Here we consider the undirected cell movement with the probabilities given in Eq.
(2). Letting τ, δ → 0 in such a way that δ2

2τ → D and assuming that there are two
functions u ∈ C2([0,+∞),R) such that unj = u(tn, x j ) and i ∈ C2([0,+∞),R)

such that inj = i(tn, x j ), we formally obtain (see Appendix A) the following system
of reaction-diffusion PDEs

⎧⎪⎪⎨
⎪⎪⎩

∂t u(t, x) = Du∂
2
xxu(t, x) + pu(t, x)G(ρ(t, x)) − β

K
u(t, x)i(t, x)

∂t i(t, x) = Di∂
2
xx i(t, x) + β

K
u(t, x)i(t, x) − qi(t, x)

(4)

where Du := θu D and Di := θi D.
If we take the function G as in Eq. (1) and ρ = u + i , then the system becomes

⎧
⎪⎪⎨
⎪⎪⎩

∂t u = Du∂
2
xxu + pu

(
1 − u + i

K

)
− β

K
ui

∂t i = Di∂
2
xx i + β

K
ui − qi

(5)

This model is a simplified version of the one studied in Pooladvand et al. (2021), as
here we do not consider viral dynamics explicitly. A similar diffusive Lotka–Volterra
model with logistic growth has been studied in Dunbar (1984); it is important to
observe that in our case the infected cells, which play the role of predators, contribute
to the saturation of the growth of uninfected cells, which play the role of preys, hence
Eq. (5) cannot be adimensionalised exactly in the same way as the model in Dunbar
(1984).

Remark 1 When the spatial domain is the two-dimensional real planeR2 instead of the
one-dimensional real line R, the scalar index j ∈ Z should be replaced by the vector
�j = ( jx , jy) ∈ Z

2 and the probability that a cell moves to one of the four neighboring
lattice points is θk/4, with k = u, i . We then need to scale τ and δ in such a way that
δ2

4τ → D.
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2.3 ContinuumModel in the Case of Pressure-DrivenMovement

Let us consider the pressure-driven cell movement with the probabilities given in Eq.
(3). Letting τ, δ → 0 in such a way that δ2

2τ → D and assuming that there are two
functions u, i as in the previous model, we formally obtain (see Appendix A) the
following local cross-diffusion system

⎧⎪⎪⎨
⎪⎪⎩

∂t u(t, x) = Du

P
∂x [u(t, x)∂xρ(t, x)] + pu(t, x)G(ρ(t, x)) − β

K
u(t, x)i(t, x)

∂t i(t, x) = Di

P
∂x [i(t, x)∂xρ(t, x)] + β

K
u(t, x)i(t, x) − qi(t, x)

(6)

where Du := θu D and Di := θi D. This model can be thought as the natural gen-
eralisation to infections of the model presented in Perthame et al. (2014); Byrne and
Drasdo (2009). A similar system is studied in Gwiazda et al. (2019), although it is
important to remark that our infection term does not fit in the framework of reaction
terms considered in that paper.

If we take the function G as in Eq. (1) and ρ = u + i (so that also P = K ), then
the system becomes

⎧
⎪⎨
⎪⎩

∂t u = Du

K
∂x [u∂x (u + i)] + pu

(
1 − u + i

K

)
− β

K
ui

∂t i = Di

K
∂x [i∂x (u + i)] + β

K
ui − qi

(7)

Remark 2 When the spatial domain is the two-dimensional real plane R
2 instead of

the one-dimensional real line R, the scalar index j ∈ Z should be replaced by the
vector �j = ( jx , jy) ∈ Z

2 and the probability that a cell moves to one of the four
neighbouring lattice points is

θk

(ρn
�j − ρn

�j+�e)+
4P

with k = u, i and �e ∈ {(±1, 0), (0,±1)}. As in the case of Remark 1, we need to scale
τ and δ in such a way that δ2

4τ → D.

3 TravelingWaves for the ContinuumModels

In view of the forthcoming comparison of the different models, it is useful to keep in
mind somewell-known analytical results about travelingwaves.We can also anticipate
that analytical results are still not available for the pressure-driven regime, although
some numerical simulations, as wewill see, workwell.We first recall that the equation

∂t u = D∂2xxu + pu
(
1 − u

K

)
(8)
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admits as solutions traveling waves with speed at least 2
√
Dp and an initial con-

dition with compact support evolves into a wave that travels with the minimal speed
(Fisher 1937; Kolmogorov 1937). The application of standard linearisation techniques
(Van Saarloos 2003, §2.1) yields the same invasion speed 2

√
Du p for any reaction-

diffusion equation ∂t u = D∂2xxu+ f (u)u such that f ′(0) = p. A special case is f (u)

constant and equal to p, which corresponds to exponential growth.
On the other hand, the equation

∂t u = D

K
∂x (u∂xu) + pu

(
1 − u

K

)
(9)

admits as solutions traveling waves with speed at least
√
Dp/2 and again an initial

conditionwith compact support evolves into awave that travelswith theminimal speed
(Aronson 1980; Newman 1980); the main difference with respect to the previous
equation is the fact that initial data with compact support evolve into sharp waves
with compact support. It is important to observe that, since the spatial dependence is
intrinsically nonlinear, a direct application of linear spreading speed does not give any
meaningful information.

Let us also recall that the system

⎧
⎪⎪⎨
⎪⎪⎩

du

dt
= pu

(
1 − u + i

K

)
− β

K
ui

di

dt
= β

K
ui − qi

(10)

(which is the spatially homogeneous analog of Eqs. (5) and (7)) has three equilibria:
(0, 0), (K , 0) and

(u∗, i∗) :=
(
qK

β
,
pK (β − q)

β(β + p)

)
(11)

The first equilibrium has eigenvalues p and −q, so it is unstable (recall that all the
parameters are strictly positive). The second one has eigenvalues−p and β−q, so it is
stablewhenβ < q (i.e., i∗ < 0) andunstablewhenβ > q (i.e., i∗ > 0).The expression
for the eigenvalues of the last equilibrium is more complicated, but their sum is − pq

β

and their product is pq(β−q)
β

: hence, when i∗ > 0 the eigenvalues are either both real
and negative or complexwith negative real part; in both cases, the equilibrium is stable.
Observe that, in the case of β < q and positive initial data, the only possible outcome
is the extinction of infected cells and the growth of the uninfected cells to the carrying
capacity, which in our biological interpretation corresponds to a complete failure of
the treatment. As also pointed out in other works by some of the present authors,
the interplay between infection rate and death rate of infected cells is responsible, to
some extent, to the success of the overall therapy (Jenner et al. 2018b; Pooladvand
et al. 2021). Infections that start and develop too quickly seem to carry less ability
to effectively control the tumour in the long run. This can be circumvented, to some
extent, by encasing the virus in gels or implementing strategies to retard and prolong
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its release (Jenner et al. 2019; Pooladvand et al. 2021; Jenner et al. 2020, 2018a).
From now on we focus on the situation β > q.

It is worth recalling that in Dunbar (1984) it was proven that a system similar
to Eq. (5) (in which “predators” do not contribute to the saturation of uninfected
cells’ growth) admits traveling waves connecting (0, K ) to (u∗, i∗)with speed at least
2
√
Di (β − q) and damped oscillations after the front of the wave may appear. Since

we are mostly interested in the case of a tumour that is still expanding, it makes more
sense to look for traveling waves connecting (0, 0) to (u∗, i∗) to and we expect to
observe a race between the uninfected cells (evolving according to Eq. (8) in absence
of infected cells) and the infected cells at the center of the tumour. This situation is
shown in Fig. 2a and it is clearly more complex than the one examined in Dunbar
(1984). Let us observe that the density of a population of infected cells invading a
region of uninfected cells at constant density û satisfies the equation

∂t i = Di∂
2
xx i +

(
β

K
û − q

)
i

This equation is analogous to the linearised version of Eq. (8), therefore we expect

infected cells to travel at speed 2
√
Di (

β
K û − q) and for û = K we recover the expres-

sion 2
√
Di (β − q) (as it is shown in Fig. 2a).

On the other hand, to our knowledge there are no rigorous analytical results for
traveling waves solving Eq. (7). Clearly an initial condition in which the function i
has compact support surrounded by an area with u = K cannot evolve into a traveling
wave connecting (K , 0) to (u∗, i∗), as the spatial movement of i is inhibited in the
areas in which u is at carrying capacity. As a consequence, the classical problem of a
new predator or a new infection invading an established population makes no sense in
this context. On the other hand, the numerical results in Fig. 2b show the existence of
a traveling wave evolving from (0, 0) to (u∗, i∗). Let us also observe the movement
depends on the local density, so the speed expression

√
Du p/2 is only valid when the

invading front is at carrying capacity; when the front is smaller due to the infection,
it also moves slower. In the case of Fig. 2b, the invading front is close enough to K ,
so that the value

√
Du p/2 is still a good approximation for the speed of uninfected

invasion.
Let us conclude this section by recalling the fact that all the speed wave expressions

are accurate in one spatial dimension. In two spatial dimensions, the same formulas
describe the asymptotic speed for the radially symmetric equation [see for example
(Murray 2002, §13.2)]; our numerical simulations show that the formulas of this
section approximate the wave speed well enough in the parameters’ range of our
interest.

4 Comparison of theModels with UndirectedMovement

We are now ready to compare numerical simulations for the agent-based model and
the corresponding system of PDEs. We start from the model with standard diffusion,
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Fig. 2 Numerical solutions of a Eq. (5) and b Eq. (7) show that theoretical results correctly estimate
the speeds of the traveling waves. The results are discussed more in depth in the following sections. The
parameters employed are the ones given in Table 1, with the exception of the infection radius Ri in panel
(b) (which is set to 2.6 mm in order to allow the infection to spread)

Table 1 Reference parameter set

Parameter Description Value (Units) References

p Maximal duplication rate
of uninfected cells

1.87 × 10−2 (h−1) Ke et al. (2000)

q Death rate of infected
cells

4.17 × 10−2 (h−1) Ganly et al. (2000)

Du , Di Diffusion coefficients
(undirected movement)

1.88 × 10−4 (mm2/h) Estimate based on Kim et al. (2006)

Du , Di Diffusion coefficients
(pressure-driven
movement)

1.50 × 10−3 (mm2/h) Estimate based on Kim et al. (2006)

K 1D Tissue carrying capacity
in one dimension

103 (cells/mm) Model estimate

K 2D Tissue carrying capacity
in two dimensions

104 (cells/mm2) Lodish et al. (2008)

β Infection rate 1.02 × 10−1 (h−1) Estimate based on Friedman et al. (2006)

Ru Initial radius of
uninfected cells

2.6 (mm) Kim et al. (2006)

Ri Initial radius of infected
cells

1 (mm) Model estimate
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Fig. 3 Comparison in one spatial dimension between numerical simulations of the discrete model with
undirectedmovement (solid lines) and the numerical solution of Eq. (5) (dotted black lines) at three different
times, with the parameters given in Table 1. For the agent-based model, the density of the uninfected cells is
represented in blue and the density of infected cells in red. The vertical dashed lines represent the expected
positions of the uninfected and infected invasion fronts, traveling respectively at speed 2

√
Du p (blue lines)

and 2
√
Di (β − q) (red lines); the latter has no biological meaning in panel (c), as the infection cannot go

beyond the uninfected front. The horizontal solid black lines show the equilibrium of the ODE given by Eq.
(11) and the horizontal dashed yellow line represents the expected uninfected density at the front given by
Eq. (13) (only relevant in panel (c)). The results of the agent based model are averaged over five simulations
and the maximum of the cell density axis corresponds to the maximum over time of this average (which is
lager than the carrying capacity) (Color figure online)

Fig. 4 Numerical simulation of the discrete model with undirected movement in two spatial dimensions at
three different times with the parameters given in Table 1. The dotted green circles represent the internal
minimum of the numerical solution of Eq. (5) (not shown in panel (c), as this minimum is in 0). The
dashed cyan circles represent the expected positions of the uninfected and infected invasion fronts, traveling
respectively at speed 2

√
Du p and 2

√
Di (β − q). The latter has no biological meaning in panel (c), as the

infection cannot go beyond the uninfected front; therefore in this figure we show with a dashed red circle
the front of the infected cells given by the numerical solution of Eq. (5). The results of the agent based
model are averaged over five simulations and the maximum of the colorbars for uninfected and infected
cells correspond to the maximum over time of the averages (which for the uninfected cells is lager than the
carrying capacity) (Color figure online)
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since in this case there exist comprehensive analytical results for traveling waves. We
consider a spatial domain [−L, L] (or [−L, L]2) with L = 10 mm and we adopt
Neumann boundary conditions. The initial conditions are

u0(x) =
{
0.9 K for |x | ≤ Ru

0 for |x | > Ru
i0(x) =

{
0.1 K for |x | ≤ Ri

0 for |x | > Ri
(12)

where Ru and Ri are respectively the initial radius of uninfected and infected cells. This
corresponds to a central viral injection; a short discussion about how initial conditions
affect the dynamics can be found in Appendix B.

We first present the results obtained with the reference parameters listed in Table 1
in both one and two dimensions; we then investigate how different parameters allow
to obtain other spatial patterns.
Reference Parameters

Figure3, alongwith the video accompanying it (see electronic supplementarymate-
rial S2), shows an excellent quantitative agreement between numerical solutions of the
system of PDEs (5) and the average over 5 numerical simulations of the agent-based
model in one spatial dimension. At the beginning of the simulations, the central region
of the tumour is quickly infected, while the outer region (which is only occupied by
uninfected cells) grows up until reaching the carrying capacity. At the same time, a
traveling wave of uninfected cells starts to invade the surrounding area at the speed
2
√
Du p (vertical blue lines in Fig. 3), as predicted by theoretical results. As soon as

the uninfected cells reach the carrying capacity, the invasion speed of the infected
cells stabilises to the value 2

√
Di (β − q) (vertical red lines in Fig. 3), which again

confirms our expectations from analytical results. In the meantime, cell densities at
the center of the tumour converge with damped oscillations to the equilibrium of the
corresponding ODE (horizontal solid black lines in Fig. 3), given by Eq. (11). This is
shown in Fig. 3a.

The parameters we chose are such that 2
√
Du p < 2

√
Di (β − q), meaning that the

infection eventually reaches the front of the wave of uninfected cells. This happens
around time t = 200 h: as a consequence, the peak at the front starts to decrease
for both populations and infected cells slow down (see Fig. 3b). The final peak of the
uninfected cells is approximately

ū :=
(
q

β
+ Du p

Diβ

)
K = u∗ + Du pK

Diβ
(13)

which is the solution of the equation

2
√
Du p = 2

√
Di

(
β

K
ū − q

)

In other words, an uninfected population of cell density ū is invaded by infected cells at
speed 2

√
Du p, which is the speed of the uninfected front. A higher uninfected density

at the front would result in a faster invasion of the infection, which would cause the
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Fig. 5 Numerical simulation of the discrete model with undirected movement in two spatial dimensions
with different parameter values. The dotted green circles represent the internal minimum of the numerical
solution of Eq. (5) (not shown when this minimum is in 0). The dashed cyan circles represent the expected
positions of the uninfected invasion fronts, traveling at speed 2

√
Du p. The dashed red circles represent the

front of the infected cells given by the numerical solution of Eq. (5). The parameters employed are the ones
given in Table 1, with the exception of the infection rate β in panel (a) (which is set to 4.86 × 10−2 h−1,
i.e. less than half of the reference value), the death rate of infected cells q in panel (b) (which is set to
4.17 × 10−3 h−1, i.e. one tenth of the reference value), the initial conditions in panel (c) (whose densities
are set to 0.09 K for uninfected cells and 0.01 K for infected cells, i.e. one tenth of the reference values of
Eq. (12)) and the carrying capacity K in panel (d) (which is set to 103 cells/mm; initial conditions are scaled
accordingly). The first two figures are the averages over five simulations, while the last two represent single
simulations. In both cases the maximum of the colorbars for uninfected and infected cells correspond to the
maximum over time of the quantity plotted, which for uninfected cells is lager than the carrying capacity
(note the different values between different simulations) (Color figure online)

front to decrease again; similarly, a smaller uninfected density at the front would slow
down the infection and thus allow the uninfected front to grow. In our case the density
of the uninfected population is not constant, but the value ū given in Eq. (13) is still a
good approximations of the density at the front (see the horizontal dashed yellow line
in Fig. 3c). As time passes, both front waves keep moving at the speed 2

√
Du p; the

fronts are followed by a few damped oscillations that converge to the equilibrium of
the ODE. This is shown in Fig. 3c.

Figure4, alongwith the video accompanying it (see electronic supplementarymate-
rial S3), shows that the same excellent agreement also holds in two spatial dimensions;
the comparison with the continuum model and the analytical expressions of the wave
speeds is shown through dashed and dotted colored circles, as explained in the caption
of the figure. Observe that, before cell densities converge to the equilibrium in the cen-
ter of the tumour, some concentric circles appear, in linewith experimental observation
(Wodarz et al. 2012); the internal circle however disappears as time passes.
Impact of the Parameters on the Treatment Outcome

Let us show how varying the parameters affects the success of the therapy, still for
the case of growth that is unhindered by spatial or pressure constraints, but is only
limited by carrying capacity. We only focus on two-dimensional simulations, but the
one-dimensional case is analogous.
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We start by analysing some instances of treatment failure. As we already pointed
out in Sect. 3, the worst possible case is the situation in which the infection ceases
after a finite time and uninfected cells grow at carrying capacity: this corresponds to
parameter values such that β < q, which do not allow the equilibrium (u∗, i∗) to be
positive. A more interesting case of failure, which has no analogue in the spatially
homogeneous ODE, is the one in which the equilibrium (u∗, i∗) is positive and stable,
the infected cells form a traveling wave, but the spread of the infection is smaller than
the speed of the uninfected wave and so the outer region of the tumour is completely
unaffected by the therapy. Figure5a shows this situation, obtained by decreasing the
infection rate β with respect to the reference value. In this case the value of u∗ is more
than 85% of the carrying capacity, so the invasion front is at carrying capacity and even
in the central area the role of the infection is not really relevant, despite never ceasing
completely. Similar situations are obtained whenever parameter values are such that

2
√
Di (β − q) < 2

√
Du p

If Du = Di , this condition is equivalent to β < q + p. We can thus conclude that,
as we could easily expect, a decrease in the infection rate β or an increase either
of the death rate of the infected cells q or the proliferation rate of the uninfected
cells p with respect to the reference value makes the therapy less successful and, in
extreme cases, useless. This scenario mimics, to some extent, that of an aggressively
expanding tumour whose developing front is moving very fast, as in existing clinical
settings (Eissa et al. 2018).

On the other hand, whenever the infection reaches the boundary of the tumour (as in
the reference situation) we can consider the therapy at least partially successful. Some
variations of the parameter values allow then to improve therapy achievements. For
example, as the death rate of the infected cells q decreases, the infection propagates
faster and u∗ decreases, therefore the therapy becomes more effective. This situation
is shown in Fig. 5b and captures the typical case when the virus has sufficient potency,
as current clinical trials and therapeutic practice strive to achieve (Lawler et al. 2017;
Hemminki et al. 2020). The center of the tumour is almost completely void for most of
the time, as the number of uninfected cells is negligible and the number of infected cells
is quite small (although slightly bigger). At later times some other inner circles emerge
as a consequence of the damped oscillations leading to the equilibrium; nevertheless,
the emerging spatial structure can still be well described as an empty ring. It is clear
from these results that a way tomake the therapymore efficient would be to increase β,
as this would again result in a faster infection and a smaller uninfected population. A
decrease of pwould leave the number of uninfected cells at the equilibriumunchanged;
yet, the tumour expansion would slow down and, as a consequence, the infection
would reach the tumour boundary faster. Unlike the continuousmodel, the agent-based
model may show extinction in finite time of both populations, which correspond to
the eradication of the tumour (not shown here). However, this would require to change
parameters beyond the values that appear biologically meaningful. This is in line with
results obtained from deterministic spatially homogenous models, for example the
simple one in Jenner et al. (2018a).
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Table 2 Summary of the different scenarios for the traveling waves as the infection rate β increases

Parameters Description

β < q Uninfected cell wave at speed 2
√
Du p and height

K , no infection

q < β < q + Du
Di

p Uninfected cell wave at speed 2
√
Du p and height

K , central infection expanding at speed
2
√
Di (β − q) without reaching the uninfected

front; internal densities reach the values(
qK
β

,
pK (β−q)
β(β+p)

)

β > q + Du
Di

p Uninfected cell wave at speed 2
√
Du p and height(

q
β

+ Du p
Diβ

)
K , infection up to the uninfected

front; internal densities reach the values(
qK
β ,

pK (β−q)
β(β+p)

)

Table 2 summarises the different scenarios for traveling waves described above. In
all these the results of the agent-based model perfectly agree with the ones given by
the numerical solution of the corresponding PDE. Let us stress the fact that taking into
account a single simulation in most of the cases reduces the quantitative agreement,
but not the overall qualitative behavior: individual variations occur but a general,
consistent trend is achieved.
Impact of Stochasticity for Lower Cell Densities

We now present two simulations in which stochastic effects give rise to notable dif-
ferences between the discrete and continuum approach, due to the fact that a smaller
number of cells reduces the quality of the continuum approximation. This could cor-
respond to a moderately extended tumour in its first stages of growth, for example.
Figure5c shows the result of a single simulation with the parameters of Table 1 and
smaller initial cell densities. Clearly, uninfected cells take longer than in the reference
case to reach carrying capacity. As soon as they do, the infected area is much less regu-
lar than what the PDE predicts: this comes from the fact that the infection starts among
a small number of cells and thus a few stochastic events affect the spatial distribution
of the infection relevantly. As times passes, these differences tend to disappear.

Figure5d shows the situation in which the carrying capacity K is decreased and
initial cell densities are scaled accordingly, in agreementwith Eq. (12). For initial times
it is still possible to recognise the same qualitative behavior of the PDEs, but as time
passes stochastic events drive the system into a very irregular spatial configuration.

Let us also mention what happens when we change the reference parameters for
the scaled system (not shown here). If we decrease the death rate of infected cells,
we still observe the void ring structure, although much less precise than the one of
Fig. 5b. If the infection rate is decreased as in Fig. 5a, then the number of infected
cells is so low that the infection undergoes extinction in short time. We can therefore
conclude that the PDEs remain a good description of the treatment outcome, even
though quantitative agreement is lost due to stochastic effects.
Exponential Growth
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Fig. 6 Numerical simulation of the discrete model with undirected movement and exponential growth in
two spatial dimensions, with different parameter values. The dashed cyan circles represent the expected
positions of the uninfected invasion fronts, traveling at speed 2

√
Du p. The dashed red circles represent

the front of the infected cells given by the numerical solution of Eq. (5). The parameters employed are the
ones given in Table 1, with the exception of the death rate of infected cells q in panel (b) (which is set to
4.17× 10−3 h−1, i.e. one tenth of the reference values), the initial conditions in panel (c) (whose densities
are set to 0.09 K for uninfected cells and 0.01 K for infected cells) and the carrying capacity K in panel
(d) (which in this case only affects the infection and is set to 103 cells/mm; initial conditions are scaled
accordingly). The first two figures are the averages over five simulations, while the last two represent single
simulations. The maximum values of the colorbars have been chosen in order to make the figures clear and
are much smaller than the maximum reached by uninfected cell densities (note the different values between
different simulations) (Color figure online)

Onemaywonderwhether the growth of a small tumour that is not limited by the lack
of external resources may be stopped only by viral infections. Unlimited exponential
growth is clearly not feasible in any biological scenario, but we could imagine that in
some cases the carrying capacity is too high to give any significant contribution in the
initial phases of the tumour dynamics. We thus let G(ρ) ≡ p and study what happens
in the situations we have analysed so far.

The internal equilibrium of the associate ODE is (qK/β, pK/β) and it is neutrally
stable. It still makes sense to look for traveling waves connecting the two equilibria, as
the additionof diffusion to the system is enough tomake the equilibriumasymptotically
stable; it is also reasonable to expect the oscillations to take longer to dampen than
in the previous situation because of this. Nevertheless, to our knowledge there are no
rigorous analytical results for traveling waves solutions of the associate PDE.

Figure6a, along with the video accompanying it (see electronic supplementary
material S4), shows the result of the two-dimensional simulation with the parameters
of Table 1. The supplementary material shows that also in the present case there is an
excellent agreement between the discrete and continuum model. At the beginning of
the simulation, uninfected cells in the outer region grow exponentially and invade the
surroundings at speed 2

√
Du p (dashed cyan circles in Fig. 6a). Meanwhile, the speed

of infected cells increases as the number of uninfected cells grows, until the infection
eventually reaches the front of uninfected cells: this happens around time t = 100 h,
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which is approximately half the time it takes for the same process with logistic growth;
however, in this case the peak of uninfected cells is more than five times K . After that,
the peak of uninfected cells quickly drops to approximately the value ū predicted by
Eq. (13). In the center of the tumour there are several secondary waves with a peak of
size comparable to the front peak, which propagate both toward the interior and the
exterior of the tumour. These waves are lead by uninfected cells, with infected cells
following: when two uninfected waves merge, they quickly disappear because they
get surrounded by infected cells.

The case of an ineffective treatment does not exist mathematically, as the equilib-
rium values (qK/β, pK/β) are positive for all values of the parameter. Furthermore,
the propagation speed of the infection increases as the number of infected cells
increase: since the growth is unlimited, the infection eventually and inevitably reaches
the front of the uninfected cells. The shortcoming is the fact that all the dynamics
happen at much higher density levels than those considered previously, and, as such,
appear biologically irrelevant. On the other hand, the situation of a highly effective
therapy does not present any relevant difference with respect to the situation with
logistic growth: Fig. 6b shows that a decrease of the death rate of infected cells yields
a result very similar to the one obtained in Fig. 5b: the only difference is that inner
circles are more visible and persistent at late times.

Let us also mention what happens for low cell densities: we expect stochasticity
to play a more important role in this model, as there is no deterministic limit to cell
growth. Figure6c shows that scaling only the initial conditions leads again to spatial
patterns that are much less regular than what the PDEs predicts; furthermore, these
features are still evident even for long times. Figure6d shows that as we scale the
whole system by a factor of ten we still maintain some qualitative agreement with
the PDEs at early times, but the importance of stochastic effects becomes evident;
we also observe that local peaks may get very high before the infection manages to
control them. Despite the increasing importance of stochasticity in this situation, it is
important to observe that the PDEs are still able to correctly predict the outcome of
the therapy as parameters change.

5 Comparison of theModels with Pressure-DrivenMovement

Finally, let us discuss the numerical simulations for the model with pressure-driven
movement and logistic growth. As we already pointed out, the linear spreading speed
does not give any meaningful information. An additional difficulty comes from the
fact that varying initial conditions may result in opposite therapy outcomes: this is a
consequence of cells’ inability to propagate in areas of constant total density. We will
also see that the role of stochasticity is more important than in the previous models
and in many cases the PDEs are unable to correctly predict the therapy outcome.
This represents an important insight when assessing the efficiency of virotherapy for
tumours that are either highly constrained or are hard to infect or penetrate.

Given the intrinsic variability, we do not give a comprehensive description of all the
possible outcomes in the waywe did in the previous section and limit to the description
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Fig. 7 Comparison in one spatial dimension between numerical simulation of the discrete model with
pressure-driven movement (solid lines) and the numerical solution of Eq. (7) (dotted black lines) at the
same time t = 1500 h with different parameter values, all resulting in treatment failure according to the
discrete model. For the agent-based model, the density of the uninfected cells is represented in blue and
the density of infected cells in red. The vertical dashed blue lines represent the expected positions of the
uninfected invasion front, traveling at speed

√
Du p/2. The horizontal solid black lines show the equilibrium

of the ODE given by Eq. (11). The parameters employed are the ones given in Table 1, with the exception of
the infection radius Ri in panels (b) and (c) (which is set to 2.6 mm) and the carrying capacity K in panel
(c) (which is set to 105 cells/mm). The results of the agent based model are averaged over five simulations
and the maximum of the cell density axis corresponds to the maximum of this average

Fig. 8 Numerical simulation of the discrete model with undirected movement in two spatial dimensions
at the same time t = 1500 h with different parameter values, all resulting in treatment failure. The dotted
green circles represent the internal minimum of the numerical solution of Eq. (7) (not shown when this
minimum is in 0). The dashed cyan circles represent the expected positions of the uninfected invasion fronts,
traveling at speed

√
Du p/2. The dashed red circles represent the front of the infected cells given by the

numerical solution of Eq. (7). The parameters employed are the ones given in Table 1, with the exception of
the infection radius Ri in panels (b) and (c) (which is set to 2.6 mm) and the carrying capacity K in panel
(c) (which is set to 105 cells/mm2). The results of the agent based model are averaged over five simulations
and the maximum of the colorbars for uninfected and infected cells correspond to the maximum over time
of the averages. Note the finger-like formations (Color figure online)

123



   92 Page 20 of 37 D. Morselli et al.

of some cases of failure and success of the therapy, with a special emphasis on the
situations in which results from agent-based model and PDE do not agree.

We again adopt the initial conditions given by Eq. (12) and Neumann boundary
conditions.
Reference Parameters: Ineffective Treatment

Let us first analyse Figs. 7a and 8a, which show an excellent quantitative agree-
ment between numerical solutions of the system of PDEs (7) and the average over five
numerical simulations of the agent-based model both in one and two spatial dimen-
sions. Unlike the previous situations, this model predicts the infection to be confined
at the center of the tumour: this is due to the fact that the central infection quickly
causes the total cell density to drop, while external uninfected cells proliferate; since
cells cannot move toward an area with higher cell density, the outer cells are never
going to be infected and the tumour keeps expanding at the speed

√
Du p/2 (vertical

dashed blue line in 7a and dashed cyan circle in Fig. 8a), in the same way it would do
in absence of treatment. This situation is similar to the case of ineffective infection
already observed in Fig. 5a, but it is important to observe that here the infection rate
has not been decreased with respect to the reference value. Therefore, it is clear that
in this model constraints to cell movement are responsible for treatment failure.

It is important to remark that adding explicit viral dynamics to the model and
allowing the virus to diffuse without any constraint due to crowding effects [as, for
example, in Pooladvand et al. (2021)] would result in an effective infection even in
the case of pressure-driven cell movement, but does not entirely capture the realism of
the process. We are considering a situation in which the virus faces some challenges
in penetrating the tumour and thus cell movement is clearly a mayor driver of viral
propagation.
Treatment Success in the Continuous Setting

Since treatment failure is due to the inability of the infection to propagate in the
tumour, a simple solution to improve outcomes could be to consider that infected cells
are initially present in the whole tumour, i.e. take Ri = Ru in Eq. (12). From the
biological point of view, this corresponds to multiple locations for the initial viral
injection in contrast to a single central injection, which has been considered so far.
Figures7b and 8b indeed show that using this approach the PDEs predict infected cells
to be at all times at the tumour front, giving rise to traveling waves qualitatively similar
to the ones we observed in the model with undirected movement. Nevertheless, the
agent-basedmodel again shows an infection that fails to propagate in thewhole tumour.
This is due to the fact that, in this model, demographic stochasticity plays amuchmore
important role than in previous models: any growth above average of uninfected cells
stops the movement of infected cells and hence cannot be compensated at later times
by other processes. Let us also observe that the PDE predicts the presence of a very
small infected cell density up to the uninfected invasion front: in the discrete model,
this corresponds to a number of infected cells too low to guarantee a good quality of the
continuous approximation [in these regards, see also the discussions in Johnston et al.
(2020); Macfarlane et al. (2022)]. Overall, at these scale the discrete model cannot be
accurately described by the continuum model.

According to the formal derivation of the PDEs from the agent-based model, an
increase of cell number and a decrease of the temporal and spatial discretisation
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improves the quality of the continuum approximation. Hence, we scaled the system
by setting K = 105 cells/mm in one dimension and K = 105 cells/mm2 in two
dimensions. While this increase has no biological justification, from the mathematical
point of view it still makes sense to analyse at what scale we obtain good agreements
between the discrete and the continuous model. Figures7c and 8c show that, despite
an excellent quantitative agreement at initial times, stochastic events at some point
inevitably cause external cells to start to grow: a positive feedback loop then promotes
cellular growth until carrying capacity, stopping any further spatial propagation of the
infection. We can thus conclude that only a further increase of the cell number could
guarantee a better agreement between the discrete and the continuummodel, although
the biological meaning would be lost.
Treatment Success in the Discrete Setting

Let us now describe two parameter settings that allows the discrete model to create
traveling wave, so that the therapy is at least partially successful. Figures8b and 8c
show that in two dimensions the infection propagates more easily than in one dimen-
sion, as there is more space to overcome the unexpected growth of uninfected cells at
single points; we therefore expect to observe traveling waves in two dimensions by
changing the reference parameter values inways less significant than in one dimension.
Indeed, Fig. 9, along with the video accompanying it (see electronic supplementary
material S6), shows that an increase in the number of cells and a decrease in the death
rate of infected cells q give rise to a wave in the two dimensional discrete model,
in agreement with the numerical solution of the PDE. We recall that, in the model
with undirected cell movement, the decrease of the parameter q is associated with a
highly effective therapeutic outcome; we thus have an additional confirmation that in
the discrete model with pressure-driven movement partial success is not viable.

As we have already mentioned, in one spatial dimension a good propagation of
infection in the discretemodel is harder to achieve. The electronic supplementary video
S5 shows that a good agreement between the agent-based model and the numerical
solution of the PDE is still possible, but can only be attained in unrealistic parameter
ranges. Observe that in that simulation the diffusion coefficients are much higher than
the reference values, indicating again that cell movement is the main obstacle to be
overcome for a full success.

In both cases, reasonable increases of the infection rate β do not lead to a more
effective infection, as this causes a decrease of central cell density and creates the
need for infected cells to move against a pressure gradient. Clearly, further increases
of β allow for a fast eradication of the tumour in the case of spread infection and the
problem caused by the inhibition of movement becomes irrelevant; this however can
be attained only if we go beyond the biologically meaningful setting.
Other Spatial Patterns

In this model the role of stochasticity is so important that we can see irregular con-
figurations evenmaintaining the carrying capacity at the reference value. Furthermore,
let us set the death rate of infected cells at the same value of the simulation in Fig. 9,
as otherwise the therapy would not be effective in the discrete model.

Figure10a shows that in this settings an increase of diffusion coefficients allows
the infection to propagate until approximately 1000 h, when it starts to be blocked by
the increase of the uninfected front. Observe how the stochastic events stopping the
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Fig. 9 Numerical simulation of the discretemodelwith pressure-drivenmovement in two spatial dimensions
at three different times. The dotted green circles represent the internal minimum of the numerical solution
of Eq. (7) (again, not shown when this minimum is in 0). The dashed cyan circles represent the expected
positions of the uninfected invasion fronts in absence of treatment, traveling at speed

√
Du p/2. The dashed

red circles represent the front of the infected cells given by the numerical solution of Eq. (7). The parameters
employed are the ones given in Table 1, with the exception of the carrying capacity K (which is set to
105 cells/mm2, i.e. ten times the reference value) and the death rate of infected cells q (which is set to
8.33×10−3 h−1, i.e. one fifth of the reference values). These parameter choices allow a perfect agreement
between the discrete and the continuous model, although their biological value is disputable. The results of
the agent based model are averaged over five simulations and the maximum of the colorbars for uninfected
and infected cells correspond to the maximum over time of the averages (Color figure online)

infection take place at different times in different locations, giving rise to interesting
finger shaped structures. The other simulations depicted in Fig. 10 have been obtained
by considering a higher probability of movement of infected cells with respect to
uninfected cells:while there is no clear biological evidence supporting this assumption,
we may still interpret it as a way to indirectly incorporate in our model, for example, a
viral diffusion that is slightly more efficient in the tumour microenvironment (so that
both cell-to-cell contacts and free viral particles contribute to new infections and thus
the therapy is only partially inhibited by the pressure). Figure10b shows that the lower
motility of uninfected cells allows the infection to occupy the whole tumour area. In a
few areas uninfected cells manage to survive and become harder to be infected as they
keep growing, but the therapy can still be considered effective. A further decrease of
uninfected motility does not improve the situation: Fig. 10c shows that, despite a very
effective initial infection, a few cells manage to survive and give rise to segregated
structures that are almost impossible to infect, due to the low uninfected cell motility.
In the majority of the tumour, uninfected cells are at carrying capacity and the tumour
invasion of the surrounding tissues has been only slightly slowed down with respect
of the case without infection. We can thus conclude that such a high difference in the
motilities does not favor the therapy. Finally, let us consider again the value of Du used
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Fig. 10 Numerical simulation of the discrete model with pressure-driven movement in two spatial dimen-
sions with different parameter values. The dotted green circles in panel (a) represent the internal minimum
of the numerical solution of Eq. (7). The dashed cyan circles represent the expected positions of the unin-
fected invasion fronts in absence of treatment, traveling at speed

√
Du p/2. The dashed red circle in panel

(a) represents the front of the infected cells given by the numerical solution of Eq. (7). The parameters
employed are the ones given in Table 1, with the exception of the death rate of infected cells q (which is
set to 8.33× 10−3 h−1, i.e. one fifth of the reference values), the diffusion coefficient of infected cells Di
(which is set to 1.50×10−1 mm2/h, i.e. ten times the reference value) the diffusion coefficient of uninfected
cells Du in panels (a), (b) and (d) (which is set to 1.50× 10−1 mm2/h in panel (a), to 7.50× 10−2 mm2/h
in panel (b) and to 3.00 × 10−3 mm2/h in panel (d)) and the infection rate β in panel (d) (which is set to
2.04×10−1 h−1, i.e. twice the reference value). The maximum of the colorbars for uninfected and infected
cells correspond to the maximum over time of the simulation (Color figure online)

for Fig. 10b and double the infection rate β: as we may expect, this kind of infection
makes the pressure decrease in the infected areas and it is thus too fast to be effective.
Figure10d shows the result of this simulation, which is much more similar to 10c than
to 10a. It is interesting to observe that this strong segregation happens with parameter
values quite close to the ones that would cause a highly effective treatment, indicating
how delicate the balance between the different populations is. The general message is
that a pressure-driven scenario generates patterns and structures that can be hard for
the virus to clear.

6 Conclusions

A minimal, individual-based model for the infection of tumour cells due to oncolytic
viruses, assuming two different mechanisms for cellular movement, has been devel-
oped. In both cases we formally derive the deterministic continuum counterpart and
compare the numerical results in one and two spatial dimensions. The outcomes of the
comparison are highly dependent on the rules governing cells’ movement and show
typical traits for failure and successful outcomes.

In the model with undirected cell movement the solution of Eq. (5) faithfully mir-
rors the qualitative and quantitative properties of the results of the simulations of the
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agent-based model: this agreement is robust to parameter variations and holds even if
the logistic growth is replaced by an exponential growth. When lower cell densities
are considered, the quantitative agreement is partially lost, but the PDEs are still able
to correctly predict the treatment outcome. We can thus use our knowledge of the con-
tinuous model to better understand the outcome of the therapy in different parameter
regimes and establish strategies and trends to help clinicians.

On the other hand, in the model with pressure-driven cell movement the solution
of Eq. (7) exhibits traveling waves in situations in which simulations of the agent-
based model result in a localised infection in the center of the tumour, especially
in one dimension. From the mathematical point of view, this can be addressed by
increasing the number of agents in the simulations and decreasing the temporal and
spatial discretisations. However, from the biological point of view it makes no sense
to consider such a high cell density and stochastic effects cannot simply be neglected:
therapy may fail only because of the inhibition of movement due to the pressure.
This represents quite a hurdle from the treatment’s perspective and suggests that, in
the absence of an immune response, virotherapy is intrinsically limited for tumours
whose microenvironments constrain cell movement.

Note also that the two dimensional patterns obtained from the agent-based simula-
tions are consistent with the ones discussed in the literature regarding oncolytic viral
infection: for example, inWodarz et al. (2012) the authors describe filled rings (similar
to our Figs. 4 and 5d), hollow rings (similar to our Fig. 5b), concentric rings (similar
to our Figs. 6, 9) and disperse patterns (similar to our Figs. 5d, 6d, 10b) obtained both
via in silico experiments and numerical simulations of an agent-based model. But,
in Wodarz et al. (2012) only a single cell can occupy a lattice point and therefore
concentric rings are due to stochasticity, whereas they are originated also by PDEs in
our model. Results are also consistent with the spatial patterns observed in Kim et al.
(2014), for glioma and ECM-degrading enzyme Chase-ABC. Structures like these
appear to be universal whenever tumour expansion is hindered.

We were also able to obtain segregated regions of uninfected cells (Fig. 10c, d)
by considering a faster movement for infected cells in the agent-based model when
diffusion is pressure-driven. This kind of results resemble those of stochastic invasion
models (Lewis 2000; Lewis and Pacala 2000) and deterministic PDEs of predator and
prey with an Allee effect, due to the instability of the propagation front (Li 2015;
Morozov et al. 2006; Petrovskii et al. 2005, 2002). Unlike these two models though,
in our case the segregation is due to the combination of pressure’s inhibition of move-
ment and stochasticity. It is interesting to observe that, despite all the differences in
the model, our results are in agreement with the observation of Li (2015); Morozov
et al. (2006); Petrovskii et al. (2005, 2002) that this “patchy invasion” takes place
for parameter values very close to the ones that would result in the extinction of both
populations. This could be important from a therapeutic perspective, suggesting to
exercise extra care when tumours’ growth is subject to pressure-related effects.

In all this case, the comparison between the discrete and the continuous approach
allows us to better understand which phenomena are mainly driven by stochasticity
and which other can be described equally well by deterministic rules.

An important addition to the model in the future could be the explicit dynamics
of oncolytic viruses. If viruses were allowed to move with standard diffusion, then it
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would be reasonable to expect broader infections in themodelwith pressure-driven cell
movement, as viruses would face no restriction in moving against pressure gradient.
However, it is likely that a higher cell pressure has some inhibition on viral propagation,
and patterns and trend might not be too dissimilar. Similarly, it would be interesting to
include in the agent-based model other biologically relevant elements that may inhibit
viral delivery, such as the extracellular matrix, the influence of hypoxia or the effect of
unevenly dense regions of collagen, for instance. Furthermore, the effect of an immune
response when oncolytic viruses are released are still not entirely clear (Hemminki
et al. 2020); it is important to remark that in recent years the combination of oncolytic
viruses with immunotherapy has shown promising results [see Engeland et al. (2022)
for a review of the topic].

From the mathematical point of view, a rigorous way to characterise the traveling
wave solutions of the system of PDEs (7) is lacking. While waves connecting (K , 0)
to (u∗, i∗) cannot be obtained starting from initial conditions in which the support of
i is surrounded by an area where u = K (and therefore it is not possible to describe
a homogeneous population invaded by a new infection or predator), our numerical
simulations show that it makes sense to look for waves connecting (0, 0) to (u∗, i∗),
corresponding to the race between two expanding populations. Regarding the applica-
tions perspectives, the inclusion of viral deterministic dynamics in the stochasticmodel
would not represent an obstacle to the derivation of themacroscopic continuummodel,
as the techniques used in Almeida et al. (2022); Bubba et al. (2020a); Macfarlane et al.
(2020) could be easily adapted to the resulting hybrid discrete-continuummicroscopic
model. However, it might be quite challenging to rigorously study a traveling wave
for three populations even without the addition of other biological complications.

Finally, let us observe that all these approaches could be then useful to determine the
optimal treatment protocol in different situations, both in terms of treatment schedules
[as in Jenner et al. (2018b); Sherlock and Coster (2023)] and viral injection locations
[as in Jenner et al. (2020)]. Overall, there are still questions to be addressed to optimise
viral delivery in oncolytic virotherapy and the balance between failure and success,
as the results in our work show, is brittle. Despite some interesting achievements and
some clinical progress, for example with the celebrated cases of Adenovirus H101 for
neck and head cancers or T-Vec for melanomas, the goal of using viruses routinely in
therapeutic setting is still elusive.
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Appendix A: Formal Derivation of ContinuumModels

In this Appendix we describe how to derive the models discussed in the main text.

A.1 Uninfected Cells

Uninfected cells can first move, then reproduce or die based on the pressure value and
finally become infected, as explained in Sect. 2. The principle of mass balance gives
the equation

in+1
j =

[
F̃n
j−1→ j i

n
j−1 + F̃n

j+1→ j i
n
j+1 + (1 − F̃n

j→ j−1 − F̃n
j→ j+1)i

n
j

]
(1 − τq)

+ τ
β

K
inj (1 + τG(ρn

j ))

×
[
Fn
j−1→ j u

n
j−1 + Fn

j+1→ j u
n
j+1 + (1 − Fn

j→ j−1 − Fn
j→ j+1)u

n
j

]

and using the algebraic relation x+ − x− = x , this simplifies to

un+1
j =

[
Fn
j−1→ j u

n
j−1 + Fn

j+1→ j u
n
j+1 + (1 − Fn

j→ j−1 − Fn
j→ j+1)u

n
j

]

×
[
1 + τG(ρn

j )
](

1 − τ
β

K
inj

)

Let us define

	 := −(Fn
j→ j−1 + Fn

j→ j+1)u
n
j + Fn

j−1→ j u
n
j−1 + Fn

j+1→ j u
n
j+1 (14)

so that the previous equation becomes

un+1
j = (unj + 	)

[
1 + τG(ρn

j )
](

1 − τ
β

K
inj

)
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= unj + τG(ρn
j )u

n
j − τ

β

K
unj i

n
j + 	 − τ 2G(ρn

j )
β

K
unj i

n
j

+ τ	
[
G(ρn

j ) − β

K
inj − τG(ρn

j )
β

K
inj

]

We now divide both sides of the previous equation by τ and rearrange the terms to get

un+1
j − unj

τ
= G(ρn

j )u
n
j − β

K
unj i

n
j + 1

τ
	 + H1 (15)

where

H1 := −τG(ρn
j )

β

K
unj i

n
j + 	

[
G(ρn

j ) − β

K
inj − τG(ρn

j )
β

K
inj

]

We will shortly see that in the cases of interest H1 is the sum of higher order terms
and therefore vanishes as τ, δ → 0.

Let us now assume that there are two functions u ∈ C2([0,+∞),R) such that
unj = u(tn, x j ) = u and i ∈ C2([0,+∞),R) such that inj = i(tn, x j ) = i (from now
on we omit the arguments of functions computed at (tn, x j )); thus, we can use Taylor
expansions for u in time and space as follows

un+1
j = u(tn + τ, x j ) = u + τ∂t u + O(τ 2)

unj±1 = u(tn, x j ± δ) = u ± δ∂xu + 1

2
δ2∂2xxu + O(δ3)

Furthermore, we are assuming that the function � is smooth, so that ρ = �(u + i) ∈
C2([0,+∞),R) and we can use a Taylor expansion for ρ as well

ρn
j±1 = ρ(tn, x j ± δ) = ρ ± δ∂xρ + 1

2
δ2∂2xxρ + O(δ3)

Let us now treat separately the cases in which movement does or does not depend
on pressure.
Undirected Cell Movement

In this case, we have Fn
j→ j±1 = Fn

j±1→ j = θu , which is a constant independent
of n, j . We then obtain

	 = θu(u
n
j−1 + unj+1 − 2unj ) = θuδ

2∂2xxu + O(δ3)

and thus

H1 = −τG(ρn
j )

β

K
unj i

n
j +

[
G(ρn

j ) − β

K
inj − τG(ρn

j )
β

K
inj

]
	 = O(τ ) + O(δ2)

Equation (15) then becomes

∂t u + O(τ 2) = θu
δ2

2τ
∂2xxu + pu − β

K
ui + O(τ ) + O(δ2)
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Letting τ, δ → 0 in such a way that δ2

2τ → D, we obtain

∂t u = θu D∂2xxu + pu − β

K
ui

Pressure-Driven Cell Movement
In this case, we modify the terms as follows:

Fn
j→ j±1 := θu

(ρn
j − ρn

j±1)+
2P

= θ1

2P

(
±δ∂xρ + 1

2
δ2∂2xxρ + O(δ3)

)

+
= O(δ)

It is then easy to see that H1 → 0 as τ, δ → 0, as each term is multiplied either by τ

or by some F . We then use the Taylor expansion of u in Eq. (14) to get

	 = −(Fn
j→ j−1 + Fn

j→ j+1)u + Fn
j−1→ j

(
u − δ∂xu + 1

2
δ2∂2xxu + O(δ3)

)

+ Fn
j+1→ j

(
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2
δ2∂2xxu + O(δ3)

)

= (Fn
j−1→ j − Fn
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j+1→ j − Fn
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j−1→ j + Fn

j+1→ j )∂xu

+ 1

2
δ2(Fn

j−1→ j + Fn
j+1→ j )∂

2
xxu + O(δ3)

Now, let us observe that

Fn
j±1→ j − Fn

j→ j±1 = θ1

2P
[(ρn

j±1 − ρn
j )+ − (ρn

j − ρn
j±1)+]

= θ1

2P
(ρn

j±1 − ρn
j ) = θ1

2P

(
±δ∂xρ + 1

2
δ2∂2xxρ + O(δ3)

)

using the relation x+ − (−x)+ = x+ − x− = x . We therefore have

	 = θu

2P

{
δ2∂2xxρu + δ[−(−δ∂xρ + O(δ2))+ + (δ∂xρ + O(δ2))+]∂xu + O(δ3)

}

Finally, Eq. (15) becomes

∂t u + O(τ 2) = G(ρ)u − β

K
ui + θu

P

δ2

2τ

{
∂2xxρu

+ [(∂xρ + O(δ))+ − (−∂xρ + O(δ))+]∂xu + O(δ)
}

+ H1
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Letting τ, δ → 0 in such a way that δ2

2τ → D we arrive at the final result:

∂t u = θu D

P
{∂2xxρu + [(∂xρ)+ − (−∂xρ)+]∂xu} + G(ρ)u − β

K
ui

= θu D

P
(∂2xxρu + ∂xρ∂xu) + G(ρ)u − β

K
ui

= θu D

P
∂x (u∂xρ) + G(ρ)u − β

K
ui

A.2 Infected Cells

Infected cells can first move, then die based on the pressure value, as explained in
Sect. 2. Also, uninfected cells may be infected. The computations follow the same
strategy of uninfected cells, so we only sketch the main points. The principle of mass
balance gives the equation

in+1
j =

[
F̃n
j−1→ j i

n
j−1 + F̃n

j+1→ j i
n
j+1 + (1 − F̃n
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K
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n
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j+1→ j u
n
j+1 + (1 − Fn
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n
j

]

which simplifies to
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H3 := −q
[
F̃n
j−1→ j i

n
j−1 + F̃n

j+1→ j i
n
j+1 − (F̃n

j→ j−1 + F̃n
j→ j+1)i

n
j

]
︸ ︷︷ ︸

=


Dividing both sides by τ and rearranging the terms we get

in+1
j − inj

τ
= 1

τ

 − qinj + β

K
unj i

n
j + H2 + H3 (16)

Let us now make the same regularity assumptions of the previous subsection and
use the Taylor expansions for i to arrive at

in+1
j = i(tn + τ, x j ) = i + τ∂t i + O(τ 2)

inj±1 = i(tn, x j ± δ) = i ± δ∂x i + 1

2
δ2∂2xx i + O(δ3)

Again, we treat separately the case in which movement does not depend on pressure
and the case in which it does.
Undirected Cell Movement

In this case, we have

	 = θu(u
n
j−1 + unj+1 − 2unj ) = θuδ

2∂2xxu + O(δ3)

and


 = θi (i
n
j−1 + inj+1 − 2inj ) = θiδ

2∂2xx i + O(δ3)

This means that H2 + H3 = O(τ ) + O(δ2). Equation (16) then becomes

∂t i + O(τ 2) = θi
δ2

2τ
∂2xx i + β

K
ui − qi + O(τ ) + O(δ2)

Letting τ, δ → 0 in such a way that δ2

2τ → D we obtain the required term:

∂t i = θi D∂2xx i + β

K
ui − qi

Pressure-Driven Cell Movement
In this case Fn

j→ j±1 and F̃n
j±1→ j areO(δ). It is then easy to see that H2 + H3 → 0

as τ, δ → 0, as each term is multiplied either by τ , by some F or by some F̃ . We can
then repeat the calculations already performed for the uninfected cells to show that,
letting τ, δ → 0 in such a way that δ2

2τ → D yields

1

τ

 → θi D

P
∂x (i∂xρ)
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Therefore, in the required limit Eq. (16) becomes

∂t i = θi D

P
∂x (i∂xρ) + β

K
ui − qi

Appendix B: Details of Numerical Simulations

Parameter Values
In Table 1 we list the parameters we adopt as a reference in the numerical simu-

lations. Some simulations use other parameter values to explore different behaviours
emerging from our model, as explained in the main text.

Most of the parameters in the model have been estimated from the existing exper-
imental literature. The maximal duplication rate in the logistic growth p has been
taken equal to log(2)/37 h−1 ≈ 1.87 × 10−2 h−1; the duplication time of 37h is
approximately the highest among the ones reported in Ke et al. (2000) and has been
chosen so that the exponential growth is not too fast. The death rate of infected cells q
has been taken equal to 1/24 h−1 = 4.17 × 10−2 h−1, following Ganly et al. (2000).

The diffusion coefficient of uninfected cells Du has been estimated from the exper-
imental data of the U343 control group of Kim et al. (2006), as already done in
Pooladvand et al. (2021): the tumour volume passes in 40 days from 70 mm3 to
1000 mm3, which corresponds to a change in the tumour radius from approximately
2.6 mm to approximately 6.2 mm; since in absence of viral infection the dynamic of
uninfected cells follows Eq. (8) in the case of undirected movement and Eq. (9) in the
case of pressure-driven movement, we can estimate the diffusion coefficient from the
wave speed formulas described in Sect. 3 and obtain

Du = c2

4p
=

(
6.2 − 2.6 mm

40 × 24 h

)2

× 1

4 × 1.87 × 10−2 h
≈ 1.88 × 10−4 mm2/h

in the former case and

Du = 2c2

p
≈ 8 × 1.88 × 10−4 mm2/h ≈ 1.50 × 10−3 mm2/h

in the latter case. We assume Di = Du , as a priori we have no reason to believe that
the infection affects cellular movement.

In the agent based models, cellular movement is governed by the parameters θu
and θi . Having in mind the formal derivation of the continuum models, we set them
according to the formula

θk =

⎧⎪⎪⎨
⎪⎪⎩

2τDk

δ2
in one dimension

4τDk

δ2
in two dimensions

(17)
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where k = u, i and τ, δ are the temporal and spatial discretisations. For the sake of
simplicity, in the text we always refer to the the variation of the diffusion coefficients
(which have a clear macroscopic meaning), keeping in mind that θu and θi are adjusted
accordingly.

The carrying capacity K has been estimated assuming that a cell has radius
10 μm= 10−2 mm (Lodish et al. 2008, §1.1): this implies that the carrying capacity
is 102 cells/mm in one spatial dimension and 104 cells/mm2 in two spatial dimen-
sions. Since we observed that K = 100 cells/mm is too little to obtain a good
agreement between agent-based and continuum models, we decided to increase it
to K = 1000 cells/mm in the case of one spatial dimension.

Let us nowestimate the infection rateβ. In Friedman et al. (2006) the authors assume
that oncolytic viruses have an infection rate of β̂ = 7 × 10−10 mm3/(viruses×h) and
cells have a carrying capacity of K̂ = 106 cells/mm3. Clearly, this value cannot
directly be used in our model, which does not take into account viral dynamics explic-
itly. Let us assume that viral density satisfies the PDE

∂tv(t, x) = Dv∂
2
xxv(t, x) + αqi(t, x) − qvv(t, x)

where Dv is the diffusion coefficient, α is the number of viruses released by the lysis
when an infected cell dies, q is the death rate of infected cells (which is also present
in our model) and qv is the clearance rate of the virus. Since viral dynamics are faster
than cellular dynamics, we can assume that the viral density is quasi-steady, leading
to the algebraic relation

v(t, x) = αq

qv

i(t, x)

We therefore have β = β̂αq K̂/qv , with the values of the parameters α and qv to
be chosen. We set qv = 1/6 h−1 as in Mok et al. (2009). The viral load released
by the death of infected cells depends highly on the type of virus and ranges from
the value 157 ± 23.4 viruses/cell estimated in Workenhe et al. (2014) to the value
3500 viruses/cell of Chen et al. (2001); we chose an intermediate value of α =
580 viruses/cell. In conclusion, we have

β =
(
7 × 10−10 mm3

viruses × h

)

×580 viruses/cell × 1/24 h−1

1/6 h−1 × 106
cells

mm3 ≈ 0.102 h−1

It is important to observe that the parameter β incorporates a wide variety of dynamics
related to the virus, hence different parameter values could result in the same value of
β: for example, if we assume a faster viral decay of qv = 1 h−1 and a higher number
of viruses released during lysis α = 3500 viruses/cell as in Chen et al. (2001), then
the value of β remains unchanged.

Finally, we use the initial conditions given in Eq. (12). The value of Ru has been set
to 2.6 mm, as in Kim et al. (2006). Remembering that we postulate a central injection
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(Russell and Peng 2018), we observe that it is not easy to find reliable estimates for the
radius of the region occupied by infected cells right after such an injection. We thus
chose the value Ri = 1 mm, which is slightly less than half of the tumour radius. In
the model with undirected movement, initial conditions do not really affect long-time
dynamics of the system. On the other hand, varying initial conditions in the model
with pressure-driven movement may result in opposite outcomes, as the infection is
unable to propagate in areas of constant total density. This is yet another indication
of the sensitivity of the process when a tumour’s growth is strongly influenced by the
pressure.

Numerical simulations are run until the final time T = 1500 h, since their behavior
up to this moment is also representative of later dynamics. For the spatial domain
[−L, L] (or [−L, L]2) we set L = 10 mm so that wave fronts do not hit the boundary
before T and the domain is representative of typical extensions of solid tumours. Since
some simulations of the model with pressure-driven movement have been performed
with a higher value of Du , Di (and, consequently, a higher speedwave) in this situations
L has been slightly increased.
Numerical Simulations for the Discrete Models

We used a temporal step τ = 0.02 h and a spatial step of δ = 0.1 mm both for the
one-dimensional and the two-dimensional simulations. Some additional simulations
(not shown) demonstrated that a further refinement on the grid does not result in a
significant improvement of the agreement between discrete and continuous models,
while greatly affecting the computation time. All simulations have been performed in
Matlab 2021b.

At every iteration we first computed the sum of the two populations and then cell
numbers are updated according to the rules described in Sect. 2. We first consider
movement, then reproduction and death, finally infection. Zero-flux boundary condi-
tions are implemented by not allowing cells at the boundary to leave the domain. This
however does not have any particular influence on the results, as all the simulations
are stopped before the wave front reaches the boundary.

Observe that the sum of the two populations is not updated during the iteration,
in accordance with the formulas of Sect. 2. As a consequence, cell densities may
fluctuate above the carrying capacity for short periods of time, before the dynamics
makes them decrease again. In order to avoid problems with the formula in Eq. (3), we
truncate the pressure at the carrying capacity K . In the case of undirected movement,
the fluctuations above the carrying capacity are more frequent because of the lack of
movement inhibition in crowded regions (see Fig. 3); this however does not cause any
problem in the formulation of the model.

Since we only need to keep track of the collective fate of cells in the same lattice
point, we used the built-inMatlab functions binornd and mnrnd, which compute
random arrays according to binomial and multinomial distributions.

Figures3, 4, 6a, b, 7, 8 and 9 show the average of five simulations. On the other
hand, Figs. 5, 6 (with the exception of Fig. 6a, b) and 10 have the purpose of explaining
the influence of stochastic effects and therefore show a single simulation. Averaging
simulations in two dimensions results in nonzero cell densities below 1

δ2
, which makes

no sense in the case of a single simulation; for the sake of consistence, we decided to
truncate these values to zero.
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In order to allow reproducibility, a random seed has been set at the beginning of each
new simulation, ranging from 1 to 5. In the figures representing a single simulation
only the one with random seed equal to 1 is shown.
Numerical Simulations for the Continuum Models

Equations (5) and (7) complemented with homogeneous Neumann boundary con-
ditions have been solved inMatlab 2021b using the built-in function pdepe; in the
two-dimensional case we exploited the radial symmetry of the equations. We consid-
ered a uniform discretisation of the spatial interval [0, L] consisting of 500 points and
a uniform discretisation of step 1 of the temporal interval [0, T ].

The application of this strategy to the simulation depicted in Figs. 7a, 8a caused
some numerical instabilities. We solved this issue by using a forward upwind scheme
for the transport term, following LeVeque (2007). Thismethod is able to deal with such
instabilities even at long times if we take the discretisation �x = 0.05, �t = 10−4.
We then used the same algorithm for all the numerical solutions of Eq. (7) for the sake
of coherence, with discretisations �x = 0.1, �t = 10−4. In the two-dimensional
case, we can rely upon the radial symmetry of the problem; hence, the analog of Eq.
(7) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂t u = Du

K

1

r
∂r [r u∂r (u + i)] + pu

(
1 − u + i

K

)
− β

K
ui

∂t i = Di

K

1

r
∂r [r i∂r (u + i)] + β

K
ui − qi

In the two-dimensional plots of the supplementary material we truncated the solu-
tions at a value 1

δ2
to be consistent with the representation of the agent-based model.

We also use the same threshold 1
δ2

to identify the wave front, which is depicted in some
of the figures. However, it is important to observe that in some simulations the density
of infected cells is positive almost in the whole domain occupied by uninfected cells;
the definition of the front as the location in which cell density is above 1

δ2
makes visual

comparison between the discrete and the continuous model clearer.
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