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Abstract
We show that the framework of topological data analysis can be extended from metrics to general
Bregman divergences, widening the scope of possible applications. Examples are the Kullback –
Leibler divergence, which is commonly used for comparing text and images, and the Itakura –
Saito divergence, popular for speech and sound. In particular, we prove that appropriately gen-
eralized Čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that
of the corresponding union of Bregman balls. Consequently, their filtrations give the correct per-
sistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover,
we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to
approximate the persistence diagram. We propose algorithms to compute the thus generalized
Čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we
explain their surprisingly good performance by making a connection with discrete Morse theory.
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1 Introduction

The starting point for the work reported in this paper is the desire to extend the basic
topological data analysis (TDA) paradigm to data measured with dissimilarities. In particular
for high-dimensional data, such as discrete probability distributions, notions of dissimilarity
inspired by information theory behave strikingly different from the Euclidean distance, which
is the usual setting for TDA. On the practical side, the Euclidean distance is particularly ill-
suited for many types of high-dimensional data; see for example [21], which provides evidence
that the Euclidean distance consistently performs the worst among several dissimilarity
measures across a range of text-retrieval tasks. A broad class of dissimilarities are the
Bregman divergences [8]. Its most prominent members are the Kullback-Leibler divergence
[23], which is commonly used both for text documents [5, 21] and for images [14], and the
Itakura-Saito divergence [22], which is popular for speech and sound data [18]. We propose
a TDA framework in the setting of Bregman divergences. Since TDA and more generally
computational topology are young and emerging fields, we provide some context for the
reader. For more a comprehensive introduction, see the recent textbook [16].

∗ A full version of the paper is available at https://arxiv.org/abs/1607.06274.
† This research is partially supported by the Toposys project FP7-ICT-318493-STREP.

© Herbert Edelsbrunner and Hubert Wagner;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.39
https://arxiv.org/abs/1607.06274
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


39:2 Topological Data Analysis with Bregman Divergences

Computational topology. Computational topology is an algorithmic approach to describing
shape in a coarser sense than computational geometry does. TDA utilizes such algorithms
within data analysis. One usually works with a finite set of points, possibly embedded in
a high-dimensional space. Such data may be viewed as a collection of balls of a radius
that depends on the scale of interest. Intersections reveal the connectivity of the data. For
example, the components of the intersection graph correspond to the components of the
union of balls.

Homology groups. These are studied in the area of algebraic topology, where they are used
to describe and analyze topological spaces; see e.g. [20]. The connected components of a space
or, dually, the gaps between them are encoded in its zero-dimensional homology group. There
is a group for each dimension. For example, the one-dimensional group encodes loops or,
dually, the tunnels, and the two-dimensional group encodes closed shells or, dually, the voids.
Importantly, homology provides a formalism to talk about different kinds of connectivity
and holes of a space that allows for fast algorithms.

Nerves and simplicial complexes. The nerve of a collection of balls generalizes the intersec-
tion graph and contains a k-dimensional simplex for every k + 1 balls that have a non-empty
common intersection. It is a hypergraph that is closed under taking subsets, a structure
known as a simplicial complex in topology. If the balls are convex, then the Nerve Theorem
states that this combinatorial construction captures the topology of the union of balls. More
precisely, the nerve and the union have the same homotopy type and therefore isomorphic
homology groups [24]. This result generalizes to the case in which the balls are not necessarily
convex but their common intersections of all orders are contractible. In the context in which
we center a ball of some radius at each point of a given set, the nerve is referred to as the
Čech complex of the points for the given radius. Its k-skeleton is obtained by discarding
simplices of dimension greater than k. The practice-oriented reader will spot a flaw in this
setup: fixing the radius is a serious drawback that limits data analysis applications.

Persistent homology. To remedy this deficiency, we study the evolution of the topology
across all scales, thus developing what we refer to as persistent homology. For graphs and
connected components, this idea is natural but more difficult to flesh out in full generality. In
essence, one varies the radius of balls from 0 to ∞, giving rise to a nested sequence of spaces,
called a filtration. Topological features, namely homology classes of different dimensions, are
created and destroyed along the way. In practice, one computes the persistence diagram of
a filtration, which discriminates topological features based on their lifetime, or persistence.
The persistence diagram serves as a compact topological descriptor of a dataset, which is
provably robust against noise. Owing to its algebraic and topological foundations, the theory
is very general. Importantly, the Nerve Theorem extends to filtrations [11, Lemma 3.4],
therefore, for simplicity, we often restrict our proofs to balls of fixed radius.

TDA in the Bregman setting. In the light of the above, there are only two obstacles
to applying topological data analysis to data measured with Bregman divergences. We
need to prove that the Nerve Theorem applies also when the balls are induced by Bregman
divergences, and we need to provide efficient algorithms to construct the relevant complexes,
so that the existing algorithms for persistence diagrams can be used without modification.
The main complication is that the balls may be nonconvex, which we overcome by combining
results from convex analysis and topology.
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Applications. Persistence is an important method within TDA, which has been successfully
used in a variety of applications. In low dimensions, it was for example used to shed light on
the distribution of matter in the Universe [31] and to characterize the structure of atomic
configurations in silica glass [25]. As for high-dimensional data, Chan et al. analyze viral
DNA and relate persistent cycles with recombinations [10], and Port et al. study languages
leaving the interpretation of a persistent cycle in the Indo-Germanic family open [28].

Related work. This paper is the first work at the intersection of topology and Bregman
divergences. We list related papers in relevant fields. In machine learning, Banerjee et al. use
the family of Bregman divergences as the unifying framework for clustering algorithms [2].
The field of information geometry deals with selected Bregman divergences and related
concepts from a geometric perspective [1]. Building on the classical work of Rockafellar [30]
in convex analysis, Bauschke and Borwein are the first to use the Legendre transform for
analyzing Bregman divergences [4]. Boissonnat, Nielsen and Nock [6] use similar methods
to make significant contributions at the intersection of computational geometry and Breg-
man divergences. In particular, they study the geometry of Bregman balls and Delaunay
triangulations, but not the topologically more interesting Delaunay, or alpha, complexes.
In the Euclidean setting, the basic constructions are well understood [3, 33], including
approximations, which are interesting and useful, but beyond the scope of this paper.

Results. This paper provides the first general TDA framework that applies to high di-
mensional data measured with non-metric dissimilarities. Indeed, prior high dimensional
applications of TDA were restricted to low dimensional homology, required custom-made to-
pological results, or used common metrics such as the Euclidean and the Hamming distances,
which are often not good choices for such data. We list the main technical contributions:
1. We show that the balls under any Bregman divergence have common intersections that

are either empty of contractible.
2. We show that the persistence diagram of the Vietoris-Rips complex can be arbitrarily far

from that of the filtration of the union on Bregman balls.
3. We show that the radius functions that correspond to the Čech and Delaunay complexes

for Bregman divergences are generalized discrete Morse functions.
4. We develop algorithms for computing Čech and Delaunay radius functions for Bregman

divergences, which owe their speed to non-trivial structural properties implied by Result 3.
Most fundamental of the four is Result 1, which forms the theoretical foundation of TDA in
the Bregman setting. It implies that the Čech and Delaunay complexes for a given radius
have the same homotopy type as the union of Bregman balls. Combined with the Nerve
Theorem for filtrations, it also implies that the filtration of Čech and Delaunay complexes
have the same persistence diagram as the filtration of the unions. In the practice of TDA,
the filtration of Vietoris-Rips complexes is often substituted for the filtration of Čech or
Delaunay complexes. For metrics, this is justified by the small bottleneck distance between
the persistence diagrams if drawn in log-log scale. Result 2 shows that such a substitution
is not generally justified for Bregman divergences. In other words, for some Bregman
divergences higher order interactions have to be taken into account explicitly as they are not
approximated by implications of pairwise interactions. To appreciate Results 3 and 4, we
note that the Čech radius function maps every simplex to the smallest radius, r, such that
the simplex belongs to the Čech complex for radius r, and similarly for Delaunay. Being
a generalized discrete Morse function has important structural consequences that make it
possible to construct Čech and Delaunay complexes in an output-sensitive manner. We
support this claim with experiments.

SoCG 2017
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Figure 1 Geometric interpretation of the Bregman divergence associated with the function F

on Ω.

2 Bregman Divergences

Bregman divergences are sometimes called distances because they measure dissimilarity. As
we will see shortly, they are generally not symmetric, and they always violate the triangle
inequality. So really they satisfy only the first axiom of a metric, mapping ordered pairs to
non-negative numbers and to zero iff the two elements are equal.

We begin with a formal introduction of the concept, which originated in the paper by
Bregman [8]. Their basic properties are well known; see the recent paper by Boissonnat,
Nielsen and Nock [6]. We stress that our setting is slightly different: following Bauschke and
Borwein [4], we define the divergences in terms of functions of Legendre type. The crucial
benefit of this additional requirement is that the conjugate of a function of Legendre type is
again a function of Legendre type, even if the domain is bounded as in the important case
of the standard simplex. In contract, the conjugate of a differentiable and strictly convex
function that is not of Legendre type is not necessarily again a convex function.

Functions of Legendre type. Let Ω ⊆ Rn be an nonempty open convex set and F : Ω→ R
a strictly convex differentiable function. In addition, we require that the length of the
gradient of F goes to infinity whenever we approach the boundary of Ω. Following [30, page
259], we say that F : Ω → R is a function of Legendre type. As suggested by the naming
convention, these conditions are crucial when we apply the Legendre transform to F . The
last condition prevents us from arbitrarily restricting the domain and is vacuous whenever
Ω does not have a boundary, for example when Ω = Rn. For points x, y ∈ Ω, the Bregman
divergence from x to y associated with F is the difference between F and the best linear
approximation of F at y, both evaluated at x:

DF (x‖y) = F (x)− [F (y) + 〈∇F (y), x− y〉] . (1)

As illustrated in Figure 1, we get DF (x‖y) by first drawing the hyperplane that touches the
graph of F at the point (y, F (y)). We then intersect the vertical line that passes through x
with the graph of F and the said hyperplane: the Bregman divergence is the height difference
between the two intersections. Note that it is not necessarily symmetric: DF (x‖y) 6= DF (y‖x)
for most F, x, y.

Accordingly, we introduce two balls of radius r ≥ 0 centered at a point x ∈ Ω: the primal
Bregman ball containing all points y so that the divergence from x to y is at most r, and the
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Figure 2 The primal Bregman ball with center x is obtained by illuminating the graph of F from
below. In contrast, the dual Bregman ball is constructed by cutting the graph with the elevated line.

dual Bregman ball containing all points y so that the divergence from y to x as at most r:

BF (x; r) = {y ∈ Ω | DF (x‖y) ≤ r}; (2)
B′F (x; r) = {y ∈ Ω | DF (y‖x) ≤ r}. (3)

To construct the primal ball geometrically, we take the point (x, F (x)− r) at height r below
the graph of F and shine light along straight half-lines emanating from this point onto the
graph. The ball is the vertical projection of the illuminated portion onto Rn; see Figure 2.
To construct the dual ball geometrically, we start with the hyperplane that touches the graph
of F at (x, F (x)), translating it to height r above the initial position. The ball is the vertical
projection of the portion of the graph below the translated hyperplane onto Rn; see again
Figure 2.

Since DF is not necessarily symmetric, the two Bregman balls are not necessarily the
same. Indeed, the dual ball is necessarily convex while the primal ball is not.

I Result 1 (Convexity Property). DF : Ω × Ω → R is strictly convex in the first argument
but not necessarily convex in the second argument.

Proof. Fixing y, set f(x) = DF (x‖y). According to (1), f is the difference between F and
an affine function; compare with the geometric interpretation of the dual Bregman ball. The
strict convexity of F implies the strict convexity of f . This argument does not apply to
g(y) = DF (x‖y), which we obtain by fixing x, and it is easy to find an example in which g is
non-convex; see Figure 4. J

Legendre transform and conjugate function. In a nutshell, the Legendre transform applies
elementary polarity to the graph of F , giving rise to the graph of another, conjugate function,
F ∗ : Ω∗ → R, that relates to F in interesting ways. If F is of Legendre type then so is F ∗;
see [30, Theorem 26.5].

The notion of polarity we use in this paper relates points in Rn × R with affine functions
Rn → R. Specifically, it maps a point C = (c, γ) to the function defined by C∗(x) = 〈c, x〉−γ,
and it maps C∗ back to (C∗)∗ = C. We refer to Figure 3 for an illustration.

As a first step in constructing the conjugate function, we get Ω∗ as the set of points
e = c∗ = ∇F (c) with c ∈ Ω. We define h : Ω → Ω∗ by mapping c to h(c) = c∗. Note that
differentiability of strictly convex functions implies continuous differentiability [13, Theorem
2.86], hence h is a homeomorphism between the two domains.

SoCG 2017
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Q ∗

p
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A
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Figure 3 Top: the graph of F and the tangent lines that illustrate the two Bregman divergences
between a and p associated with F . Bottom: the graph of F ∗ and the tangent lines that illustrate
the two Bregman divergences between b = a∗ and q = p∗ associated with F ∗. Note that A∗, B∗, P ∗,
Q∗ are the affine functions corresponding to points A, B, P, Q.

The conjugate function, F ∗ : Ω∗ → R, is then defined by mapping e to F ∗(e) = ε such
that (e, ε) is the polar point of the affine function whose graph touches the graph of F in the
point (c, F (c)). Writing b = a∗ and q = p∗, we eventually get

DF ∗(b‖q) = F ∗(b)− P ∗(b) ≥ 0, (4)
DF ∗(q‖b) = F ∗(q)−A∗(q) ≥ 0. (5)

For more details see the Appendix present in the full version of this paper. For explanation,
see again Figure 3. The left-hand sides of (4) and (5) are both non-negative and vanish iff
b = q. Since this is true for all points b, q ∈ Ω∗, F ∗ is strictly convex, provided Ω∗ is convex.
Proving that this assumption is always fulfilled is more involved. We therefore resort to a
classical theorem [30, Theorem 26.5], which states that F ∗ is again of Legendre type and,
in particular, Ω∗ is convex. Hence, F ∗ defines a Bregman divergence and, importantly, this
divergence is symmetric to the one defined by F .

I Result 2 (Duality Property). Let F : Ω → R and F ∗ : Ω∗ → R be conjugate functions of
Legendre type. Then DF (a‖p) = DF ∗(p∗‖a∗) for all a, p ∈ Ω.

In words, the Legendre transform preserves the divergences, but it does so by exchanging
the arguments. This is interesting because DF is strictly convex in the first argument and so
is DF ∗ , only that its first argument corresponds to the second argument of DF . To avoid
potential confusion, we thus consider the primal and dual Bregman balls of F ∗:

BF ∗(u; r) = {v ∈ Ω∗ | DF ∗(u‖v) ≤ r}, (6)
B′F ∗(u; r) = {v ∈ Ω∗ | DF ∗(v‖u) ≤ r}, (7)

where we write u = x∗ and v = y∗ so we can compare the two balls with the ones defined
in (2) and (3). As mentioned earlier, both dual balls are necessarily convex while both
primal balls are possibly non-convex. Recall the homeomorphism h : Ω→ Ω∗ that maps x to
x∗. It also maps BF (x; r) to B′F ∗(u; r) and B′F (x; r) to BF ∗(u; r). In words, it makes the
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non-convex ball convex and the convex ball non-convex, and it does this while preserving the
divergences. We use this property to explain the necessity on using functions of Legendre
type; it also plays a crucial role later. Consider a dual Bregman ball with a non-convex
conjugate image, namely the corresponding primal ball. Then the restriction of F to this
dual ball is strictly convex and differentiable. However, it is not of Legendre type and its
conjugate has a non-convex domain.

Examples. We close this section with a short list of functions, their conjugates, and the
corresponding Bregman divergences. Half the squared Euclidean norm maps a point x ∈ Rn

to F (x) = 1
2‖x‖

2. The gradient is ∇F (x) = x, and the conjugate is defined by F ∗(x) = F (x).
The divergence associated with F is half the squared Euclidean distance:

DF (x‖y) = 1
2‖x− y‖

2
. (8)

This Bregman divergence is special because it is symmetric in the two arguments.
The Shannon entropy of a discrete probability distribution is −

∑n
i=1 xi ln xi. To turn

this into a convex function, we change the sign, and to simplify the computations, we subtract
the sum of the xi, defining F (x) =

∑n
i=1[xi ln xi − xi] over the positive orthant, which we

denote as Rn
+. The gradient is ∇F (x) = [ln x1, ln x2, . . . , ln xn]T , and the conjugate is the

exponential function, F ∗(u) =
∑n

i=1 e
ui , with u = x∗, defined on Rn. Associated with F is

the Kullback-Leibler divergence and with F ∗ is the exponential loss:

DF (x‖y) =
n∑

i=1

[
xi ln xi

yi
− xi + yi

]
, (9)

DF ∗(u‖v) =
n∑

i=1
[eui − (ui − vi + 1)evi ] . (10)

The Kullback-Leibler is perhaps the best known Bregman divergence; it is also referred to as
the information divergence, information gain, relative entropy; see [1, page 57]. If applied to
finite distributions, F would be defined on the standard (n− 1)-simplex, where it measures
the expected number of extra bits required to code samples from x using a code that is
optimized for y instead of for x. Since the (n− 1)-simplex is the intersection of Rn

+ with a
hyperplane, this restriction of F is again of Legendre type. In this particular case, we can
extend the function to the closed (n − 1)-simplex, so that some coordinates may be zero,
provided we accept infinite divergences for some pairs. Importantly, our constructions will
not use the divergence directly, circumventing the problem with infinite divergences. As
explained in Section 4, we will use the radius of first intersection of balls, which is always
finite for the Kullback-Leibler divergence. Consequently, the framework is suitable also for
sparse data, pervasive for example in text-retrieval applications.

The Burg entropy maps a point x ∈ Rn
+ to F (x) =

∑n
i=1[1− ln xi]. The components of

the gradient are −1/xi, for 1 ≤ i ≤ n. The conjugate is the function F ∗ : Rn
− → R defined

by F ∗(u) =
∑n

i=1 [1− ln |ui|]. Associated with F is the Itakura-Saito divergence:

DF (x‖y) =
n∑

i=1

[
xi

yi
− ln xi

yi
− 1
]
. (11)

We note that F and F ∗ are very similar, but their domains are diagonally opposite orthants.
Indeed, the Itakura-Saito distance is not symmetric and generates non-convex primal balls;
see Figure 4.

SoCG 2017
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Figure 4 Two primal Itakura-Saito balls and the dual Itakura-Saito ball centered at the point
where the primal balls touch. Its boundary passes through the centers of the primal balls.

3 Proximity Complexes for Bregman divergences

In this section, we extend the standard constructions of topological data analysis (Čech,
Vietoris-Rips, Delaunay complexes) to the setting of Bregman divergences. Importantly, we
prove the contractibility of non-empty common intersections of Bregman balls and Voronoi
domains. This property guarantees that the Čech and Delaunay complexes capture the
correct homotopy type of the data.

Contractibility for balls. Every non-empty convex set is contractible, which means it has
the homotopy type of a point. The common intersection of two or more convex sets is either
empty or again convex and therefore contractible. While primal Bregman balls are not
necessarily convex, we show that their common intersections are contractible unless empty.
The reason for our interest in this property is the Nerve Theorem [7, 24], which asserts that
the nerve of a cover with said property has the same homotopy type as the union of this
cover.

I Result 3 (Contractibility Lemma for Balls). Let F : Ω → R be of Legendre type, X ⊆ Ω,
and r ≥ 0. Then

⋂
x∈X BF (x; r) is either empty or contractible.

Proof. Recall the homeomorphism h : Ω → Ω∗ obtained as a side-effect of applying the
Legendre transform to F . It maps every primal Bregman ball in Ω homeomorphically to a
dual Bregman ball in Ω∗, which is convex. Similarly, it maps the common intersection of
primal Bregman balls in Ω homeomorphically to the common intersection of dual Bregman
balls in Ω∗: h(X) = Y in which X =

⋂
x∈X BF (x; r) and Y =

⋂
x∈X B′F ∗(x∗; r). Since X and

Y are homeomorphic, they have the same homotopy type. Hence, either X = Y = ∅ or Y is
convex and X is contractible. J

Čech and Vietoris-Rips constructions for Bregman divergences. The contractibility of
the common intersection suggests we take the nerve of the Bregman balls. Given a finite
set X ⊆ Ω and r ≥ 0, we call the resulting simplicial complex the Čech complex of X and r
associated with F . Related to it is the Vietoris-Rips complex, which is the clique complex of
the 1-skeleton of the Čech complex:

ČechF (X; r) = {P ⊆ X |
⋂

p∈P

BF (p; r) 6= ∅}, (12)

RipsF (X; r) = {Q ⊆ X |
(

Q
2
)
⊆ ČechF (X; r)}. (13)

In words, the Vietoris-Rips complex contains a simplex iff all its edges belong to the Čech
complex. We note that for F (x) = ‖x‖2, (13) translates to the usual Euclidean definition of
the Vietoris-Rips complex. Increasing the radius from 0 to ∞, we get a filtration of Čech
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Figure 5 Three points for which pairwise intersecting dual Kullback-Leibler balls centered at
these points can be small, but triplewise intersecting such balls are necessarily large.

complexes and a filtration of Vietoris-Rips complexes. By construction, the Čech complex is
contained in the Vietoris-Rips complex for the same radius. If we measure distance with the
Euclidean metric, this relation extends to

Čech(X; r) ⊆ Rips(X; r) ⊆ Čech(X;
√

2r). (14)

Indeed, if all pairs in a set of k + 1 balls of radius r have a non-empty common intersection,
then increasing the radius to

√
2r guarantees that the k+1 balls have a non-empty intersection.

This fact is often expressed by saying that the two filtrations have a small interleaving distance
if indexed logarithmically.

No interleaving. The interleaving property expressed in (14) extends to general metrics –
except that the constant factor is 2 rather than

√
2 – but not to general Bregman divergences.

To see that (14) does not extend, we give an example of 3 points whose Bregman balls overlap
pairwise for a small radius but not triplewise until the radius is very large.

The example uses the exponential function defined on the standard triangle, which
we parametrize using barycentric coordinates. For convenience, the explanation uses the
conjugate function, which is the Shannon entropy; that is: we look at dual balls in which
distance is measured with the Kullback-Leibler divergence. Specifically, we use F (x) =∑3

i=1 xi ln xi. The barycentric coordinates are non-negative and satisfy
∑3

i=1 xi = 1. We
therefore get the maximum value of 0 at the three corners, and the minimum of − ln 3 at the
center of the triangle; see Figure 5. After some calculations, we get the squared length of
the gradient at x as 1

3 [(ln x1 − ln x2)2 + (ln x1 − ln x3)2 + (ln x2 − ln x3)2]. It goes to infinity
when x approaches the boundary of the triangle.

We construct the example using points near the midpoints of the edges. Choosing them
in the interior of the triangle but close to the boundary, the corresponding three tangent
planes are as steep as we like. Moving the planes upward, we get the dual balls as the
vertical projections of the parts of the graph of F on or below the planes. Moving the planes
continuously, we let r be the height above the initial positions, and note that r is also the
radius of the dual balls. Pairwise overlap between the balls starts when the three lines at
which the planes meet intersect the graph of F . This happens at r < ln 3. Triplewise overlap
starts when the point common to all three planes passes through the graph of F . This
happens at a value of r that we can make arbitrarily large.

SoCG 2017
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Contractibility for Voronoi domains. Čech and Vietoris-Rips complexes can be high di-
mensional and of exponential size, even if the data lives in low dimensions. To remedy this
shortcoming, we use the Delaunay (or alpha) complex; see [16, 17]. It is obtained by clipping
the balls before taking the nerve. We explain this by introducing the Voronoi domains of the
generating points as the clipping agents.

Letting X ⊆ Ω be finite, we define the primal and dual Voronoi domains of x ∈ X

associated with F as the sets of points for which x minimizes the Bregman divergence to or
from the point:

VF (x) = {a ∈ Ω | DF (x‖a) ≤ DF (y‖a),∀y ∈ X}; (15)
V ′F (x) = {a ∈ Ω | DF (a‖x) ≤ DF (a‖y),∀y ∈ X}. (16)

An intuitive construction of the primal domains grows the primal Bregman balls around the
points, stopping the growth at places where the balls meet. Similarly, we get the dual Voronoi
domains by growing dual Bregman balls. Not surprisingly, the primal Voronoi domains are
not necessarily convex, and the dual Voronoi cells are convex. To see the latter property,
we recall that the dual ball centered at x is constructed by translating the hyperplane that
touches the graph of F above x. Specifically, DF (a‖x) is the height at which the hyperplane
passes through the point (a, F (a)). This implies that we can construct the dual Voronoi
domains as follows:

For each x ∈ X, consider the half-space of points in Rn × R on or above the hyperplane
that touches the graph of F at (x, F (x)).
Form the intersection of these half-spaces, which is a convex polyhedron. We call its
boundary the upper envelope of the hyperplanes, noting that it is the graph of a piecewise
linear function from Rn to R.
Project the upper envelope vertically onto Rn. Each dual Voronoi domain is the intersec-
tion of Ω with the image of an n-dimensional face of the upper envelope.

We conclude that the dual Voronoi domains are convex and use this property to show that
the primal Voronoi domains intersect contractibly.

I Result 4 (Contractibility Lemma for Voronoi Domains). Let F : Ω→ R be of Legendre type,
and X ⊆ Ω finite. Then

⋂
x∈X VF (x) is either empty or contractible.

The proof is similar to that of the Contractibility Lemma for Balls and therefore omitted.

Delaunay construction for Bregman divergences. Taking the nerve of the primal Voronoi
domains, we get the Delaunay triangulation of X associated with F , which we denote as
DelF (X). Further restricting the primal Voronoi domains by primal Bregman balls of radius
r, we get the Delaunay complex of X and r associated with F :

DelF (X; r) = {P ⊆X |
⋂

p∈P

[BF (p;r) ∩ VF (p)] 6= ∅}. (17)

Assuming general position of the points in X, the Delaunay triangulation is a simplicial
complex of dimension at most n. We will be explicit about what we mean by general
position shortly. Combining the proofs of the two Contractibility Lemmas, we see that the
common intersection of any set of clipped primary balls is either empty or contractible. This
together with the Nerve Theorem implies that DelF (X; r) has the same homotopy type as
ČechF (X; r), namely the homotopy type of the union of the Bregman balls that define the
two complexes.
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4 Algorithms

Recall that all three proximity complexes defined in Section 3 depend on a radius parameter.
In this section, we give algorithms that compute the values of this parameter beyond which the
simplices belong to the complexes. By focusing on the resulting radius functions, we decouple
the computation of the radius for each simplex from the technicalities of constructing the
actual simplicial complex. In particular, we show that the Čech complexes can be efficiently
reconstructed from the Vietoris-Rips complexes, and the Delaunay complexes from the
Delaunay triangulations. We exploit a connection with discrete Morse theory to develop
efficient algorithms.

Radius functions. Let X ⊆ Ω be finite, write ∆(X) for the simplex whose vertices are the
points in X, and recall that DelF (X) is the Delaunay triangulation of X associated with F .
The Čech, Vietoris-Rips, and Delaunay radius functions associated with F ,

%Čech
F : ∆(X)→ R, (18)

%Rips
F : ∆(X)→ R, (19)
%Del

F : DelF (X)→ R, (20)

are defined such that P ∈ ČechF (X; r) iff %Čech
F (P ) ≤ r, and similarly for Vietoris-Rips and

for Delaunay. By definition of the Čech complex, %Čech
F (P ) is the minimum radius at which

the primal Bregman balls centered at the points of P have a non-empty common intersection.
We are interested in an equivalent characterization using dual Bregman balls. To this end,
we say that a dual Bregman ball, B′, includes P if P ⊆ B′, and we call B′ the smallest
including dual ball if there is no other dual ball that includes P and has a smaller radius.
Because F is strictly convex, the smallest including dual ball of P is unique; see Figure 4,
which shows the smallest including dual Itakura-Saito ball of a pair of points. We call B′
empty if no point of X lies in its interior, and we call it a circumball of P if all points of P
lie on its boundary. We observe that a simplex P ∈ ∆(X) belongs to DelF (X) iff it has an
empty dual circumball. Because F is strictly convex, the smallest empty dual circumball of
a simplex is either unique or does not exist. The characterization of the radius functions in
terms of dual balls is strictly analogous to the Euclidean case studied in [3].

I Result 5 (Radius Function Lemma). Let F : Ω→ R be of Legendre type, X ⊆ Ω finite, and
∅ 6= P ⊆ X.
I. %Čech

F (P ) is the radius of the smallest including dual ball of P , and %Rips
F (P ) is the maximum

radius of the smallest including dual balls of the pairs in P .
II. If P ∈ DelF (X), %Del

F (P ) is the radius of the smallest empty dual circumball of P .
We omit the proof, which is not difficult. Every circumball also includes, which implies that
%Rips

F (P ) ≤ %Čech
F (P ) ≤ %Del

F (P ) whenever the radius functions are defined. Correspondingly,
DelF (X; r) ⊆ ČechF (X; r) ⊆ RipsF (X; r) for every value of r.

General position. It is often convenient and sometimes necessary to assume that the points
in X ⊆ Ω are in general position, for example when we require the Delaunay triangulation
be a simplicial complex in Rn. Here is a notion that suffices for the purposes of this paper.

I Result 6 (Definition of General Position). Let Ω ⊆ Rn and F : Ω→ R of Legendre type. A
finite set X ⊆ Ω is in general position with respect to F if, for every P ⊆ X of cardinality
at most n+ 1,
I. the points in P are affinely independent,
II. no point of X \ P lies on the boundary of the smallest dual circumball of P .

SoCG 2017
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Let k = dimP . Property I implies that P has an (n− k)-parameter family of circumballs.
In particular, there is at least one circumball as long as k ≤ n. Property II implies that
no two different simplices have the same smallest dual circumball. In particular, no two
n-simplices in the Delaunay triangulation have the same circumball.

Discrete Morse theory. For points in general position, two of the radius functions exhibit
a structural property that arises in the translation of Morse theoretic ideas from the smooth
category to the simplicial category. Following [3], we extend the original formulation of
discrete Morse theory given by Forman [19]. Letting K be a simplicial complex, and P,R ∈ K
two simplices, we write P ≤ R if P is a face of R. The interval of simplices between P and
R is [P,R] = {Q ∈ K | P ≤ Q ≤ R}. We call P the lower bound and R the upper bound of
the interval. A generalized discrete vector field is a partition of K into intervals. We call it
a generalized discrete gradient if there exists a function f : K → R such that f(P ) ≤ f(Q)
whenever P is a face of Q, with equality iff P and Q belong to a common interval. A function
with this property is called a generalized discrete Morse function. To get an intuitive feeling
for this concept, consider the sequence of sublevel sets of f . Any two contiguous sublevel
sets differ by one or more intervals, and any two of these intervals are independent in the
sense that neither interval contains a face of a simplex in the other interval. Indeed, this
property characterizes generalized discrete Morse functions.

I Result 7 (GDMF Theorem). Let F : Ω → R be of Legendre type and let X ⊆ Ω be finite
and in general position. Then %Čech

F : ∆(X) → R and %Del
F : DelF (X) → R are generalized

discrete Morse functions. (We give a full proof in the Appendix of the full version of this
paper.)

Observe that the Vietoris-Rips radius function is not a generalized discrete Morse function.
The structural properties implied by the GDMF Theorem will be useful in the design of
algorithms that compute the radius functions. The theorem should be compared with the
analogous result in the Euclidean case [3]. The arguments used there can be translated
almost verbatim to prove additional structural results for Bregman divergences. Perhaps
most importantly, they imply that the Wrap complex of F and X is well defined – see [15]
for the original paper on these complexes defined in 3-dimensional Euclidean space – and
that the Čech complex collapses to the Delaunay complex and further to the Wrap complex,
all defined for the same radius.

Bregman circumball algorithm. Depending on how the function F is represented, there
may be a numerical component to the algorithms needed to find smallest including dual
balls. Consider a k-simplex Q ⊆ X with 0 ≤ k ≤ n. Assuming general position, the affine
hull of the points A = (a, F (a)) with a ∈ Q is a k-dimensional plane, which we denote as
Q. We are interested in the point (q, ψ) ∈ Q that maximizes ψ − F (q), the height above the
graph of F . The point q is the center of the smallest dual circumball of Q, and ψ − F (q) is
the radius. Interestingly, this observation implies that the point of first intersection of two
primal Bregman balls lies on a line joining their centers. For later reference, we assume a
routine that computes this point, possibly using a standard numerical optimization method.

dualball routine CircumBall (Q):
let Q be the affine hull of the points (a, F (a)), a ∈ Q;
find (q, ψ) ∈ Q maximizing ψ − F (q);
return (q, ψ − F (q)).
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This is an unconstrained k-dimensional convex optimization, and k is much smaller than n
for high dimensional data. Indeed, the optimization can be performed in the space of affine
coordinates of the plane Q. Importantly, the Hessian is of dimension k × k and not n× n,
which would be prohibitive. This allows us to use second-order quasi-Newton methods, such
as the fast BFGS algorithm [27].

Note that the smallest dual circumball of Q includes Q but is not necessarily the smallest
including dual ball. However, the latter is necessarily the smallest dual circumball of a face
of Q. Next, we show how the CircumBall routine is used to efficiently compute the radius
functions.

Čech radius function algorithm. According to the Radius Function Lemma (i), the value of
a simplex, Q ∈ ∆(X), under the Čech radius function is the radius of the smallest including
dual ball of Q. To compute this value, we visit the simplices in a particular sequence.
Recalling the GDMF Theorem, we note that the smallest including dual ball of a simplex
Q is the smallest dual circumball of the minimum face P ⊆ Q in the same interval. It is
therefore opportune to traverse the simplices in the order of increasing dimension. Whenever
the smallest dual circumball of a simplex Q is not the smallest including dual ball, we get
%Čech

F (Q) from one of its codimension 1 faces. We identify such a simplex Q when we come
across a face whose smallest dual circumball includes Q, and we mark Q with the center
and radius of this ball. The following pseudocode computes the radius function of the Čech
complex restricted to the k-skeleton of ∆(X) for some nonnegative integer k:

for i = 0 to k do
forall P ⊆ X with dimP = i do

if P unmarked then (p, r) = CircumBall(P );
forall a ∈ X with DF (a‖p) < r do mark P ∪ {a} with (p, r).

As in the Euclidean setting, the size of ∆(X) is exponential in the size of X so that the
computations are feasible only for reasonably small values of k or small radius cut-offs. In
practice, we would run the algorithm with a radius cut-off, or use an approximation strategy
yielding a similar persistence diagram.

Observe the similarity to the standard algorithm for constructing the k-skeleton of the
Vietoris-Rips complex: after adding all edges of length at most 2r, we add simplices of
dimension 2 and higher whenever possible. Geometric considerations are thus restricted to
edges and the rest of the construction is combinatorial; see [33] for a fast implementation.
Our algorithm can be interpreted as constructing the Čech complex from the Vietoris-Rips
complex at the cost of at most one call to CircumBall per simplex. This is more efficient
than explicitly computing the smallest including dual ball for each simplex, even if we use
fast randomized algorithms as described in [26, 32]. Furthermore, the CircumBall routine
is only called for the lower bounds of the intervals of the Čech radius function or, equivalently,
for each subcomplex in the resulting filtration. The number of such intervals depends on
the relative position of the points in X and not only on the cardinality. Notwithstanding,
the number of intervals is significantly smaller than the number of simplices in the Čech
complex. This suggests that only a small overhead is needed to compute the Čech from the
Vietoris-Rips complexes. Our preliminary experiments for the Kullback-Leibler divergence
support this claim; see Table 1. Note that the number of calls to the CircumBall routine
is between 1

10 and 1
3 of the number of simplices, with an average between 6 and 15 function

evaluations per call.
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Table 1 Experimental evaluation on three synthetic datasets: (A) Full Čech complex with 20
points in R20; (B) 3-skeleton with 256 points in R4 and radius cutoff r = 0.1; (C) 4-skeleton with
4,000 points in R4 and radius cutoff r = 0.01.

A (20 pts) B (256 pts) C (4,000 pts)

#edges 190 7,715 36,937
#simplices 1,048,575 1,155,301 1,222,688
#calls to CircumBall 104,030 346,475 283,622
#function evaluations in CircumBall 1,523,295 2,904,603 1,783,474

Delaunay radius function algorithm. According to the Radius Function Lemma (ii), the
value of a simplex Q ∈ DelF (X) under the Delaunay radius function is the radius of the
smallest empty dual Bregman circumball of Q.

real routine DelaunayRadius (Q):
(q, r) = CircumBall(Q);
forall a ∈ X \Q do

if DF (a‖q) < r then return none;
return r.

The CircumBall routine gives only the smallest dual circumball of Q, and if it is not
empty, then we have to get the value of the Delaunay radius function from somewhere else.
According to the GDMF Theorem, we get the value from the maximum simplex in the
interval that contains Q. It is therefore opportune to traverse the simplices of the Delaunay
triangulation in the order of decreasing dimension. Whenever the smallest dual circumball
of a simplex Q is non-empty, we get %Del

F (Q) from one of the simplices that contain Q as a
codimension 1 face.

As already observed in [6], we can construct the full Delaunay triangulation, DelF (X),
using existing algorithms for the Euclidean case. We get the Delaunay complexes as sublevel
sets of the radius function. Specifically, we first use the polarity transform to map the points
(x, F (x)) to the corresponding affine functions; see Section 2. We then get a geometric
realization of DelF (X) from the vertical projection of the upper envelope of the affine
functions onto Rn, which is a Euclidean weighted Voronoi diagram, also known as power
diagram or Dirichlet tessellation. Its dual is the Euclidean weighted Delaunay triangulation,
also known as regular or coherent triangulation. The data that defines these Euclidean
diagrams are the points x ∈ X with weights ξ = F (x)− ‖x‖2. Finally, after computing the
radius function on all simplices in DelF (X), we get the Delaunay complexes as a filtration of
this weighted Delaunay triangulation. Interestingly, this is not necessarily the filtration we
obtain by simultaneously and uniformly increasing the weights of the points.

5 Discussion

The main contribution of this paper is the extension of the mathematical and computational
machinery of topological data analysis (TDA) to applications in which distance is measured
with a Bregman divergence. This includes text and image data often compared with the
Kullback-Leibler divergence, and speech and sound data often studied with the Itakura-Saito
divergence. It is our hope that the combination of Bregman divergences and TDA technology
will bring light into the generally difficult study of high-dimensional data. In support of
this optimism, Rieck and Leitte [29] provide experimental evidence that good dimension
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reduction methods preserve the persistent homology of the data. With our extension to
Bregman divergences, such experiments can now be performed for a much wider spectrum of
applications. There are specific mathematical questions whose incomplete understanding is
currently an obstacle to progress in the direction suggested by this paper:

A cornerstone of TDA is the stability of its persistence diagrams, as originally proved in
[12]. How does the use of Bregman divergences affect the stability of the diagrams?
Related to the question of stability is the existence of sparse complexes and filtrations for
data in Bregman spaces whose persistence diagrams are close to the ones we get for the
Čech and Delaunay complexes.
What about effective approximations of the introduced radius functions? In other
words, are there simpler constructions yielding similar results, preferably using existing
computational packages?
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in this paper.
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