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Abstract

We present a model for the scaling laws of the electric field noise spectral density as a function of

the distance, d, above a conducting surface. Our analytical approach models the patch potentials

by introducing a correlation length, ζ, of the electric potential on the surface. The predicted scaling

laws are in excellent agreement with two different classes of experiments (cold trapped ions and

cantilevers), that span at least four orders of magnitude of d. According to this model, heating

rate in miniature ion traps could be greatly reduced by proper material engineering.

PACS numbers: 37.10.Ty,34.35.+a,72.70.+m,37.10.Rs
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Device miniaturization is a challenge that raises new issues because the scaling laws valid

in the macroscopic range might fail, for instance due to the emergence of a new characteristic

length. Even the simple case of the electric field in the vicinity of a conductor surface can

exhibit anomalous behavior caused by small inhomogeneities of the electric potential on

the surface. These field fluctuations are crucial in the studies of short distance phenomena

such as the measurement of the Casimir-Polder force[1], studies of non contact friction[2, 3],

gravitational forces[4] and contact potentials[5, 6, 7].

In a different context, recent success in quantum information experiment with trapped

ions (see Ref [8] for a review) motivated the fabrication of micro-traps in order to fulfill the

scalability requirement of a quantum computer[9]. In such devices a set of micro-fabricated

conducting electrodes generates an oscillating electric field that traps laser-cooled ions in

a harmonic potential well, at a distance, d, of the surface. In this situation the presence

of a fluctuating electric field affects the ion motion inducing a heating, that is usually

characterized in term of quanta of vibration gained per unit time. This heating fixes a limit

on the achievable fidelity of ion based quantum gates[10]. One might try to account for

this heating rate by considering typical electric noise sources in conductors, among which

the most likely is Johnson noise. However, measured heating rates are orders of magnitude

larger than the expected contribution of the Johnson noise. Moreover, Johnson noise would

induce a heating rate that scales as d−2, whereas the observed one is consistent with a d−4

scaling[11], as would be expected from a random distribution of charges, leading to the

notion of patch potentials[12].

Recent experiments[13] suggest that indeed the surface quality plays a dominant role in

this anomalous heating. The observed scaling of the field noise with temperature points out

thermally activated phenomena (surface defaults, charge traps,...). These effects are easy to

probe in the static limit where direct observation of the surface is possible using an atomic

force microscope, but much more difficult to observe directly at higher frequencies, which

are relevant to ion trapping. However the measured noise can be compared by assuming a

variation as ω−1, experimentally verified at room temperature[13].

The question of finding the electric field fluctuations near an infinite conductor filling half

the space has already been extensively treated by considering thermal fluctuations carried by

uncorrelated punctual sources (Johnson noise)[12, 14, 15]. In these models the characteristic

length is given by the skin depth of the material, δ, at the considered frequency. The scaling
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of the electric field noise density is then expected to change from (d/δ)−3 for d ≪ δ to

(d/δ)−2 for d ≫ δ where the typical value of δ for gold electrodes in the MHz range is tens

of microns. However this behavior has not been observed in ion traps experiments where

a d−4 scaling is reported for d varying from 75 µm to 1 mm[16]. In a recent work[17], this

type of model as been improved to take into account effects of charge diffusion, where the

characteristic length, δ̃, is related to the mean free path of charges on the surface. The

predicted scaling is consistent with (d/δ̃)−3 for d ≪ δ̃ to (d/δ̃)−4 for d ≫ δ̃.

In this work we present a model where we take explicitly into account the spatial

dependence of the electric field noise density above a surface, introducing a characteristic

length not yet considered in previous models: the correlation length, ζ , of the noisy po-

tential on the surface. In that picture, the noise arise from finite size sources distributed

randomly on the surface. We show that this simple model accounts for the behavior of elec-

tric field noise scaling on the whole range covered by both ion heating measurements and

cantilever-based measurements. We propose that this correlation length could be related

to the characteristic size of the patches, opening a way to the control of noise intensity by

engineering the material properties. In a recent work, an analytical solution of the Laplace

equation for the special case of a planar ion trap was found[18]. In the present letter we

extend this approach and obtain an analytical expression for the scaling law of the electric

field noise density SE(ω, d) at a distance d of the surface. The first step is to solve the

Laplace equation for the potential φ(x, y, z, t), ∆φ(x, y, z, t) = 0 in half the space (y > 0)

with boundary condition φ(x, 0, z, t) = φ0(x, z, t) and vanishing potential for y → ∞. Under

these assumptions, the potential reads:

φ(x, y, z, t) =

∫

dkx dkz

4π2
e−y

√
k2

x+k2
z

×
∫

du dvφ0(u, v, t)eı(kx(u−x)+kz(v−z)) (1)

where we took the Fourier transform of the Laplace equation, introducing kx and kz. Then

carrying out the integration on kx and kz, the resulting potential above the plane is:

φ(x, y, z, t) =

∫

du dv

2π
φ0(u, v, t)K(u − x, y, v − z) (2)

where we introduced K(x, y, z) = y
(x2+y2+z2)3/2

, the kernel of the Laplace problem with these

specific boundary conditions. As in ref [18], equation (2) allows us to compute efficiently
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the potential associated to a given electrode geometry. More generally equation (2) allows

us to compute the potential created by any disordered boundary condition φ0(x, z, t).

In the following we will assume that small patch potentials distributed over the plane

(x, z) create a disordered electric potential on the surface. Let {Ci} be the area of these

patches and Vi(t) the time-dependent electric noise on the patch Ci. With these nota-

tions one have: φ0(x, z, t) =
∑

i Vi(t)χCi
(x, z) where χCi

is the characteristic function of Ci

(χCi
(x, z) = 1, ∀(x, z) ∈ Ci and χCi

(x, z) = 0, ∀(x, z) /∈ Ci). From equation (2) we can

compute the electric field temporal correlation function at a distance d:

SE(τ, d) =
1

4π2

∑

i

∑

j

Vi(t)Vj(t + τ)

×
∫

du′dv′χCj
(u′, v′) [∇K] (x − u′, d, z − v′)

×
∫

dudvχCi
(u, v) [∇K] (x − u, d, z − v) (3)

where [∇K] is the gradient of the scalar field K(x, y, z). The horizontal line in equation

(3) means that we average over many configurations of Vi. We suppose that the noise on

two distinct patches originates from independent random processes with the same temporal

correlation function R(τ):

Vi(t)Vj(t + τ) = δi,jR(τ) (4)

Equation (3) can then be rewritten:

SE(τ, d) =
R(τ)

4π2

∫

dudvdu′dv′
∑

i

χCi
(u, v)χCi

(u′, v′)

× [∇K] (x − u, d, z − v). [∇K] (x − u′, d, z − v′) (5)

Since the set {Ci}i is disordered one can write:
∑

i χCi
(u, v)χCi

(u′, v′) =

N 〈χCi
(u, v)χCi

(u′, v′)〉, where the brakets denote an average on the configuration of {Ci}
and N is the total number of patches. Introducing the spatial correlation function of the

patches, Cζ(u − u′, v − v′) = 〈χCi
(u, v)χCi

(u′, v′)〉, where ζ is the (finite) correlation length,

we take the temporal Fourier transform of SE(τ, d):

SE(ω, d) =
NSV (ω)

4π2

∫

dkxdkz

4π2
Sζ(kx, kz)

×
∣

∣

∣

∣

∫

dudv [∇K] (x − u, d, z − v)eı(kxu+kzv)

∣

∣

∣

∣

2

(6)
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where SV (ω), defined as the Fourier transform of R(τ), is the potential noise spectral density

on the surface and Sζ(kx, kz) is the two dimensional Fourier transform of Cζ(x, z). After

some calculations detailed in the Appendix, one obtains:

SE(ω, d) =
NSV (ω)

2π2

∫

dkdθSζ(k cos θ, k sin θ)k3e−2dk (7)

To simplify further this equation we need an explicit form of Sζ . In what follows we assume

an exponential behavior for the spatial autocorrelation function of the patches:

Cζ(x, z) = e−
√

x2+z2/ζ . (8)

This correlation function arises from a Poisson Voronoi tessellation model of the polycrys-

talline structure of metals[19]. More generally, following the approach of Ref [20], it can be

demonstrated that such an exponential behavior arises from a collection of random potential

patches on a surface.

We can then compute the Fourier transform explicitly: Sζ(k cos θ, k sin θ) = 2πζ2

(1+ζ2k2)3/2
,

finally giving:

SE(ω, d) = 2
Nζ2

d
SV (ω)

∫ ∞

0

dk
k3e−2k

(d2 + ζ2k2)3/2
(9)

Equation (9) clearly identifies the separate contribution of the spatial and temporal com-

ponents of the potential noise on the plane to the electric field noise density at a distance

d of the surface. Let us point out two important limits: in the case d ≫ ζ , one finds

SE(ω, d) ≈ 3ζ2SV (ω)
4d4 and in the case d ≪ ζ , one finds SE(ω, d) ≈ SV (ω)

dζ
. Between these two

simple asymptotic behaviors a smooth transition occurs as shown in Fig. 1. Let us note that

the choice of any correlation function in (8) would have led to the same long range limit

(d ≫ ζ), whereas this choice is crucial for the short range behavior.

Let us now analyze how equation (9) applies to both the case of ion traps and cantilevers

based experiments. In planar ion traps, charged particles are trapped above the surface in

a tight pseudo-potential and are usually cooled down to the fundamental vibrational state.

The presence of a fluctuating electric field leads to the heating of the ion with a heating rate

Γ = e2

4m~ω
SE(ω, d), where ω is the vibrational frequency of the ion (typically a few MHz),

m is the mass, e the charge and d the equilibrium position of the ion[12]. As described

in Refs[13, 21], the experimental measurement of ion heating rate gives thus access to the

electric field noise density. Due to electrode configuration in planar ion traps, the ions are

trapped at a distance d proportional to the size of the electrodes: the field can thus be
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FIG. 1: (Color online) continuous line: normalized field noise density SE(ω, d) (in units of NSV (ω)
ζ2 )

as d varies for a fixed ζ. For d ≪ ζ one has SE(ω, d) ∼ d−1 (dashed line). For d ≫ ζ one has

SE(ω, d) ∼ d−4 (dotted line).

probed in different ranges (typically [75 − 150] µm) using different traps[13]. Although the

surface quality (and thus ζ) might depend on the fabrication process, a d−4 dependence of

the heating rate (or field noise density) has been observed. These results are in agreement

with the limit d ≫ ζ of our model.

In cantilever based electric field noise measurement, the potential above a surface can

be probed on a typical distance range from 10 nm to 400 nm, yet on a very different scale

from ion traps. The cantilever is a device with resonant mechanical oscillation frequencies.

Its movement is damped by coupling to stray electric fields, with a rate Γ = q2

4kBT
SE(ω, d),

where ωc

2π
is the frequency of the cantilever (typically a few kHz) and q = CV is the induced

charge, equal to the tip-sample capacitance, C, times the potential bias, V [3]. Measuring the

cantilever oscillations damping rate using optical interferometry gives access to the electric

field noise density[2, 3]. These measurements, in the range d ∼ [10 − 100] nm, give a d−1

scaling of the field noise density, consistent with the limit d ≪ ζ of our model.
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As mentioned above, the frequencies probed in ions traps and cantilever based mea-

surement differ by several orders of magnitude, but the measured noise can be scaled to the

same frequency, assuming a variation as ω−1.

Table I summarizes electric field noise density measurements above gold surfaces, as

reported in several experimental works.

Ref. d ω/2π S
(exp)
E (ω, d) SE(ω0, d)

µm MHz V 2m−2Hz−1

[2] 0.02 4 × 10−3 4 1.6 × 10−2

[22] 40 3 9 × 10−12 2.7 × 10−11

[13] 75 1 [0.3 − 3] × 10−11 [0.3 − 3] × 10−11

[12] 140 10 5 × 10−12 5 × 10−11

TABLE I: Experimental room temperature SE(ω, d) values taken from cited references. Above the

horizontal line can be found a value measured using a cantilever. Below this line lie values measured

in ion traps experiment. The last column give the rescaled value of SE(ω0, d) for ω0/2π = 1 MHz.

Data from reference [13] have been obtained with the same trap after successive cleaning procedures

and thermal cycling.

Let us compare our model to the rescaled measured values, SE(d), of Table I that we

report in Fig. 2. In order to plot on the same graph the field noise density given by equation

(9), we need numerical values for NSV (ω0) and ζ . As the cantilever data are consistent

with the short range limit of our model, SE(ω0, d) = NSV (ω0)/(ζd) we can obtain a value

for NSV (ω0) = 3.2 × 10−10ζ0, where we introduced ζ0 the characteristic length of this

sample. Under the simple assumption that NSV (ω0) is not sample dependent, we can plot

the curves corresponding to different values of ζ/ζ0 (dashed lines in Fig. 2). We find that

0.6ζ0 ≤ ζ ≤ 4.5ζ0 covers the range of ion traps data. As reported in Refs [5, 7], the typical

size of static patch potentials on gold surfaces is ζ0 = 1 µm in excellent agreement with

the assumption ζ0 ≫ 20 nm. We interpret then the residual spread of the experimental

data in terms of different correlation lengths (in the range [0.6, 4.5] µm) associated to the

sample surface quality, itself highly dependent on the fabrication technique. The role of

surface quality has been noted in ref [13], where successive cleaning procedures decreased

the measured electric field noise density (points © in Fig. 2). Thus our work shows that in
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FIG. 2: Plot of experimental data from Refs. [2] (�), [22] (♦), [13] (©) and [12] (�). The lines

correspond to the value of SE(ω0, d) predicted by our model for three values of ζ, ζ = 0.65ζ0 (solid

line), ζ = 1.6ζ0 (dashed line), ζ = 4.6ζ0 (dotted line).

order to compare measured field noise on very different scales, one has to take into account

the correlation length of the material and not assume a d−4 scaling of the noise, otherwise

leading to an over-estimation of the noise at smaller distances. For example, as shown in

Fig. 1, our model predicts that for a sample with ζ ∼ 1 µm, the noise at d = 100 nm is 109

times greater than noise at d = 100 µm (at the same frequency), three orders of magnitude

lower than expected with a d−4 scaling.

In conclusion we developed a model for the electric field noise density based on an ana-

lytical approach, assuming a finite size of the potentials patches. Electrical noise field density

scaling laws predicted by this model are in very good agreement with experimental results,

both in the long range regime (hundred of microns), probed with ion traps experiments and

in the short range regime (tens of nanometers) probed with micro-fabricated cantilevers.

Let us point out that the pessimistic d−4 scaling law for heating rates observed in trapped

ion experiments is over estimated in the short range regime. Moreover even though the

noise considered in such devices lies within the MHz range, we find a characteristic length
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compatible with measurement of static potential patches sizes. This opens a new possibility

to improve the performances of surface micro-traps based on the analysis of electric static

noise obtained with atomic force microscopes.

We thank E. Boulat for fruitful discussions. This work was supported by the French Na-

tional Research Agency (ANR) Project No. ANR-JC0561454. R.D. gratefully acknowledges

the funding from the Délégation Générale de l’Armement (DGA).

INTEGRALS

Noticing that K(d × x, d × y, d × z) = d−2K(x, y, z) we change variables in equation (6)

so that:

SE(ω, d) =
NSV (ω)

16π4d2

∫

kdkdθSζ(k cos θ, k sin θ)

×
∣

∣

∣

∣

∫

ududφ [∇K] (u cos φ, 1, u sinφ) e−ıdku cos(φ−θ)
∣

∣

2

where u is now dimensionless. Since:

[∇K] (u cosφ, 1, u sinφ) =
1

(1 + u2)5/2











−3u cosφ

u2 − 2

−3u sin φ











,

SE(ω, d) may now be rewritten:

SE(ω, d) =
NSV (ω)

4π2d2

∫

kdkdθSζ(k cos θ, k sin θ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ ∞

0

du
u

(1 + u2)5/2











−3ıu cos θJ1(dku)

(u2 − 2)J0(dku)

−3ıu sin θJ1(dku)











∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(A.10)

Jn(x) being the n-th order Bessel function of the first kind. The integral on u can be

analytically calculated leading to equation (7).
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