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Abstract. During a microwave hyperthermia oncology treatment, the target region temperature
is elevated to the temperatures of 40–44 °C, which improves the therapeutic effect of a standard
radiotherapy and/or chemotherapy treatments. Amplitudes and phases of antenna input signals in
the phased array setup surrounding the 3D patient model are optimised with respect to maximise the
energy deposition in the target region. In this study, we successfully integrated an automatic artificial
intelligence segmentation routine, used for patient-specific 3D model generation, into the hyperthermia
treatment planning process. This allows us to apply more realistic patient 3D model for the online
hyperthermia guidance including detailed retrospective analyses of the overall treatment quality, possibly
leading to a widespread clinical use of the hyperthermia treatment planning.

Keywords: Hyperthermia, specific absorption rate, phased array applicator, hyperthermia treatment
planning.

1. Introduction
Microwave regional hyperthermia is an oncology treat-
ment during which a target region is heated to the tem-
perature range of 40–44 °C for the duration of 60–90
minutes [1]. It is typically applied in combination with
radiotherapy or chemotherapy, utilising constructive
interference from multiple external electromagnetic
field (EM) sources, converted into a heat within the
human body [2, 3]. Individual EM waves are produced
by the antennas surrounding the body and forming
the phased array regional hyperthermia microwave
system [4, 5]. Amplitudes and phases of individual
antenna input signals are optimised in order to ob-
tain maximum energy deposition within the target
region [6, 7]. This is achieved by applying the hyper-
thermia treatment planning (HTP) process in which
a patient-specific 3D models created from computed
tomography (CT) scan in combination with a model
of the microwave phased array system for EM field
simulations and optimisation is used [8, 9].

HTP is applied for online clinical guidance, the am-
plitudes and phases of individual antennas input sig-
nals to be adjusted during the treatment, if high tem-
perature is measured outside the target region or if
the patient complains [10, 11]. It is also used as an in-
clusion criterion for the hyperthermia treatment (HT)
to test whether it is possible to heat selected target
or if it is safe for the patient to undergo the treat-
ment [12]. HTP also allows a detailed retrospective
analysis of the entire treatment process and design of
novel applicator systems [13, 14]. For all HTP appli-
cations, the patient 3D model is pivotal for a correct
implementation of the selected HTP application. Cur-

rently, in clinical practice the 3D patient model usually
consists of tissues discriminated by a CT scan, such
as muscle, fat, bone, lung and internal air [15]. With
the development of automatic segmentation routines
based on atlas registration or artificial intelligence
(AI) algorithms, generating complex 3D models for
the HTP purposes becomes feasible [16–18].

The purpose of this study was to test the applica-
tion of an automatic AI segmentation routine for deep
HTP purposes in the pelvic region. From publicly
available CT scans, we created a 3D patient-specific
3D model using the automatic artificial intelligence
based segmentation available in TotalSegmentator ex-
tension of 3D Slicer [18–21]. This 3D model was then
imported in Sim4Life (version 7.0, Zürich MedTech
AG, Switzerland) for electromagnetic field simulations
using a phased array system consisting of 12 dipole
antennas operating at 100 MHz placed in two rings.
We optimised amplitudes and phases of each antenna
input signal in order to maximise the specific ab-
sorption rate (SAR) within the pancreas assigned as
a HT target region. We compared clinically applied
SAR quantities for the comparison of detailed patient-
specific 3D model consisting of internal organs and for
a 3D model in which all internal organs were assigned
as muscle, representing the current standard clinical
segmentation practice.

2. Materials and methods
2.1. Segmentation of the CT images
First, we created a patient-specific 3D model from
the series of the CT images available from the Cancer
Imaging Archive [19, 20]. The selected CT dataset
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was for a pancreatic cancer patient. This patient
data group has a bad prognosis as the symptoms of-
ten appear in the later stage. The tumour is also
present in challenging locations for the radiotherapy
treatment [22]. The CT images were imported into
the 3D Slicer (version 5.2.2) for the AI segmentation
for internal organs using the Total Segmentator ex-
tension [18]. Two segmentations, using the “Body”
and the “Total” options were created and saved in
the *.nrrd format. We used the “Total” segmentation
option, since it contains individual organs, however
without fat tissue. For fat assignment, we used the
“Body” segmentation, which ensures that each CT
pixel is assigned to a specific tissue. Afterwards, we
combined these two segmentations and merged corre-
sponding tissues, such as all muscle and bone parts,
into a single file in the *.vtk format inside MATLAB
(version 9.13, Natick, Massachusetts, USA) using the
list shown in Table 3 in the Appendices. Then, we im-
ported the CT images to the iSeg (version 3.10.57.98,
Zürich MedTech, Switzerland) along with the MAT-
LAB file and assigned individual organs. For fat
tissue delineation, we used the “Body” AI segmen-
tation inside the 3D Slicer and for muscle tissue, we
used a threshold operation inside iSeg. Since Virtual
Population models used for various in-silico studies,
including those in hyperthermia filed, contain carti-
lage, we manually segmented the cartilage as well [23].
Figure 1a) shows an example of the CT image and Fig-
ure 1b) the corresponding segmentation in iSeg. The
whole process took 5 minutes of GPU computational
time and 40 minutes of operational power from which
the manual cartilage segmentation took 20 minutes.

2.2. Hyperthermia treatment planning
setup

The selected HT applicator consisted of twelve
100 MHz dipole antennas placed in two rings within
the 500 mm long elliptically-shaped shell with a width
of 600 mm and a height of 500 mm. An elliptical
shape was selected to obtain more uniform distance
between the patient surface and the shell compared
to a cylindrical setup. This 3D phased array system
was positioned around the 3D model in order to place
the target region (pancreas) into the centre of the ap-
plicator system and provide at least a 40 mm distance
from the patient surface to the wire dipole antenna
elements (Figure 2). We have selected pancreas as
a target region in this study, which represents with
respect to its shape and location, a challenging organ
for the HT.

2.3. Electromagnetic field simulation
A harmonic signal with 15 periods at 100 MHz was
used for the excitation of all 12 antenna elements
in the phased array setup. A 5 mm global discreti-
sation FDTD step with a refinement to 2 mm for
the region within the shell and to 1 mm for the wire

Figure 1. a) axial CT image, b) segmented CT image
in iSeg including internal organs.

Figure 2. HTP setup consisting of elliptical phased
array (12 wire 100 MHz dipole antennas placed in
two rings) and a patient-specific 3D model. Antenna
names correspond to the ring and antenna number,
e.g. antenna 2_4 is fourth antenna in second antenna
ring.

dipole antenna was used. Absorbing UPML bound-
ary conditions were placed 20 cm from the applicator
model. The dielectric properties shown in Table 1
were assigned from the ITIS tissue database avail-
able in the Sim4Life package. All metalic parts were
assigned as a perfect electric conductor (PEC) mate-
rial. It took around 10 minutes to compute one EM
field simulation accelerated by RTX 3080 Ti graphical
processor unit.
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Name ϵr ρ σ
[−] [kg m−3] [S m−1]

adrenal gland 64.2 1028 0.64
air 1 1.2 0
blood vessel 76.8 1050 1.23
bone 15.28 1908 0.06
cartilage 55.8 1100 0.47
esophagus 77.9 1040 0.9
fat 12.7 911 0.07
gallbladder 79 1071 1.01
heart 76.8 1050 1.23
kidney 98.1 1067 0.81
large intestine 81.8 1088 0.68
liver 69 1079 0.49
lung 31.6 394 0.31
muscle 66 1090 0.71
pancreas 68.8 1087 0.79
shell 2 1180 0.004
small intestine 96.5 1030 1.66
spleen 90.7 1089 0.8
stomach 77.9 1088 0.9
water 80 1000 0.002

Table 1. Dielectric properties at 100 MHz used in
HTP [24, 25].

2.4. Optimization and evaluation
Individual EM field distributions were then imported
to MATLAB for amplitude and phase optimisation of
the antenna input signals using the particle swarm op-
timisation technique. We optimised the target to hot
spot quotient (THQ) representing the ratio of aver-
aged SAR inside the target region to the average SAR
within the hotspot, which were assumed as a volume
with 1 % highest SAR outside the target region [26].
Aside from the THQ (–), we evaluated the SAR target
coverages (TC) parameters TC25 (%) and TC50 (%),
determining the volume of tumour coverage with 25 %
or 50 % SAR iso-contour. We have compared two
models,
• organs – for this model, we assumed a complete

segmentation including internal organs,
• muscle – for this model, we assigned all internal

organs (except lung) as a muscle and cartilage was
split into bone structure and muscle using histogram
threshold segmentation, which is currently the clin-
ically applied segmentation strategy for patient-
specific 3D models used in HTP.

We also computed the absolute THQ difference
|dTHQ| (%).

|dTHQ| =
∣∣∣∣ (THQmuscle − THQorgans

THQorgans

) ∣∣∣∣ × 100 (1)

where |THQmuscle| is the THQ value obtained using
muscle patient model and |THQorgans| value obtained
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Figure 3. SAR volume cumulative histograms of
pancreas and whole patient model for complete seg-
mentation model (organs) and for model with organs
assigned as muscle (muscle).

from complete segmentation model including internal
organs.

3. Results
The optimised power and phase coefficients of individ-
ual antenna input signals are shown in Table 2. Power
coefficients are shown for 1 W of the total power of
the phased array system.

Antenna Porgans Φorgans Pmuscle Φmuscle

[W] [◦] [W] [◦]

1_1 0.077 0 0.072 0
1_2 0.085 -5 0.103 24
1_3 0.087 140 0.069 78
1_4 0.029 -51 0.068 85
1_5 0.015 69 0.098 36
1_6 0.096 69 0.063 96
2_1 0.129 -8 0.075 6
2_2 0.122 49 0.108 93
2_3 0.083 3 0.079 54
2_4 0.100 -63 0.067 -3
2_5 0.098 -18 0.090 7
2_6 0.079 65 0.108 86

Table 2. Optimised powers P [W] (normalised to
1 W of the total power) and phases Φ [◦] of antenna
input signals for organs and muscle segmentations.

For the complete segmentation model including in-
ternal organs, we obtained TC25 = 78 %, TC50 = 6 %
and THQ = 0.63, while for the model with internal or-
gans assigned as muscle, TC25 = 91 %, TC50 = 46 %
and THQ = 0.71, the |dTHQ| = 12.7 %. Figure 3
shows SAR cumulative histograms of the patient and
pancreas for the detailed segmentation model includ-
ing internal organs and for the patient-specific 3D
model in which all internal organs were assigned as
a muscle.
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Figure 4. Normalized SAR CT overlay for complete
segmentation model a) axial c) sagital slices and for
model in which internal organs were assigned as muscle
b) axial and d) sagital slices with highlighted pancreas
contour in green.

Figure 4a) and Figure 4c) show axial and sagi-
tal slices of the optimised SAR for the complete pa-
tient model while Figure 4b) and Figure 4d) show
the patient-specific 3D model with muscle dielectric
properties assigned to organs.

4. Discussion
We have successfully integrated AI automatic seg-
mentation into our overall HTP process in the pelvic
region. It takes around 45 minutes to generate de-
tailed patient-specific 3D models used in automatically
generated HTP setups. We received difference of 13 %
for TC25 and 40 % for TC50 between the detailed
segmentation including internal organs and the model
segmented into muscle, fat, lung, air and bone, which
is currently standard practice in clinical HTP. These
differences, observed in the challenging pancreatic re-
gion, highlight the importance of implementing the de-
tailed segmentation in this region. However, even with
the detailed segmentation, we obtained TC25 = 78 %,
which is considered to be sufficient (TC25 ≥ 75 %) for
the HT. We estimated that manually creating a com-
plete segmentation model would take an experienced
individual around ten hours, which is significantly
more than the 45 minutes required for the AI-assisted
segmentation. We expect that this time will be fur-
ther reduced in near future, to 25 minutes, by adding
an automatic segmentation of the cartilage.

The observed difference in THQ of 12.7 % when
comparing two studied models falls into a range of

7.0–22.8 % difference found by VilasBoas-Ribeiro et
al. [15] when comparing a clinical model containing
muscle, fat, bone, lung and internal air and a very de-
tailed model of the Virtual Population models. These
models are commonly used for in-silico studies of EM
field exposure, nevertheless they represent healthy
models of healthy volunteers which led to the develop-
ment of Erasmus Virtual Patient Repository (EVPR)
created from CT scans of real HT patients [27]. How-
ever, the EVPR models consist of a limited amount
of tissues, such as fat, muscle, bone, internal air and
tumour. The implemented AI segmentation allows
to conduct simulation studies including temperature
and thermoradiotherapy modelling with realistic pa-
tient 3D models [28–30]. These 3D models can be
obtained from widely available public repositories, en-
abling non-clinical groups to also work in this area of
research.

The optimised coefficients of antenna input signals
differ between HTP results based on the muscle and
organs segmentations. This was caused by different
dielectric properties of individual organs with respect
to muscle tissue. Tissue permittivity and conductiv-
ity influence the wavelength and attenuation of the
propagating EM wave and thus also the optimised
amplitudes and phases of individual antenna input
signals. Predicting local areas with high temperatures
(hot-spots), which usually appear at tissue interfaces
with high dielectric contrast, might be improved with
HTP based on a detailed segmentation. However,
a study investigating whether a detailed segmentation
leads to a higher EM dose within the target region and
thus temperatures during the HT would need to be
verified in clinical practice, which is outside the scope
of this paper.

A total of 104 available tissues were segmented us-
ing the TotalSegmentator, which can also be used
as constrained masks during the online optimisation
of amplitudes and phases input signals of individual
antennas in the phased array system. Detailed models
also allow more accurate simulation guided design of
HT devices using, for example, meta-material struc-
tures or compact antenna structures [31–33]. Further-
more, this technology might also enable the creation
of more complex anthropomorphic phantoms for hy-
perthermia quality control measurements including
dielectric properties of specific phantom materials [34–
36]. In clinical practice, dielectric properties can be
obtained individually for every patient using electric
property tomography, which uses magnetic resonance
imaging (MRI) scanner [37, 38]. MRI, along with Elec-
tric Impedance Tomography and Microwave Imaging,
can be employed for non-invasive temperature moni-
toring during the HT, improving the overall treatment
quality [39–42].

5. Conclusion
The implementation of an AI segmentation routine
to create patient-specific 3D models enables a more re-
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alistic and tailored HTP approach that can be applied
in clinical practice. This could extend the availability
of HTP treatment guidance to more clinics, improving
the overall quality of HT. Detailed models are also
suitable for testing the accuracy of temperature tissue
model predictions.
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A. Appendices

Tissue name in HTP Tissue name from TotalSegmentator
adrenal gland right_adrenal_gland, left_adrenal_gland

air trachea

blood vessel aorta, inferior_vena_cava, portal_vein, left_common_iliac_artery,
right_common_iliac_artery, left_common_iliac_vein, right_common_iliac_vein

bone L5_vertebra, L4_vertebra, L3_vertebra, L2_vertebra, L1_vertebra,
T12_vertebra, T11_vertebra, T10_vertebra, T9_vertebra, T8_vertebra,
T7_vertebra, T6_vertebra, T5_vertebra, T4_vertebra, T3_vertebra,
T2_vertebra, T1_vertebra, C7_vertebra, C6_vertebra, C5_vertebra,
C4_vertebra, C3_vertebra, C2_vertebra, C1_vertebra, left_rib_1, left_rib_2,
left_rib_3, left_rib_4, left_rib_5, left_rib_6, left_rib_7, left_rib_8, left_rib_9,
left_rib_10, left_rib_11, left_rib_12, right_rib_1, right_rib_2, right_rib_3,
right_rib_4, right_rib_5, right_rib_6, right_rib_7, right_rib_8, right_rib_9,
right_rib_10, right_rib_11, right_rib_12, left_humerus, right_humerus,
left_scapula, right_scapula, left_clavicle, right_clavicle, left_femur, right_femur,
left_hip, right_hip, Sacrum

esophagus esophagus

fat body

gallbladder gallbladder, urinary_bladder

heart heart, left_atrium, left_ventricle_of_heart, right_atrium,
right_ventricle_of_heart, pulmonary_artery

kidney right_kidney, left_kidney

large intestine colon

liver liver

lung superior_lobe_of_left_lung, inferior_lobe_of_left_lung, su-
perior_lobe_of_right_lung, middle_lobe_of_right_lung, infe-
rior_lobe_of_right_lung

muscle left_gluteus_maximus, right_gluteus_maximus, left_gluteus_medius,
right_gluteus_medius, left_gluteus_medius, right_gluteus_medius,
left_erector_spinae_muscle, right_erector_spinae_muscle, left_iliopsoas_muscle,
right_iliopsoas_muscle

pancreas pancreas

small intestine small_bowel, duodenum

spleen spleen

stomach stomach

Table 3. Merging tissues from TotalSegmentator and its corresponding tissue names in HTP models.
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