200 research outputs found

    Adverse-Pressure-Gradient effects on Turbulent Boundary Layers

    Get PDF
    Wall-bounded turbulence is present in many relevant fluid-flow problems such as the flow around wings, land and sea vehicles, or in turbines, compressors, etc. Simplified scenarios, such as the zero-pressure-gradient (ZPG) turbulent boundary layers (TBL) developing over a flat plate, have been deeply investigated in the past. Unfortunately, TBL seldom develop under ZPG conditions, with pressure gradients having significant impact on their features. In particular, adverse pressure gradients (APG) might produce flow separation with the consequent losses in performances. In this talk a unique experimental database of APG TBL covering a wide range of Reynolds numbers and with different pressure-gradient histories is presented. The measurements were performed by means of hot-wire anemometry (HWA) and oil-film interferometry (OFI) in the Reynolds-number range , and for pressure-gradient intensities resulting in values of the Clauser pressure-gradient parameter in the range . The primary objective is to study and compare near-equilibrium and non-equilibrium APG TBLs developing on a flat plate, discerning Reynolds-number effects from those due to the pressure-gradient.Máster en Hidráulica Ambienta

    Campaigning for sustainable food: sustainably certified consumer communities

    Get PDF
    Purpose: The purpose of this paper is to investigate the relationship between consumer movements and sustainability certification bodies in the development of food-related consumer campaigns. Design/methodology/approach: This paper adopts a longitudinal approach to the study of an empirical case, the Fairtrade Towns (FTT) movement in the UK. It combines netnographic analysis on the FTT’s online forum with interviews with members of the community and of the certification body coordinating the movement. Findings: The author conceptualises Sustainably Certified Consumer Communities (SCCC) as a distinct sub-group of consumer movements whose identity coalesces around a sustainable certification and that mobilises supporters with the purpose of promoting social change through the marketplace. The longitudinal approach allows the identification of definitional elements, main practices and unresolved tensions of this concept. Originality/value: Research addressing the social movement dimension of contemporary food-related sustainability certification is limited. The present study advances consumer research through the conceptualisation of SCCC and contributes to a new understanding of the political roles that market-oriented certification bodies can play in consumer activism. From a managerial perspective, it provides valuable insights into practitioners interested in fostering community engagement

    Machine learning for flow field measurements: a perspective

    Get PDF
    Advancements in machine-learning (ML) techniques are driving a paradigm shift in image processing. Flow diagnostics with optical techniques is not an exception. Considering the existing and foreseeable disruptive developments in flow field measurement techniques, we elaborate this perspective, particularly focused to the field of particle image velocimetry. The driving forces for the advancements in ML methods for flow field measurements in recent years are reviewed in terms of image preprocessing, data treatment and conditioning. Finally, possible routes for further developments are highlighted.Stefano Discetti acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 949085). Yingzheng Liu acknowledges financial support from the National Natural Science Foundation of China (11725209)

    Volumetric velocimetry for fluid flows

    Get PDF
    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.SD was partially supported under Grant No. DPI2016-79401-R funded by the Spanish State Research Agency (SRA) and the European Regional Development Fund (ERDF). FC was partially supported by the U.S. National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems, Grant No. 1453538)

    An end-to-end KNN-based PTV approach for high-resolution measurements and uncertainty quantification

    Get PDF
    We introduce a novel end-to-end approach to improving the resolution of PIV measurements. The method blends information from different snapshots without the need for time-resolved measurements on grounds of similarity of flow regions in different snapshots. The main hypothesis is that, with a sufficiently large ensemble of statistically-independent snapshots, the identification of flow structures that are morphologically similar but occurring at different time instants is feasible. Measured individual vectors from different snapshots with similar flow organisation can thus be merged, resulting in an artificially increased particle concentration. This allows to refine the interrogation region and, consequently, increase the spatial resolution. The measurement domain is split in subdomains. The similarity is enforced only on a local scale, i.e. morphologically-similar regions are sought only among subdomains corresponding to the same flow region. The identification of locally-similar snapshots is based on unsupervised K-nearest neighbours search in a space of significant flow features. Such features are defined in terms of a Proper Orthogonal Decomposition, performed in subdomains on the original low-resolution data, obtained either with standard cross-correlation or with binning of Particle Tracking Velocimetry data with a relatively large bin size. A refined bin size is then selected according to the number of sufficiently close snapshots identified. The statistical dispersion of the velocity vectors within the bin is then used to estimate the uncertainty and to select the optimal K which minimises it. The method is tested and validated against datasets with a progressively increasing level of complexity: two virtual experiments based on direct simulations of the wake of a fluidic pinball and a channel flow and the experimental data collected in a turbulent boundary layer.This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No 949085). Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022)

    Genetically-inspired convective heat transfer enhancement in a turbulent boundary layer

    Get PDF
    The convective heat transfer in a turbulent boundary layer (TBL) on a flat plate is enhanced using an artificial intelligence approach based on linear genetic algorithms control (LGAC). The actuator is a set of six slot jets in crossflow aligned with the freestream. An open-loop optimal periodic forcing is defined by the carrier frequency, the duty cycle and the phase difference between actuators as control parameters. The control laws are optimised with respect to the unperturbed TBL and to the actuation with a steady jet. The cost function includes the wall convective heat transfer rate and the cost of the actuation. The performance of the controller is assessed by infrared thermography and characterised also with particle image velocimetry measurements. The optimal controller yields a slightly asymmetric flow field. The LGAC algorithm converges to the same frequency and duty cycle for all the actuators. It is noted that such frequency is strikingly equal to the inverse of the characteristic travel time of large-scale turbulent structures advected within the near-wall region. The phase difference between multiple jet actuation has shown to be very relevant and the main driver of flow asymmetry. The results pinpoint the potential of machine learning control in unravelling unexplored controllers within the actuation space. Our study furthermore demonstrates the viability of employing sophisticated measurement techniques together with advanced algorithms in an experimental investigation.Comment: 20 pages, 13 figure

    A simple trick to improve the accuracy of PIV/PTV data

    Get PDF
    Particle Image Velocimetry (PIV) estimates velocities through correlations of particle images within interrogation windows, leading to a spatial modulation of the velocity field. Although in principle Particle Tracking Velocimetry (PTV) estimates locally a non-modulated particle displacement, to exploit the scattered data from PTV it is necessary to interpolate these data on a structured grid, which implies a spatial modulation effect that biases the resulting velocity field. This systematic error due to finite spatial resolution inevitably depends on the interrogation window size and on the interparticle spacing. It must be observed that all these operations (cross-correlation, direct interpolation or averaging in windows) induce modulation on both the mean and the fluctuating part. We introduce a simple trick to reduce this systematic error source of PIV/PTV measurements exploiting ensemble statistics. Ensemble Particle Tracking Velocimetry (EPTV) can be leveraged to obtain the high-resolution mean flow by merging the different instantaneous realisations. The mean flow can be estimated with EPTV, and the fluctuating part can be measured from PIV/PTV. The high-resolution mean can then be superposed to the instantaneous fluctuating part to obtain velocity fields with lower systematic error. The methodology is validated against datasets with a progressively increasing level of complexity: two virtual experiments based on direct numerical simulations (DNS) of the wake of a fluidic pinball and a channel flow and the experimental data of a turbulent boundary layer. For all the cases both PTV and PIV are analysed.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 949085, project: NEXTFLOW).Publicad

    Pressure from data-driven estimation of velocity fields using snapshot PIV and fast probes

    Get PDF
    The most explored path to obtain pressure fields from Particle Image Velocimetry (PIV) data roots its basis on accurate measurement of instantaneous velocity fields and their corresponding time derivatives. This requires time-resolved measurements, which are often difficult to achieve due to hardware limitations and expensive to implement. In alternative, snapshot PIV experiments are more affordable but require enforcing physical constraints (e.g. Taylor’s hypothesis) to extract the time derivative of the velocity field. In this work, we propose the use of data-driven techniques to retrieve time resolution from the combination of snapshot PIV and high-repetition-rate sensors measuring flow quantities in a limited set of spatial points. The instantaneous pressure fields can thus be computed by leveraging the Navier–Stokes equations as if the measurement were time-resolved. Extended Proper Orthogonal Decomposition, which can be regarded as one of the simplest algorithm for estimating velocity fields from a finite number of sensors, is used in this paper to prove the feasibility of this concept. The method is fully data-driven and, after training, it requires only probe data to obtain field information of velocity and pressure in the entire flow domain. This is certainly an advantage since model-based methods can retrieve pressure in an observed snapshot, but show increasing error as the field information is propagated over time. The performances of the proposed method are tested on datasets of increasing complexity, including synthetic test cases of the wake of a fluidic pinball and a channel flow, and experimental measurements in the wake of a wing. The results show that the data-driven pressure estimation is effective in flows with compact POD spectrum. In the cases where Taylor’s hypothesis holds well, the in-sample pressure field estimation can be more accurate for model-based methods; nonetheless, the proposed data-driven approach reaches a better accuracy for out-of-sample estimation after less than 0.20 convective times in all tested cases.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 949085). Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022)

    Super-resolution generative adversarial networks of randomly-seeded fields

    Get PDF
    Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on–off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network framework to estimate field quantities from random sparse sensors. The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions. It is hereby referred to as the randomly seeded super-resolution generative adversarial network (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distribution measurements and particle-image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or noise level. This generative adversarial network algorithm provides full-field high-resolution estimation from randomly seeded fields with no need of full-field high-resolution representations for training.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 949085) received by S.D. NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSL

    Data-driven dynamics description of a transitional boundary layer

    Get PDF
    Cluster analysis is applied to a DNS dataset of a transitional boundary layer developing over a flat plate. The stream-wise-span-wise plane at a wall normal distance close to the wall is sampled at several time instants and discretized into small sub-regions, which are the observations analysed in this work. Using K-medoids clustering algorithm, a partition of the observations is sought such that the medoids in each cluster represent the main local states. The clustering has been carried out on a two-dimensional reduced-order feature space, constructed with the multi-dimensional scaling technique. The clustered feature space provides a partitioning which consists of five different regions. The observations are automatically classified as laminar, turbulent spots, amplification of disturbances, or fully-developed turbulence. The Lagrangian evolution of the regions and the state transitions are described as a Markov process in terms of transition probability matrix and transition trajectory graph to determine the transition dynamics between different states.PITUFLOW-CM-UC3M, funded by the call "Programa de apoyo a la realizaciĂłn de proyectos interdisciplinares de I+D para jĂłvenes investigadores de la Universidad Carlos III de Madrid 2019-2020" under the frame of the Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid. COTURB, funded by the European Research Council, under grant ERC-2014-AdG-669505
    • …
    corecore