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A B S T R A C T

The most explored path to obtain pressure fields from Particle Image Velocimetry (PIV) data roots its basis on
accurate measurement of instantaneous velocity fields and their corresponding time derivatives. This requires
time-resolved measurements, which are often difficult to achieve due to hardware limitations and expensive
to implement. In alternative, snapshot PIV experiments are more affordable but require enforcing physical
constraints (e.g. Taylor’s hypothesis) to extract the time derivative of the velocity field. In this work, we
propose the use of data-driven techniques to retrieve time resolution from the combination of snapshot PIV
and high-repetition-rate sensors measuring flow quantities in a limited set of spatial points. The instantaneous
pressure fields can thus be computed by leveraging the Navier–Stokes equations as if the measurement were
time-resolved. Extended Proper Orthogonal Decomposition, which can be regarded as one of the simplest
algorithm for estimating velocity fields from a finite number of sensors, is used in this paper to prove the
feasibility of this concept. The method is fully data-driven and, after training, it requires only probe data to
obtain field information of velocity and pressure in the entire flow domain. This is certainly an advantage
since model-based methods can retrieve pressure in an observed snapshot, but show increasing error as the
field information is propagated over time. The performances of the proposed method are tested on datasets of
increasing complexity, including synthetic test cases of the wake of a fluidic pinball and a channel flow, and
experimental measurements in the wake of a wing. The results show that the data-driven pressure estimation is
effective in flows with compact POD spectrum. In the cases where Taylor’s hypothesis holds well, the in-sample
pressure field estimation can be more accurate for model-based methods; nonetheless, the proposed data-driven
approach reaches a better accuracy for out-of-sample estimation after less than 0.20 convective times in all
tested cases.
1. Introduction

Pressure is a thermodynamic quantity of utmost importance in fluid
flows. It performs a key role in flow instability and turbulence, it pro-
vides a relevant contribution to the aerodynamic loads, and it is one of
the main actors in aeroacoustic noise production, among others. There
exists a large wealth of methods to measure fluid pressure, although
most of the existing direct techniques are either point-measurements
or limited to surface distributions [1].

Remarkably, the increase of time resolution in velocity field mea-
surements during the last decade has opened the path to the possibil-
ity of obtaining instantaneous pressure fields [2,3]. This is normally
achieved by enforcing the validity of the momentum equation:

∇𝑝 = 𝐟 (𝐮) = −𝜌𝐷𝐮
𝐷𝑡

+ 𝜇∇2𝐮 (1)

which restates the pressure gradient ∇𝑝 as a function 𝑓 (𝐮) of the
elocity field 𝐮, where 𝜇 is the fluid dynamic viscosity, 𝐷𝐮∕𝐷𝑡 is the
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Lagrangian acceleration, expressed as 𝜕𝐮∕𝜕𝑡 + (𝐮 ⋅ ∇)𝐮 in the Eulerian
approach, and ∇ is the gradient operator.

Particle Image Velocimetry (PIV) has matured as a robust method
to obtain the flow-field description needed to extract pressure fields
from Eq. (1), in both planar and volumetric domains. However, the
hardware limitations of sampling rate often hinder this approach, since
high-speed cameras and lasers for PIV are expensive to be available in
most of the research and industrial environments, and sometimes they
do not offer a high enough sampling frequency for flows of practical
interest. Pioneering works on pressure estimation from PIV, thus, were
focused on the time-averaged distribution from the Reynolds-averaged
Navier-Stokes (RANS) equations [4,5].

For the instantaneous pressure field estimation, in case time-
resolution is not available (what is referred from now on as ‘‘snapshot
PIV’’), one possible approach for incompressible flows is to take the
vailable online 19 April 2022
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divergence of Eq. (1), providing that ∇ ⋅ 𝐮 = 0, obtaining

∇2𝑝 = −𝜌∇ ⋅ (𝐮 ⋅ ∇)𝐮 (2)

The main pitfall resides in the boundary conditions. The Poisson
equation (Eq. (2)) is an elliptical equation which requires well-defined
conditions, either in the Dirichlet or Neumann form, onto the full
boundary of the domain. The Neumann boundary condition is generally
obtained from the momentum equation (Eq. (1)), thus requiring time-
resolved velocity on the boundary or additional assumptions (such as
far field conditions) which are often difficult to enforce from PIV data
due to the limited size of the measurement domain.

An alternative path to retrieve temporal information relies on
model-based methods. In flows with relatively small turbulence inten-
sity and low level of shear, it is possible to exploit Taylor’s hypothesis
(TH), i.e. assuming that turbulent fluctuations are passively advected
with convection speed 𝐮𝑐 . This allows estimating the time derivative of
the velocity as

𝜕𝐮′∕𝜕𝑡 = −(𝐮𝑐 ⋅ ∇)𝐮′ (3)

Previous studies showed that the fluctuations travel with the mean
velocity when only small scale motions are present, and the error in
such assumption can be less detrimental than noise. However, this
cannot normally be assumed in presence of low-frequency, large-scale
motions, in which using the low-pass spatially-filtered velocity as 𝐮𝑐
yields more promising results, see [6–8].

A more refined model-based method has been proposed in [9]. The
method is based on integrating the inviscid, incompressible vorticity
transport equation to estimate the time evolution of the velocity fields,
and consequently the pressure field through integration of Eq. (1). The

ain limitation is that the adopted model is only valid if the full 3D
quations are considered, thus it needs 3D PIV measurements as a
tarting point.

Recent developments on model-free estimation of velocity fields
sing a limited number of sensors have recently been paving the way
o new interesting research avenues to compute the time derivative
f the velocity in Eq. (1) without the need of time-resolved field
easurements. An interesting approach for time-resolved estimation of

elocity fields is based on Extended Proper Orthogonal Decomposition
Extended POD, EPOD). Borée [10] has shown that, when dealing with
ultiple synchronized measurements, the correlation between them

an be ascertained through the evaluation of the extended POD modes
hich are estimated through the projection of the snapshot matrix of a
iven quantity on the temporal basis corresponding to another one. This
echnique reduces to the Linear Stochastic Estimation [LSE, 11] if all
he POD modes of the probe data are retained in the reconstruction. The
dvantage of EPOD with respect to direct application of LSE is that the
patio-temporal correlation is replaced by solely temporal correlations.

EPOD has been already widely used to estimate time-resolved ve-
ocity fields from non-time-resolved PIV data and fast probes in jet
lows [12], wall-mounted obstacles [13], wake flows [14–16], and
urbulent wall-bounded flows [17]. It must be remarked that, in the last
ecade, the estimation of flow fields from limited probe information
as achieved remarkable advances, mainly fostered by an intensive
se of machine-learning methods, thus pushing beyond the capabilities
f a simple EPOD estimation. Recent advances have been grounded
n shallow neural networks [18], convolutional neural networks [19,
0], generative adversarial neural networks [21] and recurrent neural
etworks [22–24].

In this work, we combine simultaneous snapshot PIV measurements
nd time-resolved pointwise measurements to achieve the time resolu-
ion needed to obtain pressure fields from Eq. (1). The field estimation
s carried out using a multi-time delay EPOD formulation. Although
ore performing methods are already available, this has shown to be

ufficiently robust in the time-estimation in case of spectrally compact
lows, thus it is considered here a reasonable backbone for proving the
2

oncept of full data-driven pressure estimation using simultaneously
fast probes and snapshot PIV. The flow chart of the algorithm is shown
in Fig. 1.

The EPOD method is introduced in Section 2. Then a robust pres-
sure integration method based on the modified Richardson iteration is
presented in Section 3. After that, we illustrate the validation on two
synthetic test cases in Section 4, based on direct numerical simulations
of the wake behind three cylinders in a configuration referred as fluidic
pinball [25] and of a turbulent channel flow from the Johns Hopkins
Turbulence Database (JHTDB, 26). Subsequently, the method is tested
in Section 5 on PIV experimental data of the wake behind a stalled wing
in a water tunnel.

2. Estimation of time-resolved velocity fields with extended POD

In this section the data arrangement and the implementation of the
EPOD-based method for the estimation of velocity fields from point
probes is presented. The treatment follows the formulation presented
in [16]. It is worth to remark that this approach, although defined in the
time-domain, is equivalent to a multi-time delay LSE approach [27,28].

Assume that 𝑛𝑡 snapshots of the fluctuating velocity field are ar-
ranged into a matrix 𝑈 , where each row (with length 𝑛𝑝 × 2 for planar
PIV) contains the velocity components in all the nodes of the domain.
The matrix 𝑈 can be decomposed by the economy-size Singular Value
Decomposition (SVD), i.e.

𝑈 = 𝛹𝛴𝛷𝑇 (4)

For simplicity it is herein assumed that all grid points cover the same
area, thus there is no need to explicitly include a weighting matrix.
Furthermore we assume 𝑛𝑡 < 2𝑛𝑝. Both conditions are normally met
in PIV experiments, where data are most often extracted by cross-
correlation with spatially-homogeneous interrogation window size, and
the number of grid points is generally larger than the number of
available snapshots. Nonetheless, the method can be easily formulated
for the general case of non-uniform spatial resolution and/or 𝑛𝑡 > 2𝑛𝑝.
In the decomposition of Eq. (4), the columns of the 𝑛𝑡 × 𝑛𝑡 orthogonal
matrix 𝛹 contains the temporal modes 𝝍 𝑖, the columns of the 𝑛𝑡 ×
2𝑛𝑝 orthogonal matrix 𝛷𝑇 contains the spatial modes 𝝓𝑖 and 𝛴 is a
square diagonal matrix containing the singular values 𝜎𝑖 arranged in
a decreasing order.

The same decomposition can be applied on velocity data from 𝑠
probes synchronized with velocity field measurements. The data from
the probes extracted at the same time instants of the PIV measurements
can be arranged in a snapshot matrix, with dimension 𝑛𝑡 × (𝑠 × 𝑛𝑐 ),
with 𝑛𝑐 being the number of components measured by the probe.
In order to increase the quantity of probe data available for each
snapshot, a multi-time-delay embedding approach, analogous to the
one adopted in [13,29], is employed here: for each physical probe,
a time-resolved sequence of 𝑞 probe samples is extracted after the
velocity field sampling time and considered as additional probes, re-
ferred for simplicity as ‘‘virtual probes’’. This approach is also known as
Multichannel Singular Spectrum Analysis [30]. This method is in wide
sense enforcing Taylor’s hypothesis, although not explicitly including
a model nor imposing a precise convection velocity. The final result is
a multi-time delay embedding in the snapshot probe matrix. The final
result is a matrix 𝑈𝑝𝑟 with 𝑛𝑡 rows (as the velocity field snapshots) and
𝑛𝑡𝑡 = (𝑠 × 𝑛𝑐) × 𝑞 columns which can be decomposed as

𝑈𝑝𝑟 = 𝛹𝑝𝑟𝛴𝑝𝑟𝛷
𝑇
𝑝𝑟 (5)

The extended POD modes 𝛷𝑒 corresponding to the field measure-
ments can be estimated through the projection of the PIV snapshot
matrix 𝑈 onto the temporal modes of the probe, i.e.

𝛹𝑇𝑝𝑟𝑈 = 𝛴𝑒𝛷
𝑇
𝑒 = 𝛹𝑇𝑝𝑟𝛹𝛴𝛷

𝑇 = 𝛯𝛴𝛷𝑇 (6)

where the subscript 𝑒 refers to extended POD modes and the matrix
𝛯 = 𝛹𝑇𝑝𝑟𝛹 contains the information about the temporal correlation

between field and probe modes.
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Fig. 1. Flow chart of velocity estimation using EPOD and pressure integration.
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Knowing the POD spatial modes (𝛷 and 𝛷𝑝𝑟) and singular values
(𝛴 and 𝛴𝑝𝑟) of the velocity field and of the probe snapshot matrix, as
well as the temporal correlations matrix 𝛯, it is possible to estimate the
velocity field 𝑢𝑒𝑠𝑡 at an generic instant from a probe data snapshot 𝑢𝑠𝑒
sampled at that instant:

𝑢𝑒𝑠𝑡 = 𝑢𝑠𝑒𝛷𝑝𝑟𝛴
−1
𝑝𝑟 𝛯𝛴𝛷

𝑇 = 𝜓𝑒𝑠𝑡𝛴𝛷
𝑇 (7)

with 𝑢𝑠𝑒 containing delay-embedded probe data in the same arrange-
ment used to construct the probe snapshot matrix. As shown by Eq. (7),
the estimation of the velocity field depends on all the probe modes
through the matrix 𝛯, accounting also for mode interaction. While
this approach removes the need for multiple-time delays (used for
instance in multi-time delay linear stochastic estimation [31]), it also
might result in a contamination of the estimation from spurious corre-
lations between flow field and probe modes. To this purpose, Discetti
et al. [16] proposed to filter out low-correlation entries from the matrix
𝛯 leveraging on the consideration that uncorrelated random modes
might still produce a non-null random entry in 𝛯 with a standard
deviation equal to 𝑛−0.5𝑡 . The entries 𝛯𝑖𝑗 in the matrix 𝛯 are therefore
truncated following the 3-sigma rule:

𝛯𝑖𝑗 = 0, 𝑤ℎ𝑒𝑛 − 3
√

𝑛𝑡
≤ 𝛯𝑖𝑗 ≤

3
√

𝑛𝑡
, 𝑖, 𝑗 = 1, 2,… , 𝑛 (8)

which, on the hypothesis that the spurious-correlation entries follow a
normal distribution, guarantees that 99.7% of them are removed. While
this approach is robust to noise, it might also cut out a small portion of
the actual correlation between probes and flow fields. This is especially
critical in the low-data limit, i.e. for small 𝑛𝑡. This approach will be
referred to as 𝛯-filtering approach in the reminder of the paper.

Since the pressure gradient estimation in Eq. (1) heavily relies on
a correct estimate of the time derivative of the velocity field, it is
of utmost importance to reduce spurious noise in the reconstruction.
For this reason, instead of the 𝛯-filtering, a temporal smoothing of the
estimate temporal modes is tested. In the present work a 6th order low-
pass Butterworth filter with cutoff frequency equal to 0.05 times the
data sample rate is applied to each estimated temporal mode 𝜓𝑒𝑠𝑡. This
approach will be referred to as 𝜓-filtering approach in the reminder of
the paper.
3

(

Fig. 2. Left: sketch of pressure update at point m in the 𝑖th loop of iteration, right:
sketch of relaxation.

3. Pressure integration algorithm from velocity field data

Since the time-resolved fields used to compute the Lagrangian accel-
eration are estimated from point probes, noise amplification is expected
in the process. For this reason, a technique with high robustness to
noise is implemented for the integration of the pressure gradient. In
the last decades, many pressure-integration methods have been investi-
gated using the pressure gradient as a function of velocity. The Poisson
approach, based on the resolution of Eq. (2), is the most common
ne. It has been successfully applied in Refs. [4,32] using Dirichelet
r Neumann boundary conditions retrieved from time-resolved velocity
ield data. The direct integration of the pressure gradient from the
omentum equation (Eq. (1)) has been tackled in different ways in

he literature. The least-square method, proposed in Ref. [33], seeks
he least-square solution for the discrete momentum equation in matrix
ormat. For the spatial integration strategies, in Ref. [34] it is proposed
space-marching integration . Apart from that, several works used an

mni-directional integration [35–37], where the pressure is integrated
long a bundle of lines starting from the far field and then averaged.
n iterative route-independent approach for integration has also been
roposed in Ref. [38].

In the present paper, the pressure is integrated using a finite-
ifferences version of the Modified Richardson Iteration method [39],
imilar to the approach presented in Ref. [38]. As shown in Fig. 2, the
ressure in the node 𝑚 is updated by the value of surrounding point 𝑛𝑗
j = 1,2, . . . ,5) and pressure gradient ∇𝑝 = 𝐟 (𝐮) is from Navier–Stokes
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Fig. 3. Geometrical arrangement of the pinball test case and the verification of the pressure integration method introduced in Section 3. Left: (a) pressure distribution from DNS
(interpolated from original grid to Cartesian grid with grid distance of 0.08𝐷); (b) pressure estimated from the integration method proposed in Section 3, the velocity vectors have
been interpolated on Cartesian grid before integration; (c) absolute error of pressure estimation. Results are presented in the non-dimensional form 𝑝∕𝜌𝑈 2
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equation (Eq. (1)). The pressure in 𝑚 at the iteration 𝑖 + 1 is provided
by

𝑝𝑖+1(𝐱𝑚) =
1
𝑁

𝑁
∑

𝑛=1
(𝑝𝑖(𝐱𝑛) + 𝐟 (𝐮)|𝐱′𝑛 ⋅ (𝐱𝑚 − 𝐱𝑛))

=𝑝𝑖(𝐱𝑚) +
1
𝑁

𝑁
∑

𝑛=1
(𝐟 (𝐮)|𝑥′𝑛 ⋅ (𝐱𝑚 − 𝐱𝑛)

−
𝑝𝑖(𝐱𝑚) − 𝑝𝑖(𝐱𝑛)

|𝐱𝑚 − 𝐱𝑛|
(|𝐱𝑚 − 𝐱𝑛|))

=𝑝𝑖(𝐱𝑚) +
1
𝑁

𝑁
∑

𝑛=1
(𝐟 (𝐮)|𝐱′𝑛 − ∇𝑝𝑖|𝐱′𝑛 ) ⋅ (𝐱𝑚 − 𝐱𝑛)

(9)

here 𝑖 is the index of iteration, 𝐱 is the position of each point, 𝑁 is
he number of neighboring points (for a Cartesian grid, 4 in 2D, 6 in
D), among which points in the other side of boundary do not count,
nd the gradients are calculated in the middle point 𝐱′𝑛 = (𝐱𝑚 + 𝐱𝑛)∕2
o reduce truncation error. Then, a relaxation parameter 𝜔 < 1∕𝑁 is
ntroduced into Eq. (9), which becomes

𝑖+1(𝐱𝑚) = 𝑝𝑖(𝐱𝑚) + 𝜔
𝑁
∑

𝑛=1
(𝐟 (𝐮)|𝐱′𝑛 − ∇𝑝𝑖|𝐱′𝑛 ) ⋅ (𝐱𝑚 − 𝐱𝑛) (10)

he process is initialized with 𝑝0 = 𝟎, updates globally in each iteration,
nd terminates when the difference between the pressure in two loops
s below a threshold 𝜀, i.e. when ‖𝑝𝑖+1 − 𝑝𝑖‖2 < 𝜀, where ‖ ⋅ ‖2 is the
2 distance over all the points of the domain and the threshold (set to
0−5 for the present study) is determined accordingly to the maximum
ccuracy of pressure that can be attained depending on velocity field
ata precision. The relaxation parameter 𝜔 has been set equal to 0.1 in
he remainder of the paper. Additionally, a threshold on the maximum
umber of iterations is set to be 104.

The main differences with the method proposed in Ref. [38] reside
n the update process. In Ref. [38] the pressure in 𝑥𝑚 is updated
onsidering only the surrounding nodes, i.e. 𝑝(𝑥𝑚) is not included. Fur-
hermore the data are updated instantaneously within in each iteration.
n our test, the performance of the robust iterative method in this
ection prevails under noise condition.

. Validation

In this section a validation using synthetic datasets is carried out. To
his purpose we selected two test cases with substantial spectral differ-
nce, i.e. a shedding-dominated flow (Section 4.1) and a wall-bounded
low (Section 4.2).

.1. Fluidic pinball

The first synthetic dataset has been extracted from a 2D-DNS (2
imensional Direct Numerical Simulation) of the wake of a fluidic
4

s

inball [25]. The pinball is formed by three cylinders with diameter
, whose centers form an equilateral triangle with side length equal

o 1.5𝐷. The triangle is oriented with one vertex pointing upstream, as
llustrated in Fig. 3. The 2D-DNS is performed at 𝑅𝑒 = 130 (referred
s chaotic regime, [25]), with 𝑅𝑒 being the Reynolds number based on
he freestream velocity and the diameter of the cylinders forming the
inball.

The region selected to test the EPOD-based estimation is placed in
he wake of the obstacles, ranging from 𝑥 = 1𝐷 to 𝑥 = 7𝐷 and from
= −3𝐷 to 𝑦 = 3𝐷, with 𝑥 and 𝑦 being respectively the streamwise and

rosswise directions. The velocity data from the original DNS mesh are
nterpolated on a Cartesian grid with distance between two adjacent
oints of 0.08𝐷 in order to simulate the results of a PIV experiment,
ielding 76 × 76 vector fields (although neither modulation nor random
rrors are introduced). The pressure field obtained on this Cartesian
rid using the method presented in Section 3 is reported in Fig. 3. It
an be observed that the integration error is relatively small, except
or the corners of the domain, where the truncation error from the
nterpolation becomes significant.

Five point probes measuring the 2 in-plane components of velocity,
re placed at the downstream edge of the region (𝑥 = 7𝐷), with a
pacing of 1𝐷 in the 𝑦 direction, being the central one located at 𝑦 = 0.
he training dataset is composed of 4685 velocity field snapshots as
ell as of the synchronized virtual probe data, forming the matrices
and 𝑈𝑝𝑟, respectively, as reported in Section 2. The snapshots are

elected to have a temporal spacing of 1.9 non-dimensional times.
he probes, instead, store data with the same time separation of the
NS advancement, i.e. each 0.1 in non-dimensional time units. This
orresponds to a target super-sampling by a factor of 19. When building
he probe snapshot matrix, a time segment equal to 60 samples is
sed. The number of virtual probes is estimated by considering a times-
an covering the convection time through the observation domain, as
roposed in Ref. [16].

Fig. 4a reports the energy distribution of the POD modes 𝜎2𝑖 of the
elocity field snapshots with blue line, as well as the cumulative energy
istribution with red line. As expected for this shedding-dominated
low, the first few POD modes contain most of the energy, with over
5% of the total energy contained within 12 modes. Fig. 4b shows the
bsolute value of the upper-left portion of unfiltered matrix 𝛯, which
s representative of the correlation between the 𝑖th temporal mode of
he probes and the 𝑗th temporal mode of the flow field, with 𝑖 and
being respectively the row and column numbers in 𝛯. The matrix
shows a clear diagonal dominance for at least the first 100 modes,

hich indicates a strong direct correspondence between probe and field
odes. As the mode number is increased, this dominance disappears

nd each probe mode tends to correspond to a larger number of field
odes.

The performances of EPOD are reported in Fig. 5 for a single

napshot of the testing dataset, both in terms of 2-component flow field



Experimental Thermal and Fluid Science 136 (2022) 110647J. Chen et al.

w
f
i
o
u
𝜓
a
m
(
t
v
s
e
s
a
A
a
a
r
t
T
w
i

c
t
f
w
f
o
m
i
d
b
p
t
r
m

𝐮

Fig. 4. (a) Energy distribution (blue, arrow toward left) and cumulative energy (red, arrow toward right) in the first 24 POD modes of the flow field; (b) absolute value of 𝛯 for
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and pressure. The DNS data are presented for comparison (Fig. 5a–c),
hile the velocity field and pressure estimation, without filter (Fig. 5d–

), with 𝛯-filter (Fig. 5g–i) and with 𝜓-filter (Fig. 5j–l) are also reported
n this figure. The estimation error of the velocity and pressure fields
f Fig. 5 with respect to the DNS data is reported in Fig. 6 for the
nfiltered EPOD (Fig. 6a–c), the 𝛯-filtered EPOD (Fig. 6d–f) and the
-filtered EPOD (Fig. 6g–i). The EPOD reconstructs the velocity field
nd estimates the pressure field with relatively-high fidelity. The error
ainly affects the streamwise velocity component in the wake region

from 𝑥 = 2𝐷 to 𝑥 = 4𝐷), producing an error pattern which suggests
he misplacement of flow structures in the 𝑦-direction. The crosswise
elocity component shows lower levels of error, still localized in the
ame region. The localization of the reconstruction error might be an
ffect of the presence of intense flow features, strongly subjected to
tretching and deformation, and for which Taylor’s hypothesis is not
ccurate, thus affecting the performances of the virtual-probe approach.
dditionally, this region stands farther from the probes. These two
spects contribute in the reduced capability of the probes to sense
ccurately the fluctuations in this region. Nonetheless, the pressure
econstruction has acceptable levels of estimation error, suggesting that
he integration is smoothing down the error in the spatial derivatives.
he unfiltered and 𝜓-filtered EPOD both show low levels of error,
hile the 𝛯-filtered EPOD introduces slightly larger error, since some

nformation is filtered out by the 𝛯-filter.
A further quantitative assessment of the estimation error has been

arried out over a testing dataset of 1500 snapshots by computing
he Root Mean Square (RMS) error with respect to the original DNS
ields. The assessment includes also the estimation through the TH,
hich is, to date, the most common option to estimate time-derivatives

rom planar snapshot PIV [8]. This method enables the estimation
f the time derivative of velocity, and thus of the pressure, for a
easured snapshot. This approach will be referred to as in-sample TH

n the remainder of this paper. A Gaussian spatial filter with standard
eviation equal to 7 vectors on a kernel of 29 × 29 vectors has
een applied to the local velocity inside the measured snapshot to
rovide the convection velocity 𝐮𝑐 . Additionally, the TH can be used
o propagate the measured frame in time, obtaining an estimated time-
esolved sequence of velocity fields. The simplest way to fulfill it is by
eans of a unidirectional Euler propagation, which is

(𝑡0 + 𝑑𝑡) = 𝐮(𝑡0) +
𝜕𝑢
𝜕𝑡

|

|

|

|𝑡0
𝑑𝑡

= 𝐮(𝑡0) − (𝐮𝑐 ⋅ ∇)𝐮′(𝑡0)𝑑𝑡
(11)

in the present case, where the convective velocity 𝐮𝑐 is the spatially-
5

filtered velocity inside the snapshot, and the time-resolved sequence d
has been estimated with TH using a 4th order Runge–Kutta method
with unidirectional propagation. This approach will be referred to as
out-of-sample TH in the remainder of this paper. It should be noted
that the error comes from both the absence of inlet information and
its accumulation in the propagation process.

Fig. 7 shows the RMS estimation error for the unfiltered EPOD
estimation (Fig. 7a–c), the 𝛯-filtered EPOD estimation (Fig. 7d–f), the
𝜓-filtered EPOD (Fig. 7g–i) and the estimation using the TH. The error
on the streamwise component of velocity is reported in the left column
(Fig. 7a,d,g), the error on the time-derivative on the streamwise com-
ponent of velocity in the central column (Fig. 7b,e,h,j) and the error on
pressure in the right column (Fig. 7c,f,i,k). For the TH, the estimation
has been carried out in the least error conditions, i.e. assuming that
the exact velocity field was available at the selected snapshot, thus
using the in-sample TH to estimate only the time derivative. Despite the
velocity estimation from the unfiltered EPOD (Fig. 7a) has reasonable
levels of error, the pressure estimation (Fig. 7c) is affected by large
errors. This is mainly produced by the time derivative of the velocity
(Fig. 7b), which significantly amplifies the spurious fluctuations in
the POD temporal modes. Similar levels of error are present in the
pressure estimation from the TH (Fig. 7k), also in this case produced
by large errors in the time derivative (Fig. 7j). The 𝛯-filtered EPOD,
instead, produces slightly worse results in terms of estimated velocity
fields (Fig. 7d), but shows much lower errors on the time derivative
(Fig. 7e) and, thus, on the pressure estimation (Fig. 7f). The results of
the 𝜓-filtered EPOD shows the lowest levels of error both in term of
elocity-field estimation (Fig. 7g) and of its time derivative (Fig. 7h),
hich lead to relatively low errors in the pressure estimation (Fig. 7i). It

hould be mentioned that time filtering may smear out high-frequency
luctuations. Nonetheless, such scales have smaller turnover times, and
o are less likely to exhibit correlation with the probe data, thus the
stimation process is already partially filtering their intensity. In any
ase, the Butterworth filter should be carefully tuned not to alter the
argest scale motions, which contain most of the energy and are well
etained by the most energetic POD modes and by the estimation
rocess.

It is worthwhile remarking that the EPOD estimation, differently
rom the TH, provides by default a set of time-resolved velocity fields,
hus it can be employed to estimate full time-series of velocity and
ressure fluctuations. Taylor’s hypothesis, by contrast, is generally
mployed to estimate the time-derivative in a measured flow-field
napshot (in-sample TH); when used to propagate the velocity fields
ver time (out-of-sample TH), the estimation error increases rapidly.
o clarify it, the RMS error of the estimated pressure in the whole
omain is plotted in Fig. 8a over 0.32 non-dimensional through-time
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Fig. 5. Exact and estimated velocity and pressure fields for a single snapshot: (a) streamwise velocity from DNS; (b) crosswise velocity from DNS; (c) pressure from DNS; (d)
streamwise velocity from non-filtered EPOD; (e) crosswise velocity from non-filtered EPOD; (f) pressure from non-filtered EPOD; (g) streamwise velocity from 𝛯-filtered EPOD; (h)
crosswise velocity from 𝛯-filtered EPOD; (i) pressure from 𝛯-filtered EPOD; (j) streamwise velocity from 𝜓-filtered EPOD; (k) crosswise velocity from 𝜓-filtered EPOD; (l) pressure
from 𝜓-filtered EPOD.
t
s
i

(20 frames) from the beginning of the propagation. In this paper, one
unitary non-dimensional through-time 𝑡∗ is defined as 𝐿∕𝑈∞, where 𝐿
s the domain length, and 𝑈∞ is the freestream velocity. The results
re compared to the in-sample TH-based pressure estimation. The 𝜓-
iltered EPOD estimation is the most accurate method to reconstruct
ime-resolved flow and pressure field series among the tested set of
6

echniques. The error of in-sample TH is larger than EPOD, but remains
table around a fixed value through time. The error of out-of-sample TH
s similar to in-sample TH for 𝛥𝑡∗ < 0.1 and starts to grow quickly after

that point.
In order to assess the robustness of the estimation in presence of

noise, the RMS error of the estimated pressure in the whole domain
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Fig. 6. Error of estimated velocity and pressure fields for a single snapshot: (a) streamwise velocity from non-filtered EPOD; (b) crosswise velocity from non-filtered EPOD; (c)
ressure from non-filtered EPOD; (d) streamwise velocity from 𝛯-filtered EPOD; (e) crosswise velocity from 𝛯-filtered EPOD; (f) pressure from 𝛯-filtered EPOD; (g) streamwise

velocity from 𝜓-filtered EPOD; (h) crosswise velocity from 𝜓-filtered EPOD; (i) pressure from 𝜓-filtered EPOD.
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within 0 < 𝛥𝑡∗ < 1∕6 is reported in Fig. 8b for different levels of noise
in the training data and in the probe data used for testing, applying the
same methods as in Fig. 8a. Gaussian noise with zero mean value and
standard deviation up to 4% of the freestream velocity is superposed to
both velocity components. The 𝜓-filtered EPOD estimation has signifi-
cant less error in the pressure estimation than TH (whether is in-sample
or not) for all the tested noise levels. By contrast, the propagated TH
error diverges very quickly as soon as the noise level is higher than
0.5% of the freestream velocity.

4.2. Channel flow

The proposed method is validated using a second synthetic dataset
extracted from the DNS of a channel flow contained in the Johns
Hopkins Turbulence Databases [26,40]. Owing to the higher spectral
ichness of the flow, this test case is expected to be more challenging
or the EPOD estimation than the shedding-dominated wake flow of the
inball test case. The DNS is solved in a domain of size 8𝜋ℎ× 2ℎ× 3𝜋ℎ
with ℎ = 1 being the half-channel height), using 2048 𝑥 512 𝑥 1536
odes, at friction-velocity-based Reynolds number 𝑅𝑒 ≈ 1000, and the
7

𝜏 t
ime interval for storage is 0.0065. The EPOD estimation is evaluated
n a training dataset composed by sub-domains in streamwise/wall-
ormal (indicated respectively as 𝑥∕𝑦) planes of size ℎ × ℎ, the grid
pacing is set to be 0.0114ℎ thus every sub-domain includes 88 × 88
-component velocity vectors. The sub-domains are extracted from
ifferent positions in the spanwise and streamwise directions of the
hannel exploiting statistical homogeneity to collect enough indepen-
ent snapshots, similarly as to what reported in [16]. The data for
raining are sampled with a time interval of 2∕3 convection through-
ime thus being non-time-resolved, i.e. fluid parcels moving at bulk
elocity displace 2∕3ℎ in 𝑥 direction in the time between 2 snapshots.
or simplicity we will consider that the streamwise coordinate 𝑥 spans
etween 0 and ℎ, although we are actually considering domains at
ifferent streamwise locations, and 𝑦 direction to be between 0 and
where 0 is the wall position. Additionally, the dataset includes 10

robes measuring the 2 in-plane components of velocity placed along
he downstream edge of the sub-domain spaced of 0.1ℎ in the wall-
ormal direction 𝑦 and recording 152 samples for each snapshot with
time-spacing of 0.0065, thus covering one subdomain convection

hroughtime.
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Fig. 7. RMS error map of velocity and pressure fields estimation using the EPOD without filter, the 𝛯-filtered EPOD, the 𝛹 -filtered EPOD and the Taylor’s hypothesis. The first
column shows error on the streamwise velocity, the second column shows the one on the time derivative of streamwise velocity, and the last column shows the error on pressure.
(
t
e

The RMS error map of the pressure using the 𝜓-filtered EPOD esti-
mation and the Taylor’s hypothesis (both in-sample and out-of-sample)
are shown in Fig. 9. The EPOD for this case is trained on 6400 snapshots.
The testing dataset, instead, is composed by 240 time-resolved frames,
statistically uncorrelated to the training dataset. In fact, the training
dataset is built using data only from one half channel, while the testing
8

c

dataset is extracted from the other half. Unlike the fluidic pinball case,
Taylor’s hypothesis (Fig. 9b) performs better than the EPOD estimation
Fig. 9a), especially in the near wall region (0 < 𝑦 < 0.3ℎ) and in
he upstream boundary of the domain (0 < 𝑥 < 0.1ℎ). The higher
rror of the EPOD might be explained by several reasons. Firstly, the

hannel flow reported here is characterized by a moderate Reynolds
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Fig. 8. (a) RMS error of estimated pressure over the whole domain as propagates in time after the measured frame, where 𝛥𝑡∗ = 0 is the position of in-sample snapshot for
out-of-sample TH. (b) RMS error of estimated pressure over the whole domain for different levels of noise in training data, the out-of-sample TH is the average in 𝛥𝑡∗ < 1∕6. legends:

-filtered EPOD (blue circles), 𝛯-filtered EPOD (purple leftward triangles), un-filtered EPOD (green rightward triangles), in-sample TH (red upward triangles) and out-of-sample
H (yellow downward triangles).
Fig. 9. RMS error map of velocity and pressure fields estimation using (a) 𝜓-filtered EPOD estimation, (b) in-sample Taylor’s hypothesis, (c) out-of-sample Taylor’s hypothesis,
averaging for 0 < 𝛥𝑡∗ < 0.52.
number, thus being completely turbulent and having a much larger
wealth of turbulent scales (generally recovered by a larger number of
POD modes), lowering the correlation between field and probe modes.
Secondly, larger turbulence introduces stronger three-dimensionality
in the flow, thus further reducing the correlation level. Thirdly, the
channel is characterized by much lower convection velocity in the near-
wall region. This means that in the temporal span recorded by the fast
probes (roughly one convection throughtime, i.e. the time required by a
fluid particle to span the entire sub-domain when convected at the bulk
velocity) is not long enough to sense all the fluid structures passing.
Finally, the near-wall region is characterized by a stronger deformation
of the small-scale fluid structures as well as by their interaction with
larger structures, meaning that the correlation between the field modes
and probe modes is lower. Despite this, the EPOD estimation offers
reasonably good results in terms of pressure (Fig. 9a). Additionally, as
discussed in the previous section, EPOD estimation offers an inherent
advantage with respect to the TH in that it provides time-series for
tracking the fluctuations of pressure and velocity in time. While this
can be achieved also by the out-of-sample TH, the RMS error of such
estimation from a measured in-sample snapshot at 𝛥𝑡∗ = 0 to half
onvection throughtime (Fig. 9c) contains high error levels, which
urther increase for increasing time separation.

Fig. 10a compares the EPOD estimation and the Taylor’s hypothesis
n recovering time-series out of an initial snapshot in terms of RMS
9

pressure estimation error over the sub-domain. As already commented,
in the channel flow, the estimation of in-sample TH is superior to
the EPOD approach. However, the error of out-of-sample TH increases
quickly with time. On the other hand, the EPOD approach maintains
stable levels of error throughout all the time sequence, producing better
results than the out-of-sample TH after 20 steps, which corresponds to
𝛥𝑡∗ = 0.13. Fig. 10b reports the RMS error of the pressure in the whole
sub-domain and over the first 10 snapshot of propagation with different
levels of noise on the velocity field data. The in-sample TH proves to be
the most robust one to noise. EPOD, regardless of the filtering method
used, has a rather constant error independently of the noise level within
the tested range (the unfiltered EPOD has only slightly increasing error
with noise level). The out-of-sample TH, instead, has an error which
increases with the noise, proving to provide the least robust pressure
time-series estimation.

5. Experimental test on the wake of a wing

The proposed method is tested on an experimental dataset of a PIV
measurement in the wake of a 2D wing with a NACA 0018 airfoil.
The experiment is carried out in the water tunnel of the Universidad
Carlos III de Madrid, which has a 2.5 × 0.5 × 0.55 m3 test section. The
wing has 80 mm chord length, and the freestream velocity is tuned to
𝑈 = 0.06 m∕s, thus resulting in a Reynolds number of approximately
∞
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Fig. 10. (a) RMS error of estimated pressure over the whole domain as propagates in time after the measured frame. (b) RMS error of estimated pressure over the whole domain
nder different levels of noise in training data and probes input. The out-of-sample TH is calculated in 𝛥𝑡∗ < 0.065. 𝜓-filtered EPOD (blue circles), 𝛯-filtered EPOD (purple leftward

triangles), un-filtered EPOD (green rightward triangles), in-sample TH (red upward triangles) and out-of-sample TH (yellow downward triangles).
Fig. 11. Sketch of experimental setting.
4800. The wing is mounted with an angle of attack of 10◦ to generate
moderate-intensity shedding wake.

As shown in Fig. 11, a dual cavity pulsed Nd:YAG Quantel Evergreen
aser lights an approximately 1mm-thick sheet after reshaping the laser
eam via a spherical and a cylindrical lens. An Andor sCMOS camera
ith 2560 × 2160 px2 sensor (with pixel pitch of 6.5 μm) is used as

ecording device. The camera is equipped with a 50 mm focal length
bjective, and set to a resolution of 8.3 px/mm. The flow is seeded with
eutrally-bouyant polymide particles with 56 μm diameter. Particle
mages are sampled at 30 Hz, which is sufficient to obtain time-resolved
easurements, being the particle displacement in the freestream within

rames equal to approximately 16 pixels. A sliding correlation [41] with
3-frame kernel is applied and the final interrogation window size is
40 px with 75% overlap, resulting in a vector spacing of 1.20 mm.

The training dataset for EPOD is composed of 334 velocity fields
captured at 1 Hz, i.e. downsampling by a factor of 30 the original
sequence. Artificial probes with higher temporal resolution are built
by using the original sequence with sampling frequency at 30 Hz. This
approach for testing is similar to the one proposed by Tu et al. [15]. The
complete PIV domain spans 1.6𝑐 in the streamwise direction, starting at
approximately 0.75𝑐 from the trailing edge. Eleven probes are set on the
10
downstream edge of the domain, and the velocity reconstruction is per-
formed with the 𝜓-filtering method, which has shown in the synthetic
test cases to provide the best results. The selected timespan associated
to each physical probe is set equal to one convective throughtime
within the domain, so it is adjusted accordingly for different domain
width.

The pressure from the original time-resolved sequence, EPOD-
estimated fields with 𝜓-filtering, in-sample Taylor’s hypothesis and out-
of-sample propagation from the previous snapshot in training set are
compared in Fig. 12. The results from velocity fields estimated with
EPOD show a good trend of high and low-pressure area, and the result
is qualitatively good in the near wake region, while larger errors are
observed at the boundaries of the domain. In-sample Taylor’s hypoth-
esis shows large errors and a significant smoothing of the pressure
fluctuations.

Since it is expected that errors in velocity estimation become larger
for points far from the probes, we tested the effect of the domain length
on the accuracy of the estimated pressure using EPOD. The domain
is cropped to different sizes in the streamwise direction (from 0.8𝑐 to
1.6𝑐) to test the effect of the distance of the probes from the region
to estimate. As sketched in Fig. 11, the upstream, bottom and top

edges are kept fixed, while the downstream edge is moved to span
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Fig. 12. Non-dimensional instantaneous pressure field from: (a) time-resolved PIV;
b) EPOD reconstruction with 𝜓-filtering; (c) in-sample Taylor’s hypothesis: (d) out-
f-sample Taylor’s hypothesis, after the propagation of 𝛥𝑡∗ = 0.48 from sample
napshot.

ifferent domain lengths. In all cases the probes are located at the
ownstream end of the domain, which is a natural choice to minimize
ntrusiveness. The RMS error in estimating velocity fields is shown
or different domain lengths 𝐿, expressed in non-dimensional form.
ig. 13 compares the RMS error of velocity (Fig. 13a) and pressure
Fig. 13b) from EPOD, in-sample and out-of-sample Taylor’s hypothesis.
POD improves slightly with the domain shrinking, while the Taylor’s
ypothesis does not benefit from it in pressure estimation accuracy.
he reason behind the increase of the error with domain shrinking

s that in the upstream portion of the domain the shear intensity is
igher, thus Taylor’s hypothesis holds poorly. As a result, EPOD surpass
aylor’s hypothesis when the domain length is under 1.3𝑐. It can be
een that the wake flow near the wing has more small-scale motion
nd turbulence production, thus Taylor’s hypothesis sometimes fails
o predict time-derivative of velocity from single snapshot. For the
POD, the problem is that the fluid structures undergo a significant
volution before reaching the probes, but this issue is reduced by
hrinking the domain. For the case of out-of-sample Taylor-hypothesis
ropagation, the error increases rapidly with the time separation, being
11

-

POD superior to it for non-dimensional throughtime separation larger
han 0.3 for all selected domain lengths.

. Summary and conclusions

A novel approach to estimate instantaneous pressure fields using
napshot PIV (i.e. without time resolution) has been presented. The
ethod is based on synchronized field measurements from PIV and
oint measurements using high-repetition rate probes (such as hot-
ires or pressure transducers, among others). The fields are then
stimated at the same time resolution of the probes using extended
OD, and the pressure gradient is extracted from the Navier–Stokes
quations and integrated in space. The method has demonstrated to be
ufficiently accurate to perform this task. The results show that EPOD is
uperior to Taylor’s hypothesis if the POD reconstruction is sufficiently
ompact, and provided that temporal filtering is applied to reduce
oise. While the method seems to be less accurate than enforcement of
he Taylor’s hypothesis in flows where this approximation works well,
t has shown to have several appealing features:

• It is a model-free method, thus it does not require to impose
convection velocity or any model-based constraint. This renders
the proposed approach particularly suitable in flows with com-
pact POD spectrum, and has better pressure prediction than a
model-based method such as Taylor’s hypothesis. Besides, this
data-driven method may still work when sufficiently accurate
models are difficult to infer a priori.

• Once performed the training, only probe data are needed to
estimate the fields, thus allowing to encode large sequences of
velocity and pressure fields with minimal data rate burden.

• The error of the method is independent on whether the estimation
is done in-sample or out-of-sample (provided that the in-sample
estimation is carried out over the testing dataset). This ensures a
relatively uniform level of error, while model-based methods are
characterized by increasing error with time separation from the
starting sample of the sequence.

It is worth highlighting that, in this proof-of-concept study, the
stimation method is rather simple. More sophisticated architectures
ave already shown to outperform EPOD. It is to be expected that future
dvances in machine learning will foster accurate and reliable estima-
ion methods which can be the substrate for pushing the capabilities of
he method proposed here for pressure field estimation.
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Fig. 13. RMS error of velocity and pressure estimation at the domain length from 0.8𝑐 to 1.6𝑐. (a) RMS error of non-dimensional velocity achieved from 𝜓-filtered EPOD, and
ut-of-sample TH in three different propagation time, (b) RMS error of non-dimensional pressure using EPOD, in-sample TH, out-of-sample TH propagated during 𝛥𝑡∗ = 0.1 and
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