13 research outputs found

    Electric Poling-assisted Additive Manufacturing Process for Lead-free Piezoelectric Device Fabrication

    Get PDF
    AbstractThis paper presents a new additive manufacturing method based on electric poling process often used in many polymeric materials processing for lead-free piezoelectric device fabrication. This is to directly and continuously print piezoelectric devices from Polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field and mechanical stretching along the filament core. Piezoelectric devices were fabricated and its crystalline phase transition was measured by using the Fourier transform infrared spectroscope. The results demonstrate that increasing the electric field increases the piezoelectric crystalline phase transitions and results in a device with higher current output under stress. This technique can be used to fabricate fully 3D freeform structured piezoelectric devices for sensing, actuator and energy harvesting applications with a simple, low cost, integrated processing and fabrication step

    Performance characterisation of a new photo-microsensor based sensing head for displacement measurement

    Get PDF
    This paper presents a robust displacement sensor with nanometre-scale resolution over a micrometre range. It is composed of low cost commercially available slotted photo-microsensors (SPMs). The displacement sensor is designed with a particular arrangement of a compact array of SPMs with specially designed shutter assembly and signal processing to significantly reduce sensitivity to ambient light, input voltage variation, circuit electronics drift, etc. The sensor principle and the characterisation results are described in this paper. The proposed prototype sensor has a linear measurement range of 20 ÎĽm and resolution of 21 nm. This kind of sensor has several potential applications, including mechanical structural deformation monitoring system

    MicroNano2008-70266 FABRICATION OF PHASE REFLECTION SAWTOOTH GRATINGS OPTIMIZED BY SCALAR AND VECTOR WAY BY USING DIAMOND CUTTING

    Get PDF
    ABSTRACT This paper presents optimization of phase reflection sawtooth gratings with a period of 2.0 ㎛ and a depth of 0.2 ㎛ based on the Fourier transformation (FT) and the rigorous coupled wave analysis (RCWA). And its fabrication on oxygen free Cu and electroless Ni-coated surfaces by using diamond cutting in a shaping process whose toolpath is interfered to provide smaller period. The diffraction efficiencies were estimated 100% for FT, 83.0% and 79.0% for TE and TM polarization of the incident light at a depth of 0.2 ㎛ It was found that electroless Ni-coated surface had better performance in terms of machining and optical functionality. From optical testing, the diffraction efficiencies were measured 84.0% and 84.4% for TE and TM polarization, respectively

    Total Internal Reflection-Based High Efficiency Grating Design for a Metal-Free Polarizing Filter Applications Using Hybrid Optimization Procedure

    Get PDF
    This paper presents a fast and rigorous design method for grating-based metal-free polarizing filter applications using two-step hybrid optimization techniques. Grating structures utilizing the total internal reflection in a lamellar configuration were used to achieve metal-free solution, which is a key technology in the chirped pulse amplification for high power laser system. Here two polarizing filters were designed: polarization sensitive and polarization insensitive. Those polarization performances were characterized by the rigorous coupled-wave analysis (RCWA), and the design parameters of grating structures, pitch, depth, and filling factor were optimized by two-step hybrid optimization procedure because the diffraction characteristics of grating-based polarizing filters are highly sensitive to small changes in design parameters. The Taguchi method is incorporated into selection process in the genetic algorithm, which indicates that the Taguchi method optimizes the design parameters in a coarse manner, and then, coarsely optimized parameters are finely optimized using the genetic algorithm. Therefore the proposed method could solve global numerical optimization problems with continuous variables. The proposed two-step hybrid optimization algorithm could effectively optimize the grating structures for the purpose of polarization filter applications, and the optimized grating structures could selectively filter the incident light up to 99.8% as to TE or TM waves

    In-Process Cutting Temperature Monitoring Method Based on Impedance Model of Dielectric Coating Layer at Tool-Chip Interface

    No full text
    This paper introduces a novel approach to in-process monitoring of the cutting temperature at the tool-chip interface (TCI). Currently, there are no tools available in the commercial market for measuring and monitoring cutting processes at the TCI region. Therefore, most of the studies about evaluating cutting temperature rely on simulation results without knowing the true temperature at the actual TCI region. In addition, recent cutting temperature measurement techniques have measurement errors occurring resulting from difficulty in estimations at the TCI region. However, the proposed method enables the measuring of cutting temperature by directly probing the localized TCI using a cutting tool coated with dielectric material. The study was conducted by utilizing the impedance characteristics of the dielectric outer layer of the cutting tool. A chemical vapor deposition (CVD) diamond coated insert that is commercially available was considered for the study to avoid wear effect. Impedance response of the dielectric layer under varying temperature conditions is assessed by Nyquist diagram using an impedance analyzer. The result of the Nyquist diagram showed temperature-dependent impedance characteristics that showed good agreement with the results from the thermal experiment which was a comparison between impedance response and elevated temperature. The impedance at the TCI for monitoring cutting temperature is measured under a turning process on a lathe using a constant current source. The impedance responses showed a significant decrease in impedance under various machining conditions which indicates a rise in cutting temperature. Moreover, different machining conditions showed different temperature profiles. The impedance responses were further characterized for depth of contact, which found that a drop in impedance corresponded to an increase in depth of contact. Therefore, the study showed that in-process monitoring of the cutting temperature is possible using an impedance model of the dielectric coating layer at the local TCI. Furthermore, with its versatility, this method is expected to measure the vibration, chatters, cutting force, and so on, as the results showed that impedance is not only sensitive to temperature but also to contact area. The application and expectation of this study is to provide real-time machining data to help end users in manufacturing industry to improve product quality, productivity, and prolonged lifespan of cutting tools

    Smart Flexible 3D Sensor for Monitoring Orthodontics Forces: Prototype Design and Proof of Principle Experiment

    No full text
    There is a critical need for an accurate device for orthodontists to know the magnitude of forces exerted on the tooth by the orthodontic brackets. Here, we propose a new orthodontic force measurement principle to detect the deformation of the elastic semi-sphere sensor. Specifically, we aimed to detail technical issues and the feasibility of the sensor performance attached to the inner surface of the orthodontic aligner or on the tooth surface. Accurate force tracking is important for the optimal decision of aligner replacement and cost reduction. A finite element (FE) model of the semi-sphere sensor was developed, and the relationship between the force and the contact area change was investigated. The prototype was manufactured, and the force detection performance was experimentally verified. In the experiment, the semi-sphere sensor was manufactured using thermoplastic polymer, and a high-precision mold sized 3 mm in diameter. The change in the contact area in the semi-sphere sensor was captured using a portable microscope. Further development is justified, and future implementation of the proposed sensor would be an array of multiple semi-sphere sensors in different locations for directional orthodontic force detection
    corecore