
Designing Software Architecture to Support Continuous Delivery and

DevOps: A Systematic Literature Review

Robin Bolscher and Maya Daneva
University of Twente, Drienerlolaan 5, Enschede, The Netherlands

r.bolscher@student.utwente.nl, m.daneva@utwente.nl

Keywords: Software Architecture, Continuous Delivery, Continuous Integration, DevOps, Deployability, Systematic

Literature Review, Micro-services.

Abstract: This paper presents a systematic literature review of software architecture approaches that support the

implementation of Continuous Delivery (CD) and DevOps. Its goal is to provide an understanding of the state-

of-the-art on the topic, which is informative for both researchers and practitioners. We found 17 characteristics

of a software architecture that are beneficial for CD and DevOps adoption and identified ten potential software

architecture obstacles in adopting CD and DevOps in the case of an existing software system. Moreover, our

review indicated that micro-services are a dominant architectural style in this context. Our literature review

has some implications: for researchers, it provides a map of the recent research efforts on software architecture

in the CD and DevOps domain. For practitioners, it describes a set of software architecture principles that

possibly can guide the process of creating or adapting software systems to fit in the CD and DevOps context.

1 INTRODUCTION

The practice of releasing software early and often has

been increasingly more adopted by software

organizations (Fox et al., 2014) in order to stay

competitive in the software market. Its popularity

fueled the development of practices collectively

labeled as Continuous Delivery (CD) Chen, 2015a).

Over the past few years, the notion of CD organically

evolved and was further built upon to create what is

now known as DevOps (Bass et al., 2015). While

embracing CD and DevOps in their organizations,

many software development practitioners

experienced that not all styles of software

architectures are suitable for applying the CD

principles and practices, particularly in case of large

monolithic (Garousi et al., 2019) and highly coupled

architectures (Sturtevant, 2017; Bucchiarone, 2018;

Knoche and Hasselbring, 2018). Since both the CD

and DevOps movements are growing more mature

each year, it is important to have a clear

understanding on the various approaches of software

architecture that may or may not be suitable in this

context. This need motivated us to do a systematic

literature review (SLR) in order to create a state-of-

the-art understanding on adapting existing and

designing new software architectures tailored for CD

and DevOps practices.

For clarity, before elaborating on the subject of

this SLR, we present the definitions of the concepts

that we will address: Software architecture of a

system is the set of structures needed to reason about

the system, which comprise software elements,

relations among them, and properties of both

(Humble and Farley, 2010). Continuous Delivery

(CD) is a software engineering discipline in which

teams keep producing valuable software

incrementally in short cycles and ensure that the

software can be reliably released at any time (Chen,

2015; Humble and Farley, 2010). DevOps is a set of

practices intended to reduce the time between

committing a change to a system and the change

being placed into normal production, while ensuring

high quality (Bass et al., 2015). As one could see from

the definitions, CD and DevOps are quite overlapping

in their goals. Later in this paper, we will see that

there is indeed a strong relation between the two and

that DevOps practices rely heavily on the CD

principles. Since the two concepts are so similar, the

effect they have on software architecture is expected

to be very similar as well. This is why these two

concepts are both included in our SLR.

This paper is structured as follows. Section 2

describes the industrial relevance of the subject and

our motivation for this SLR. Section 3 discusses

related work with particular focus on the potential

benefits of DevOps practices. Section 4 presents the

goal of this research effort. Section 5 describes the

method (Kitchenham, 2007) used for our SLR.

Section 6 presents the results to the research questions

of our SLR and describes other relevant topics found

in the literature. Section 7 is on the limitations to this

research. Section 8 presents the discussion of the

results. Section 9 concludes with summarized

answers to the research questions. Section 10 is about

future work.

2 MOTIVATION

DevOps is currently progressing from the “peak” of

the Gartner Hype Cycle for Application Services

towards the more valuable “plateau of productivity”,

according to a 2015 market research report by Cap

Gemini on DevOps (Menzel, 2015). This source also

states DevOps is evolving from a niche to a

mainstream strategy employed by 25% of Global

2000 organizations. Furthermore, according to the

2017 State of DevOps Report by Puppet and the

DevOps Research and Assessment Group (Kersten,

2017), the percentage of respondents claiming to

work on DevOps grew from 16% in 2014 to 27% in

2017. This report (Kersten, 2017) also found that high

performing DevOps IT organizations deploy software

46 times more frequently, have a 440 times shorter

lead time for implementing changes, and 96 times

faster mean time to recover (from downtime) and a 5

times lower change failure rate (in comparison to the

low performing DevOps IT organizations). In

general, one of the key conclusions of the report

(Kersten, 2017) is that lean product management

(including concepts such as CD and DevOps) drives

higher organizational performance. This means that

for IT organizations there is a lot to be gained through

the adoption of CD and DevOps practices. Although

a lot of research has been performed and practical

experience gained over the last 5 years (Ghantous and

Gill, 2017), to the best of our knowledge, little has

been done so far to consolidate the output of this

research in a systematic way and help develop a deep

understanding of the CD and DevOps phenomena. In

particular, we could find no literature source that

consolidates the published knowledge regarding the

relationship between the concept of software

architecture and CD and DevOps. Understanding this

relationship is important for shaping our

understanding of the architecture principles and

approaches that work in the context of CD and

DevOps and those that do not. We felt motivated to

respond to this need by carrying out a SLR aiming to

provide an overview of the latest developments of

software architecture approaches in the context of CD

and DevOps.

3 RELATED WORK

DevOps is not a strictly defined method; its

implementation varies a lot as shown in a recent

qualitative study on DevOps in practice (Erich et al.,

2017). Therefore, the desired and expected benefits of

implementing DevOps vary just as much. Erich et al.

(2017) indicated the varying benefits organizations

set out to achieve by initiating DevOps: reduced lead

and release time, improved problem solving,

feedback gathering and overall product quality,

increased velocity, and increased focus on new

features. These authors reported however that not all

these benefits were actually achieved by the

organizations that implemented DevOps: in fact, the

main benefits achieved in these authors’ case study

organizations were: higher deployment frequency,

shorter lead time, improved automated testing,

feedback gathering and problem solving, fewer

escalations (caused by friction between development

and operations departments), more public facing

services and an increased velocity.

Furthermore, a 2017 SLR on DevOps (Ghantous

and Gill, 2017) presents a set of 17 benefits that can

potentially be achieved by implementing DevOps.

These are all benefits found in literature up to 2017,

however it does not necessarily mean that all these

benefits are always achievable in practice.

Next, a case study on DevOps implementation in

an IT company in New-Zealand (Senapathi et al.,

2018) lists the realized benefits and their relations. It

reports two main categories of benefits, namely,

increased development team engagement and

improved customer experience. Furthermore, Chen

(2015b) presents from a practitioner’s perspective the

potential benefits of architecting for CD. The author

describes five categories of observed benefits after

moving 22 software applications to CD: accelerated

time to market, improved ability to consistently build

the right product, improved productivity and

efficiency, improved product quality and improved

customer satisfaction.

As these literature sources (Erich et al., 2017;

Ghantous and Gill, 2017; Senapathi et al., 2018;

Chen, 2015) suggest, there are many potential

benefits reported so far, and many of those are in fact

indicated by multiple authors. In what follows, we

aggregated and categorized the benefits reported by

these sources in three categories: (1) benefits

pertaining to culture, (2) to product quality, and (3) to

development and operations processes. Some benefits

might be considered in more than one category (albeit

rephrased), however for the sake of simplicity this is

kept to a minimum.

Culture: The main cultural benefit to be achieved by

implementing DevOps is that teams are happier and

more engaged. The benefits in this category include:

B1. Higher level of autonomy;

B2. Learning new technologies;

B3. Feeling valued;

B4. Improved collaboration;

B5. Knowledge sharing;

B6. Natural communication;

B7. Less of a blaming culture;

B8. Fewer escalations (caused by Dev vs. Ops

friction).

Product Quality: Organizations implementing

DevOps report to be able to create higher quality

products faster and therefore create a better customer

experience. The benefits in this category include:

B9. Shorter lead time;

B10. Improved code quality;

B11. Automated testing (quality assurance);

B12. Real time, automated monitoring;

B13. Continuous innovation;

B14. Frequent deployment;

B15. Better scalability;

B16. Less down time.

Development and Operations Processes: DevOps

teams remove the friction between the previously

separated development and operations departments

and create understanding for each other’s problems.

Furthermore, processes are highly automated and

traceable which improves the overall velocity of the

software development and lowers the chance of bugs

ending up in released software. The benefits in this

category include:

B17. Continuous planning;

B18. Parallel deployment;

B19. Continuous integration;

B20. Improved cloud and database management

(infrastructure-as-code);

B21. Easy code rollback;

B22. Improved feedback gathering;

B23. Secure pipeline;

B24. Automated deployments;

B25. Scalable, repeatable, traceable and

automated processes.

4 RESEARCH GOAL

The goal of this SLR is to analyse the published

scientific output on the topics at hand in order to

create an overview of the issues and requirements for

software architecture design in the context of CD and

DevOps. These requirements could possibly be used

to create a set of software architecture principles that

can guide software developers and architects in the

process of creating or adapting a software system to

be used in a CD and DevOps context.

To this end, the central research question of this

SLR is the following: What software architecture

approaches support the implementation of

Continuous Delivery and DevOps, according to

published literature?
This question has been decomposed in three sub-

questions:

RQ1. What are the potential software

architectural problems when adopting CD and

DevOps practices on an existing software

system?

RQ2. What characteristics of a software

architecture are important for enabling CD and

DevOps?

RQ3. What software architecture styles are

suitable for being used in a CD and DevOps

context?

5 RESEARCH PROCESS

Our SLR is conducted following the guidelines of

Kitchenham (2007). These were complemented with

the guideline of Kuhrmann et al. (2017). These

guidelines define a process including three phases: (1)

planning, (2) conducting, and (3) reporting. The first

two phases have some (sub-) stages associated with

it; planning consists out of the identification of the

need for a review (see Section 2) and the development

of the review protocol (see Section 5.1). The third

phase, reporting, consists out of identification of

research, selection of primary studies, study quality

assessment, data extraction and monitoring, and data

synthesis (see Section 6).

5.1 Review Protocol

In order to find relevant articles, two digital

repositories of scientific publications were queried:

Scopus and Web of Science. We chose them, because

they are comprehensive and also because our

university had subscriptions to both. The search string

("software architecture" AND ("continuous

delivery" OR "continuous deployment" OR

"devops" OR "dev-ops" OR "dev ops")) was used.

The search was carried out on May 14, 2019. It was

applied to the Title, Abstract and Keyword sections

of the Scopus database, and to the Title, Abstract and

Topic sections of Web of Science. The queries

formatted and refined for each repository can be

found in the Appendix items “Scopus search query”

and “Web of Science Search Query”.

This search string is composed as presented above

since this research is focused on the intersection of

software architecture and CD/DevOps, hence the

query combines these concepts. Performing the

search resulted in 39 papers from Scopus over a time

span of 9 years (2010-2019). Executing the same

query on Web of Science resulted in 15 papers over a

time span of 5 years (2014-2018). Looking at the

number of papers published per year it appears that

2015 through 2017 were the most active years.

Therefore, we chose to only include papers published

after Jan 1, 2015. This ensured that our SLR contains

the most relevant and up-to-date literature.

We used the following inclusion and exclusion

criteria for selecting papers out of the search results

obtained in the previous step.

Inclusion Criteria:

I1. The paper discusses as its core topic either

DevOps or CD in a software architecture

domain;

I2. The paper takes a practical point of view on the

problem domain (e.g. a case study or

expert/practitioner experiences and opinions).

Exclusion Criteria:

E1. The paper is published before Jan 1, 2015;

E2. The paper presents no link to DevOps, CD or

similar practices;

E3. The paper is purely theoretical;

E4. The paper is a duplicate of a paper that was

already found either in Scopus or in Web of

Science and has already been included;

E5. The paper is not written in English.

After applying exclusion criterion E1, Scopus

provided 36 papers, and Web of Science ̶ 14. Since

there are many publications on both software

architecture and CD/DevOps, inclusion criterion I1

and exclusion criterion E2 were added to filter the

materials that are not in any way applicable or related

to both of these topics. It is the intersection of these

subjects that we are interested in. Inclusion criterion

I2 and exclusion criterion E3 were added to find

published work presenting real-world experiences.

Since this research is mainly conducted to help

practitioners with the potential problems arising from

applying CD/DevOps on their software architectures,

it is important to explore the real-world practice by

using case study-based research methods, expert

interviews or practitioners’ perceptions and personal

experiences. Exclusion criterion E5 was added for

obvious reasons. The initial selection of all 49 papers

was done by applying the inclusion and exclusion

criteria by reading the papers’ title, abstract and

metadata.

After the initial filtering, only 23 papers were still

in scope of this SLR. There were many duplicates

found between the results of Scopus and Web of

Science. The papers that passed the initial filtering

were read in detail and filtered by re-applying the

inclusion/exclusion criteria. After the second

selection round, there were 13 papers left, these

finally represent the body of literature to be used in

the final stage of Kitchenham’s SLR method (2007):

data extraction and monitoring, and data synthesis.

The papers are: Stutevant, 2017; Chen, 2015b; Erder

and Pureur, 2015; Woods, 2016; Shahin et al., 2016;

Elberzhager et al., 2017; Villamizar et al., 2015;

Schermann et al., 2018; Stahl and Bosch, 2018; Pahl

et al., 2018; Berger et al., 2017; Chen et al., 2015;

Bass, 2017.

6 RESULTS

Our selected papers and their mappings to our RQs

are presented in Table 1. Note that two of the papers

(Erder and Pureur, 2015; Woods, 2016) are not

included in this table because they could not be

properly mapped to any research question (i.e. they

talk about architecture and CD/DevOps, but do not

shed light on our RQs).

Table 1: Literature results mapped onto RQs.

Research question Reference

RQ1. Issues

Shahin et al., 2016; Elberzhager

et al., 2017;Villamizar et al.,

2015; Schermann et al., 2018;

Stahl and Bosch, 2018

RQ2.

Characteristics

Stutevant, 2017; Chen, 2015b;

Shahin et al., 2016; Pahl et al.,

2018; Berger et al., 2017; Chen et

al., 2015

RQ3. Styles

Shahin et al., 2016; Elberzhager

et al., 2017; Villamizar et al.,

2015; Schermann et al., 2018;

Pahl et al., 2018; Berger et al.,

2017; Chen et al.2015; Bass, 2017

As indicated in Table 1, there are papers that

discuss potential software architectural issues of

implementing CD/DevOps on existing systems in a

meaningful way. Furthermore, 6 papers mention

important software architectural characteristics, and 8

papers discuss some form of software architecture

style, all in the context of CD/DevOps.

Before presenting the answers to our RQs, it is

worthwhile mentioning that a number of authors of

our set of 14 papers, emphasize the importance of the

intersection of DevOps and software architecture. We

observe in five out of the 14 papers make explicit

statements on this. Chen et al. (2015) describe the

importance of software architecture with regard to

DevOps as follows: “one cannot realize DevOps in a

scalable way without building this into the

architecture”. These authors also state that

architectural tactics must be implemented system-

wide to support DevOps objectives (Chen et al.,

2015). Furthermore, Pahl et al. argue that in order to

address continuous service systems development and

operation a particular software architectural style is

needed (Pahl et al., 2018). Len Bass, author of the

seminal book “DevOps: A Software Architect's

Perspective” (Bass et al., 2015), states in his paper

(Bass, 2017) that “the architect is critical for success

in adopting DevOps practices”. Shahin et al. (2016)

report on the growing realization that implementing

CD/DevOps may necessitate software architectural

modifications, and even go as far as saying that

software architecture should take the lead when

implementing CD. These statements further

reinforced our believe that if we make a contribution

to the body of knowledge on the topic of software

architecture and CD/DevOps by means of this SLR,

our work would possibly be of service to a wider

audience than originally thought (at the moment when

we initiated this work).

In what follows, we summarize the literature as it

relates to our RQs.

6.1 Software Architecture Issues

This section pertains to RQ1. We observe that all five

papers (Shahin et al., 2016; Elberzhager et al., 2017;

Villamizar et al., 2015; Schermann et al., 2018; Stahl

and Bosch, 2018) discussing architecture issues agree

that it is not trivial to adopt CD/DevOps practices on

an existing system.

Our examination of these papers yielded 10

software architecture issues which we present in

Table 2. In fact, these are architectural obstacles in

the adoption of CD/DevOps. Elberzhager et al. (2017)

identify four key issues that are important to consider

before moving towards implementation of DevOps,

one of them is about the possible impact on the

current software architecture (Elberzhager et al.,

2017). What is more, Elberzhager et al. argue that “in

the case of an existing software product, a detailed

analysis is needed as to the degree to which it can

support the goals to be achieved with the DevOps

approach“.

Table 2: Identified issues.

ID Issue Reference

IS1 Scaling Villamizar et al., 2015

IS2 Decomposition Scherman et al., 2018

IS2 Methods and tools
Elberzhager et al., 2017;

Stahl and Bosch, 2018

IS4

Highly coupled

(monolithic)

systems

Shahin et al., 2016

IS5

Ever-changing

operational

environments and

tools

Shahin et al., 2016

IS6
Monolithic

database
Shahin et al., 2016

IS7
Application level

dependencies
Shahin et al., 2016

IS8 Testing Shahin et al., 2016

IS9 Logging Shahin et al., 2016

IS10 Monitoring Shahin et al., 2016

When an application is not designed to scale

(IS1), it is very difficult to apply DevOps practices,

an important aspect of which is the presence of a

highly automated infrastructure. This issue has a

direct connection with highly coupled (monolithic)

systems (IS4), since these systems are often not

scalable by design. Scaling monolithic applications is

a problem because they are composed of many

internal services and if a service needs to be scaled

due to increasing load, then the whole monolith has

to be scaled up (Villamizar et al., 2015). Another

problematic aspect of the monolithic codebase is its

monolithic database (IS6). Many systems, which are

not designed for decomposability, rely on a central

database. This becomes a problem when the software

architecture changes into a more loosely coupled,

individually deployable, set of components. The

database can form a choke-point for operations as it

remains an undeployable (and unscalable) unit.

A first step to make an existing monolithic system

more scalable is increasing its decomposition, which

ultimately enables DevOps practitioners to scale

individual components of the system instead of the

whole. However, many systems are not

decomposable as is (IS2). Even if a system is

decomposed into multiple (separately deployable)

components, new issues arise such as tracing errors

and finding root causes of production issues traveling

through multiple system components (Schermann et

al., 2018). Moreover, dependencies on application

level (IS7) inhibit decomposition and decrease the

deployability of a system (Shahin et al., 2016).

One of the cornerstones of CD/DevOps is tool

support. However, finding and incorporating proper

tool support is a challenge on its own (IS3). For

example, continuous integration (CI) systems can

become rather complex, such that they need their own

development and operations team taking care of

evolving and maintaining the CI workflow of the core

products. Ståhl and Bosch (2017) even developed an

architecture framework specifically for CI/CD

systems, which indicates the potential complexity of

the tools needed for CD/DevOps adoption. They also

report that “as a rule, continuous integration and

delivery systems are highly customized and purpose-

built software products”.

Shahin et al. (2016) point out that “another

challenge at architectural level was the influence of

ever-changing environments and tools on

architecture design to enable CD practice“. These

authors reports that practitioners may have had issues

transferring and deploying systems in various

heterogeneous operations environments (IS5).

Next, testing is another prominent obstacle that

needs to be overcome when moving towards

CD/DevOps (IS8). This issue consists of three sub-

issues: (i) improving test quality, (ii) making code

more testable, and (iii) test automation (Shahin et al.,

2016). For example, automated testing is a core pillar

of DevOps. Without it DevOps engineers cannot

quickly determine the quality of the software that is

to be deployed. This is because failure to do it

consistently, would result in either (much) slower

deployments, or decreased software quality, both

which are undesired.

Finally, logging and monitoring are increasingly

important when the CD/DevOps adoption becomes

more mature. Highly automated pipelines, as a result

of CD/DevOps, enables practitioners to deploy

software to production faster than ever before, also

including bugs. Some will slip through the

(automated) testing process, therefore the authors of

(Schermann, 2018) state that monitoring is a

prerequisite for keeping practitioners aware of events

in the production environments. “CD increases the

complexity of deployment process, which necessitates

designing and implementing sophisticated logging

and monitoring mechanisms” (Shahin et al., 2016).

6.2 Beneficial Software Architecture
Characteristics

This section reports the results related to RQ2. Table

3 summarizes our findings. We found 17 software

architecture characteristics that our selected literature

sources deemed beneficial. These are listed in the

second column of Table 3. In the third column, we

present the papers addressing each characteristic. The

number of references in the rightmost column clearly

indicates those software architecture characteristics

have been treated most frequently in relation to

CD/DevOps in scientific literature; these are:

deployability (CH2), testability (CH11), automation

(CH3), loosely coupled (CH6), modifiability (CH1).

It is not surprising that deployability (CH2) is the

most prevalent software architecture characteristic

that according to our selected literature would enable

CD/DevOps adoption. Chen et al. (2015) argue that

CD “requires architectural support for deploying

without requiring explicit coordination among

teams”. Chen (2015b) describes a list of

Architecturally Significant Requirements (ASRs)

which the author defines as “requirements that have

a measurable impact on a software system’s

architecture”, one of these ASRs is deployability.

Adding to that, Chen states that one of the aspects of

a deployable architecture is being able to deploy

software without downtime and moving the software

quickly between different environments (e.g. testing,

production). Furthermore, Shahin et al. (2016) have

identified five main architectural principles. The first

one is concerned with small and independent

deployment units such as services, components but

also the database. Furthermore, Bass (2017) discusses

that the ability to continuously deploy depends on the

system architecture and the possible team

dependencies arising from this architecture.

Modularity (CH15) is a way to make a software

system more deployable (Shahin et al., 2016; Pahl et

al., 2018), by reducing dependencies and isolating

changes in the software. Another related

characteristic is the use of stateless components

(CH5). Berger et al. (2017) discovered that in order

to improve the deployability and elastic scaling

process it helps to make services/components

stateless so that they can be stopped and restarted

without causing issues.

Sturtevant (2015) states: “Architecture will

become the biggest bottleneck to your DevOps

transformation. You need a balanced focus on agile

process and agile architecture” (CH1). Chen et al.

(2015) describe a DevOps tactics tree that consists of

tactics (a checklist of architectural concerns) that

would help enable the achievement of DevOps goals.

One of the top level tactics of this tree is architecture

modifiability (CH1). Chen (2015b) also discusses

modifiability as one of the ASRs.

Table 3: Software architecture characteristics supporting

CD/DevOps.

ID

Software

architecture

characteristics

Reference

CH1
Agility/Modifiabilit

y

Stutevant, 2017;

Chen, 2015b; Chen et

al.2015;

CH2 Deployability

Chen, 2015b; Chen et

al.2015; Shahin et al.,

2016; Bass, 2017

CH3 Automation

Berger et al., 2017;

Chen et al.2015; Bass,

2017

CH4 Traceability
Berger et al., 2017;

Bass, 2017

CH5
Stateless

components
Berger et al., 2017

CH6 Loosely coupled

Stutevant, 2017; Pahl

et al., 2018; Berger et

al., 2017

CH7
Production

versioning
Chen et al.2015;

CH8 Rollback Chen et al.2015;

CH9 Availability Chen et al.2015;

CH10 Performance Chen et al.2015;

CH11 Testability
Chen, 2015b; Shahin

et al., 2016

CH12 Security Chen, 2015b

CH13 Loggability
Chen, 2015b; Shahin

et al., 2016

CH14 Monitorability Chen, 2015b

CH15 Modularity
Shahin et al., 2016;

Pahl et al., 2018;

CH16 Virtualization Pahl et al., 2018;

CH17 Less reusability Shahin et al., 2016

Another important software architecture

characteristic on Chen’s ASR list (2015b) is

testability (CH11). As the software moves through

the CD pipeline it is subjected to tests at different

stages to ensure the software is of known quality and

ready for release. The author states that good

testability needs to be implemented on the

architectural level to make certain that developing

tests is feasible and cost effective. Testability is also

one of the five main architectural principles presented

by Shahin et al. (2016). The authors distinguish

between improving test quality, making code more

testable and test automation, and in general argue that

testability should be approached from an architectural

point of view first. Finally, the DevOps tactics tree

considers testability as one of the top level tactics

(Chen et al., 2015).

Sturtevant et al. state that loosely coupled (CH6)

architectures increases the performance in a DevOps

environment by decreasing application and inter-

team dependencies generally found in highly coupled

architectures (Sturtevant, 2017). In the same vein,

Pahl et al. (2018) state that one of the cloud

architecture principles is loose coupling, this is

especially important in the context of cloud resource

virtualization and elastic scaling. Berger et al. (2017)

note that loose coupling (in the form of a publish-

subscribe pattern) is important to the software

architecture in the context of CD/DevOps.

Automation (CH2) is one of the key principles of

CD/DevOps and is paramount to a successful

implementation. Chen et al. state that “everything

must be automated” and they stress that the

architecture should support this (Chen et al., 2015).

Additionally Bass points out that DevOps practices

rely heavily on tool support and automation, and that

it is the task of the architect to guide and support the

developers in setting up the automation processes

with the appropriate tools (Bass, 2017). Finally,

Berger et al. state that the deployment procedure

should be automated to avoid manual interaction and

increase overall deployment speed 9berger et al.,

2017).

Once a system is decomposed into many services

it becomes more difficult to see where in the system

an error originated and how it travelled through

several services. Traceability (CH4) of errors is

therefore an important characteristic to consider in the

architecture (Bass, 2017). There is another side to

traceability, namely, tracing software sources

throughout the integration and deployment process.

Bergeret al., (2017) states that due to the many

releases it is important to be able to trace a piece of

software running in production back to a commit.

This, in turn, creates certainty regarding those pieces

of code that are actually running in production and

helps for potential debugging or auditing purposes.

Chen et al. (2015) report on several other

characteristics: production versioning (CH7),

rollback (CH8), availability (CH9) and performance

(CH10). Production versioning refers to the ability to

have multiple versions of the same service in

production simultaneously, which improves the

deployability of the system by allowing for

deployment strategies such as canary releases. The

rollback characteristic is a useful safe guard because

deploying software systems many times a day

assumes that something would go wrong and then a

roll back can restrict the impact. Next, performance

refers in fact to ‘scaling performance’, i.e. being able

to provision and deploy new instances of services,

which prevents the system from slowing down once

the load gets higher. Chen et al. (2015) also mention

availability (CH9), however from the text it does not

become clear why this would be more applicable to

CD/DevOps practices, it seems that this characteristic

is more specific to the system being discussed in the

paper.

A less apparent characteristic is security (CH12).

Chen (2015b) stresses that during start-up an

application might be more vulnerable compared to

when it is fully started, since CD/DevOps increases

the deployment frequency applications will start and

stop more often. The author also describes other

characteristics, loggability (CH13), and

monitorability (CH14). These two characteristics

both have the same goal: to give DevOps engineers

more control and information over the complex

production environment. When having a lot of

services in production (which are replaced often by

deploying) it is important to have proper (centralized)

log aggregation in place (Shahin et al., 2016). This

ensures that information, requests and errors can be

followed when they travel through multiple services.

Pahl et al. (2018) add an important characteristic,

namely virtualization (CH16), which refers

specifically to infrastructure virtualization known as

is one of the cornerstones of DevOps (the so-called

infrastructure-as-code). In their research,

virtualization (of infrastructure) enables elastic

scaling and quicker (repeatable), more fault tolerant

deployments, it also enables developers (with less

operations experience) to work with the

infrastructure.

The final characteristic, less reusability (CH17),

goes against what developers have been doing for

many years. With the popularity of DRY (meaning

‘don’t repeat yourself’) − i.e. a principle to reduce

repetition in software − developers were told to reuse

as much code as possible (e.g. by creating complex

abstractions). However, Shahin et al. (2016) report

that “focusing too much on reusability can be a huge

bottleneck to continuously deploying software”. The

main argument against reusability in CD/DevOps

context, according to the authors, is that it hinders the

deployability of autonomous teams by creating more

dependencies between software components. It is also

argued to be a threat to testability and overall

development velocity.

6.3 Software Architecture Styles

This section is concerned with discussing literature

found related to RQ3. In our SLR, there are 8 papers

that discuss architectural styles in the context of

CD/DevOps. There is a dominant architectural style

present in these papers: micro-services. All 8 papers

either discuss micro-services or present them as the

“go-to” architectural style for CD/DevOps practices.

We observe that only 2 out of the 8 papers also

mention other architectural styles or patterns.

Micro-services are a set of small services that can

be developed, tested, deployed, scaled, operated and

upgraded independently, allowing organizations to

gain agility, reduce complexity and scale their

applications in the cloud in a more efficient way.

Besides that, micro-services are very popular, they

are being used and promoted by industry leaders such

as Amazon, Netflix and LinkedIn (Villamizar, 2015).

Shahin et al. describe micro-services as the first

architectural style to be preferred for CD practice, by

designing fine-grained applications as a set of small

services (Shahin et al., 2016).

Three papers (Stahl and Bosch, 2018; Pahl et al.,

2018; Berger et al., 2017) state explicitly some

specific benefits of employing the micro-services

architecture concept. Micro-services are said to be

helpful in increasing modularity and isolating

changes and as a consequence increasing deployment

frequency (Bass, 2017). An experience report by

Berger et al. (2017), where the authors implemented

CD practices in a team developing software for self-

driving cars, reports how a loosely coupled micro-

service architecture helped them move towards CD.

Chen et al. argue that micro-service architectures

feature many of the CD/DevOps enabling

characteristics (CH2, CH7, CH8) and are (in

combination with DevOps) the “key to success” of

large-scale platforms (Chen et al., 2015).

Three other papers (Shahin et al., 2016;

Elberzhager et al., 2017; Schermann et al., 2018)

explicitly state some downsides of the micro-services

architecture. E.g. tracing errors and finding root

causes of production issues traveling through

multiple system components (Schermann et al.,

2018), resulting in increasingly complex monitoring

(IS10) and logging (IS9) (Shahin et al., 2016). Plus,

at the inception stage of a project a micro-services

architecture might be less productive due to the

required effort for creating the separate services and

the necessary changes in the organizational structure,

eventually as the project matures the efficiency of the

micro-services architecture surpasses that of the

monolithic architecture though (Elberzhager et al.,

2017).

Other authors (Villamizar et al., 2015; Schermann

et al. 2018; Pahl et al. 2018) treat the suitability of the

concept of micro-services in a particular context. Pahl

et al. (2018) state that the idea of micro-services has

been discussed as a suitable candidate for flexible

service-based system composition in the cloud in the

context of deployment and management automation.

Furthermore, Schermann et al. (2018) look at

micro-services from a continuous experimentation

perspective which is based on CD. These authors state

that “continuous experimentation is especially

enabled by architectures that foster independently

deployable services, such as micro-services-based

architectures”.

Micro-services emerged as a lightweight subset of

the Service-Oriented Architecture (SOA), it avoids

the problems of monolithic applications by taking

advantage of some of the SOA benefits (Villamizar et

al., 2015). Pahl et al. (2018) note that loose coupling,

modularity, layering, and composability are guiding

principles of service-oriented architectures.

The last architectural style is vertical layering. It

is mentioned by Shahin et al. (2016) and refers to

removing team dependencies by splitting software

components into vertical layers (instead of horizontal

layers, e.g. presentation, business and persistence). It

can be argued if this is an architectural style on its

own, as it is also a characteristic of micro-services

and SOAs in general.

6.4 Software Architecture Methods

This section discusses four interesting concepts that

we found in the selected literature and that are not

directly related to our RQs, but still are relevant to the

problem domain addressed in our research.

The first one is the concept of Evolutionary

Architecture which is designed to support

incremental change to the architecture in CD context.

Shahin et al. (2016) report the increased popularity of

Evolutionary Architecture amongst the participants in

these authors’ research on CD, opposed to big upfront

architecture.

The second is the concept of Continuous

Architecture (CA), which refers to the method of

managing the architecture originating from the need

to encompass CD in the architecture process. A very

clear way to explain the concept of CA is cited from

the book on the subject by Erder and Pureur (2015):

“if our objective is to build a cathedral, an Agile

developer will start shoveling, but an enterprise

architect will look at a 5-year plan, the goal of

Continuous Architecture is to bridge this gap”. There

are six CA principles defined in the book by Erder

and Pureur:

1. Architect products – not just solutions for

projects.

2. Focus on quality attributes – not on functional

requirements.

3. Delay design decisions until they are absolutely

necessary.

4. Architect for change – leverage “the power of the

small”.

5. Architect for build, test and deploy.

6. Model the organization of your teams after the

design of the system.

Finally, Woods (2016) puts forward two other

concepts instrumental to the architecture process: (i)

release models and (ii) configuration management

models. Release models describe the process of

moving an application from the developer’s machine

to the production environment, while configuration

management models help to get a grasp on the

complex configuration spread out among the various

micro-services.

7 LIMITATIONS

A limitation to this study is the time span for which

papers are included (2015-2019). There is always a

risk that a potentially relevant paper is excluded by

enforcing this criterion. However, we have

reasonable grounds to believe this risk is rather low.

First, DevOps was only coined as a concept in 2009

when Patrick Dubois organized the first DevOps

Days conference (https://legacy.devopsdays.org/

events/2009-ghent/). In the next 5 years (2009-2014),

research interest was minor: using the search queries

found in the Appendix, there were only 3 papers

published in the period 2010-2014. This is in stark

contrast to the period 2015-2018, when 62 papers

were published. From this we can conclude that by far

the largest part of relevant literature has been

included.

Another limitation to this study could be that only

two scientific databases were used (Web of Science

and Scopus). This might have reduced the variety of

searchable literature. However, bibliographic studies

(Harzing and Alakangas, 2016; Mongeon and Paul-

Hus, 2016) on the coverage of Scopus and Web of

Science suggest that it is one of the broadest and the

most comprehensive searchable digital libraries.

Therefore, we think that the chance of missing a study

is relatively low.

As part of preparing this paper, we reviewed

practitioners’ articles from developers’ community

online magazines and industry-wide blogs that cover

DevOps and related technologies: www.devops.com

and www.devopsdigest.com. These two sites seemed

relevant to our research in order to understand

whether the practitioners’ sources align with our

findings. We searched these DevOps sites for papers

by using “software architecture” as a search word. We

then chose 20 papers from each site and looked in

there for information related to our RQs. In this

review, we however could not find a paper that

provided information that was contradicting our

findings. Nor information that adds to the lists

presented in Tables 2 and 3. Of course, although this

step was done in a structured way, it is not to mean

that we compare it with a fully planned and executed

systematic examination of grey literature (the

practitioners’ papers from community sites are in fact

grey literature in the sense of Garousi et al. (2019)).

We think that such examination that includes online

community platforms in DevOps and CD is a

worthwhile piece of work because only then we could

develop a more complete understanding of what

happens in practice.

8 DISCUSSION

Using Kitchenham’s literature quality assessment

guidelines (2007), the papers were ranked (see Table

4) on a scale from 1 to 5, where 1 means high quality

and 5 means low quality. The result of this ranking is

shown in Table 4, se the second column. It must be

noted that the applicability of the quality assessment

ranking schema (Kitchenham, 2007) could be

questioned in the context of this research, as

Kitchenham’s ranking is based upon the research

method used in the respective primary studies (i.e. the

publications included in the set). We observe that

very few of the papers collected evidence

systematically by using a research method that was

also explicitly described in much detail. Most of the

papers included in our SLR report on the

accumulation of experiences and anecdotic evidence

by practitioners (e.g. Chen, 2015b). In turn, as our

included papers did not have extensive presentation

of research methods being employed, all papers have

a relatively low quality ranking (see Table 4). This is

important to take into account when reviewing the

results of this SLR. We think there might be two

reasons for the low quality: first, it can be the

relatively young field of research (which is growing

since 2014/2015); second, it can be the fact that the

CD and DevOps are ideas created in industry, with

industry taking the lead in publishing, compared to

scholars.

Table 4 Literature quality assessment and countries of

origin of the 13 selected papers.

Reference

Quality

Assessme

nt Rank

Origin

Stutevant, 2017 5 USA

Chen, 2015b 4 China

Erder and Pureur, 2015 5 USA

Woods, 2016 5 UK

Shahin et al., 2016 5 Australia

Elberzhager et al., 2017 2 Germany

Villamizar et al., 2015 2 Colombia

Schermann et al., 2018 5
Switzerland/

Austria

Stahl and Bosch, 2018 5 Sweden

Pahl et al., 2018 5 USA

Berger et al., 2017 5 Sweden

Chen et al., 2015 5 USA

Bass, 2017 5 USA

Another important aspect of the papers included

in this SLR is the country or region of origin. As the

third column of Table 4 shows, there is quite a variety

in origin of the papers included in this SLR. This

results in a representative body of literature that

encompasses various organizational cultures,

working styles and values. This allows us to think that

our findings could possibly be generalizable

(Wieringa and Daneva, 2015) across organizations in

various countries.

A set of 10 potential software architectural issues

has been identified in this paper. This set is not

exhaustive and rather generic, however, it does create

an image of the problems that practitioners might

have to deal with when adopting CD/DevOps

practices (on existing software systems). Some are

rather obvious, such as decomposition and monolithic

architectures, others are less straightforward, such as

logging and monitoring in order to improve or retain

the traceability capabilities of a system.

Furthermore, 17 software architectural

characteristics that are considered beneficial for

adopting CD/DevOps practices are presented. There

is a clear Top-5 of most frequently discussed

characteristics. It is apparent that there is some

overlap to be found between the identified issues and

the beneficial characteristics. These beneficial

characteristics cannot directly be classified as

solutions to the software architectural issues, e.g.

testability (CH11) is not a solution to the problem

domain of testing (IS8). However, the characteristics

indicate what features of a software architecture

should be focused on in order to prevent or overcome

the potential issues. The overlap between the issues

and characteristics identified in the literature only

strengthens their individual relevance to the problem

domain.

We identified micro-services as the most

dominant software architecture style that appears in

literature with respect to CD/DevOps. All 8 papers

that discuss a form of software architecture styles

mention (or are solely centred around) micro-

services. This was expected, due to the popularity of

the style among practitioners and the fact that micro-

services are designed to be independently developed

and deployed. Many, if not all, of the beneficial

software architectural characteristics are in some way

addressed by the micro-services architecture style.

Therefore, it seems that micro-services can be

considered the answer to the main research question

of this paper. We however think that this does not

mean that the micro-services style itself does not

bring any new problems, e.g. traceability, monitoring

and logging are becoming increasingly complex

when applying the micro-services architecture style.

More research is needed in order to better understand

the possible “side effects” of deploying micro-

services in real world projects.

Furthermore while the selected literature in this

work answered our RQs, these literature sources also

touched upon a rather interesting topic: Evolutionary

and Continuous Architecture. Both are considered as

approaches of managing the architecture, which are

designed to support incremental change to the

architecture. This is in contrast to more conventional

up-front architecture development methods, such as

the well-known waterfall model Royce (1987) or the

BDUF (Big Design Up Front) approach (these are not

primarily software architecture development methods

but do put emphasis on finalizing the architecture

design before actually writing the software).

Evolutionary and Continuous Architecture seem to

bridge the gap between agile development methods

(short term) and enterprise architecture (long term).

This SLR could not go into depth regarding the topics

of Evolutionary and Continuous Architecture, but it

might be interesting for future research efforts to

establish a link between software architecture in a

CD/DevOps context and a form of

Evolutionary/Continuous Architecture.

9 CONCLUSION

This section summarizes the answer to our RQs.

RQ1: What are potential software architectural

problems when adopting CD and DevOps practices

on an existing software system?

Since Jan 1, 2015, five papers were published that

discuss software architectural problems when

adopting CD/DevOps practices on an existing

software system. From these five papers, 10 distinct

problems were identified and reported in Table 2. The

main architectural problem is traceable to the

presence of highly-coupled monolithic systems that

are hard to decompose for CD practices.

RQ2: What characteristics of a software

architecture are important for enabling Continuous

Delivery and DevOps?

From the six papers found in recent literature that

discuss aspects or characteristics of software

architectures that are important for enabling

CD/DevOps, 17 (mostly distinct) characteristics were

identified (see Table 3). Out of those, the Top-5 most

frequently discussed characteristics are:

Deployability (CH2), Testability (CH11),

Automation (CH2), Loosely coupled (CH6), and

Modifiability (CH1).

RQ3: What software architecture styles are

suitable for being used in a Continuous Delivery and

DevOps context?

Eight out of the 13 papers in our SLR discussed

some form of software architecture style that would

be suitable for use in a CD/DevOps context. Notable

is the fact that all the papers that discussed some form

of architecture style discussed micro-services. This

demonstrates the dominance of this particular style in

the research (and practitioners) domain. There were

other styles mentioned, service-oriented architecture

(of which micro-services is an implementation), and

vertical layering (though it can be argued that this is

not an architectural style on its own).

10 FUTURE WORK

This SLR has identified 10 distinct architectural

problems when adopting CD and DevOps practices

on an existing software system, the largest of these

issues is that of highly coupled monolithic systems.

Therefore, more research is necessary into efficient

and fault-tolerant methods to migrate existing

monolithic code bases towards micro-service

architectures in order to improve the adoptability of

CD/DevOps. The 17 characteristics that are important

for enabling CD/DevOps, identified in this research,

could be a contributing factor to that future research.

From another perspective, Continuous

Architecture (CA), could fill a void between short

term software architecture and long term enterprise

architecture. It would be interesting to investigate the

role CA could play in enabling and improving

CD/DevOps practices.

Finally, the problems and characteristics

summarized in Table 2 and Table 3, respectively,

could possibly be translated into a work of reference,

a set of guidelines or a framework to help

practitioners deal with software architecture related

issues in the context of CD/DevOps. Developing such

guidelines could be instrumental for consolidating

practitioners’ knowledge of the field.

REFERENCES

Fox, A., D.A. Patterson, and S. Joseph (2014) Engineering

software as a service: an agile approach using cloud

computing. 2014: Strawberry Canyon LLC.

Chen, L. (2015a) Continuous delivery: Huge benefits, but

challenges too. IEEE Software, 32(2): p. 50-54.

Bass, L., I. Weber, L. Zhu (2015) DevOps: A Software

Architect's Perspective. Addison-Wesley.

Sturtevant, D. (2017) Modular Architectures Make You Agile

in the Long Run. IEEE Software, 35(1): p. 104-108.

Bucchiarone, A., et al. (2018) From Monolithic to

Microservices: An Experience Report from the Banking

Domain. IEEE Software, 35(3): p. 50-55.

Knoche, H., W. Hasselbring (2018) Using Microservices

for Legacy Software Modernization. IEEE Software,

35(3): p. 44-49.

Bass, L., P. Clements, R. Kazman (2003) Software

architecture in practice.Addison-Wesley.

Humble, J. and D. Farley (2010) Continuous Delivery:

Reliable Software Releases through Build, Test, and

Deployment Automation. Pearson Education.

Kitchenham, B. (2007) Guidelines for performing

Systematic Literature Reviews in Software

Engineering, Keele University, UK.

Menzel, G. (2015) DevOps - The Future of Application

Lifecycle Automation. [accessed July 11, 2018] https://

www.capgemini.com/wp-content/uploads/2017/07/

devops_pov_2015-12-18_final.pdf.

Kersten, N. (2017) The 2017 State of DevOps Report.

Puppet + DORA, Portland, US.

Erich, F., C. Amrit, M. Daneva (2017) A qualitative study

of DevOps usage in practice. Journal of Software:

Evolution and Process, 29(6): p. e1885.

Ghantous, G.B., A. Gill (2017) DevOps: Concepts,

Practices, Tools, Benefits and Challenges. In PACIS

2017 Proceedings. 96.

Senapathi, M., J. Buchan, H. Osman (2018). DevOps

Capabilities, Practices, and Challenges: Insights from

a Case Study. in Proceedings of the 22nd International

Conference on Evaluation and Assessment in Software

Engineering 2018. ACM.

Chen, L.P. (2015b) Towards Architecting for Continuous

Delivery. 12th Working IEEE/IFIP Conference on

Software Architecture, ed. L. Bass, P. Lago, and P.

Kruchten. 131-134.

Erder, M., P. Pureur (2015) Continuous Architecture:

Sustainable Architecture in an Agile and Cloud-Centric

World. Continuous Architecture: Sustainable

Architecture in an Agile and Cloud-Centric World.

2015. 1-303.

Woods, E. (2016) Operational: The Forgotten

Architectural View. IEEE Software, 33(3): p. 20-23.

Shahin, M., M.A. Babar, and L. Zhu (2016) The

Intersection of Continuous Deployment and

Architecting Process: Practitioners' Perspectives.

Elberzhager, F., et al. (2017) From Agile Development to

DevOps: Going Towards Faster Releases at High

Quality - Experiences from an Industrial Context, in

Software Quality: Complexity and Challenges of

Software Engineering in Emerging Technologies, D.

Winkler, S. Biffl, and J. Bergsmann, Eds. 33-44.

Villamizar, M., et al. (2015)Evaluating the monolithic and

the microservice architecture pattern to deploy web

applications in the cloud. 10th Computing Colombian

Conference (10CCC).

Schermann, G., et al. (2018) We're doing it live: A multi-

method empirical study on continuous experimentation.

Information and Software Technology, 99 (7), 41-57.

Ståhl, D., J. Bosch, (2017) Cinders: The continuous

integration and delivery architecture framework.

Information & Software Technology, 2017. 83(3) 76-93.

Pahl, C., P. Jamshidi, O. Zimmermann (2018) Architectural

Principles for Cloud Software. ACM Transactions on

Internet Technology, 2018. 18(2).

Berger, C., et al. (2017) Containerized Development and

Microservices for Self-Driving Vehicles: Experiences

& Best Practices. 2017 IEEE Int. Conf. on Software

Architecture Workshops. 7-12.

Chen, H.M., et al. (2015), Architectural Support for

DevOps in a Neo-Metropolis BDaaS Platform, in 2015

IEEE 34th Symposium on Reliable Distributed Systems

Workshop. 2015. p. 25-30.

Bass, L., The Software Architect and DevOps (2017) IEEE

Software, 35(1), 8-10.

Harzing, A.-W., S. Alakangas (2016), Google Scholar,

Scopus and the Web of Science: a longitudinal and

cross-disciplinary comparison. Scientometrics, 106(2),

787-804.

Mongeon, P., A. Paul-Hus (2016) The journal coverage of

Web of Science and Scopus: a comparative analysis.

Scientometrics, 106(1), 213-228.

Royce, W.W. (1987) Managing the development of large

software systems: concepts and techniques. in

Proceedings of the 9th international conference on

Erich, F., Amrit, C., Daneva, M.

(2014) A Mapping Study on Cooperation between

Information System Development and Operations.

PROFES’14, 277-280

Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.

(2018) From Monolith to Microservices: A

Classification of Refactoring Approaches. DEVOPS

2018, 128-141

Kuhrmann, M., Méndez Fernández, D., Daneva, M. (2017)

On the pragmatic design of literature studies in software

engineering: an experience-based guideline. Empirical

Software Engineering 22(6), 2852-2891

Wieringa, R.J., Daneva, M. (2015) Six strategies for

generalizing software engineering theories. Sci.

Comput. Program. 101: 136-152

Garousi, V., Felderer, M., Mäntylä, M.V. (2019) Guidelines

for including grey literature and conducting multivocal

literature reviews in software engineering. Information

& Software Technology 106: 101-121

APPENDIX

Scopus search query

TITLE-ABS-KEY ("software architecture" AND

"continuous delivery" OR "continuous

deployment" OR "devops" OR "dev-ops" OR

"dev ops") AND (LIMIT-TO (PUBYEAR ,

2018) OR LIMIT-TO (PUBYEAR , 2017) OR

LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO

(PUBYEAR , 2015))

Web of Science search query

TOPIC: ("software architecture" AND

("continuous delivery" OR "continuous

deployment" OR "devops" OR "dev-ops" OR "dev

ops")) Refined by: PUBLICATION YEARS: (

2018 OR 2017 OR 2016 OR 2015) Timespan: Last

5 years. Indexes: SCI-EXPANDED, SSCI,

A&HCI, CPCI-S, CPCI-SSH, ESCI

