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The aeroacoustic feedback loop establishing in a supersonic round jet impinging on
a flat plate normally has been investigated by combining compressible large-eddy
simulations and modelling of that loop. At the exit of a straight pipe nozzle of
radius r0, the jet is ideally expanded, and has a Mach number of 1.5 and a Reynolds
number of 6 × 104. Four distances between the nozzle exit and the flat plate, equal
to 6r0, 8r0, 10r0 and 12r0, have been considered. In this way, the variations of
the convection velocity of the shear-layer turbulent structures according to the
nozzle-to-plate distance are shown. In the spectra obtained inside and outside of
the flow near the nozzle, several tones emerge at Strouhal numbers in agreement
with measurements in the literature. At these frequencies, by applying Fourier
decomposition to the pressure fields, hydrodynamic-acoustic standing waves containing
a whole number of cells between the nozzle and the plate and axisymmetric or helical
jet oscillations are found. The tone frequencies and the mode numbers inferred from
the standing-wave patterns are in line with the classical feedback-loop model, in
which the loop is closed by acoustic waves outside the jet. The axisymmetric or
helical nature of the jet oscillations at the tone frequencies is also consistent with
a wave analysis using a jet vortex-sheet model, providing the allowable frequency
ranges for the upstream-propagating acoustic wave modes of the jet. In particular, the
tones are located on the part of the dispersion relations of the modes where these
waves have phase and group velocities close to the ambient speed of sound. Based
on the observation of the pressure fields and on frequency–wavenumber spectra on
the jet axis and in the shear layers, such waves are identified inside the present jets,
for the first time to the best of our knowledge, for a supersonic jet flow. This study
thus suggests that the feedback loop in ideally expanded impinging jets is completed
by these waves.
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Feedback loop in supersonic impinging round jets

1. Introduction
Since the pioneering work of Powell (1953), it has been well known that jets

impinging on a flat plate generate in some cases intense acoustic tones due to a
feedback mechanism between aerodynamic disturbances convected downstream from
the jet nozzle down to the plate and acoustic waves propagating upstream from the
plate to the nozzle. The occurrence or non-occurrence and the properties of this
feedback mechanism have been investigated in several experiments. For instance, Ho
& Nosseir (1981) and Nosseir & Ho (1982) considered subsonic impinging round
jets with nozzle exit Mach numbers varying from 0.3 up to 0.9. This allowed them
to build a model of the aeroacoustic feedback loop predicting the frequencies of the
tones. Many researchers also studied supersonic impinging round jets. They include,
among others, Henderson & Powell (1993), Krothapalli et al. (1999) and Henderson,
Bridges & Wernet (2005), Risborg & Soria (2009), Buchmann et al. (2011) and
Mitchell, Honnery & Soria (2012) who used high-speed optical measurements and
Davis et al. (2015) who measured the wall pressure oscillations on the flat plate using
a fast-response pressure-sensitive paint technique. In certain configurations, a feedback
mechanism similar to that encountered in subsonic jets was found. This mechanism
is observed very often when the jets are ideally expanded, but less frequently and
only for certain nozzle-to-plate distances when they are not. This led Henderson et al.
(2005) to suggest that for non-ideally expanded jets, the feedback loop establishes
only when a Mach disk forms just upstream from the plate, which seems to be the
case in the recent simulations of Gojon & Bogey (2017). Kuo & Dowling (1996)
considered that in that case there is a flow resonance in the impingement region
between the Mach disk and the flat plate.

Regarding the feedback mechanism between the jet nozzle and the flat plate,
its downstream part is clearly identified and consists of growing aerodynamic
disturbances convected downstream by the flow. Its upstream part, involving acoustic
waves propagating from the plate up to the nozzle, is less obvious. These waves
lie outside of the flow in the classical feedback-loop model proposed by Ho &
Nosseir (1981), whereas they belong to the family of the subsonic acoustic modes
of the jet according to Tam & Ahuja (1990). In the latter case, the feedback waves
propagate inside the jet column, as was observed by Lepicovsky & Ahuja (1985)
for high subsonic jets impinging on a probe, and discussed by Umeda, Maeda &
Ishii (1987) for jets impinging on a circular cylinder. In their theoretical work,
Tam & Ahuja (1990) calculated the dispersion relations of the neutral subsonic
acoustic modes of round jets. They obtained tone frequencies in agreement with
experimental data available for round jets impinging on a flat plate at exit Mach
numbers between 0.7 and 1. In the same way, based on the dispersion relations
of these waves for supersonic planar jets, Tam & Norum (1992) found that the
upstream-propagating subsonic acoustic modes are confined in narrow ranges of
frequencies. They also showed that the two tone frequencies emerging in the acoustic
spectra acquired by Norum (1991) for supersonic rectangular jets of large aspect ratio
fall very close to these ranges. More precisely, the lower and upper tone frequencies,
respectively associated with varicose (symmetric) jet oscillation modes and with
sinuous (antisymmetric) oscillation modes, are located in or very near the frequency
ranges of the first symmetric and the first antisymmetric upstream-propagating acoustic
modes. More recently, similar results were obtained by Gojon, Bogey & Marsden
(2016) for ideally expanded supersonic impinging planar jets at a Mach number of
1.28 computed using large-eddy simulations (LES). In that work, in addition, the
analysis of the upstream-propagating acoustic wave modes of the jet was combined
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with the classical feedback-loop model. This made it possible to predict the most
probable tones of the jets, their frequencies and the symmetric or antisymmetric
nature of the corresponding jet oscillations.

Despite the preceding, there is still a need to clearly identify the feedback-loop path
in impinging jets. Given the aeroacoustic nature of the loop, it seems appropriate
to use unsteady compressible simulations, which provide simultaneously all flow
and acoustic variables and which have made spectacular progress over the last
two decades. The axially symmetric or three-dimensional (3-D) Euler equations
have for instance been solved by Sakakibara & Iwamoto (2002) in order to study
the oscillatory phenomenon of an underexpanded jet impinging on a flat plate
perpendicularly. Similarly, Kim & Park (2005) and Loh (2005) carried out simulations
using the axisymmetric Navier–Stokes equations. The latter authors investigated the
staging behaviour of the oscillation frequency with the nozzle-to-plate distance and
jet pressure ratio. Several 3-D LES have also been run for perfectly, over- and
underexpanded impinging jets by Dauptain, Cuenot & Gicquel (2010), Brès et al.
(2011), Dauptain, Gicquel & Moreau (2012), Uzun et al. (2013), Hildebrand &
Nichols (2015), Gojon et al. (2016) and Gojon & Bogey (2017), with the two
last references being mentioned above. Based on their numerical results, Dauptain
et al. (2012) proposed an improved feedback-loop model in order to predict the
tone frequencies generated by underexpanded jets. Uzun et al. (2013) performed a
dynamic mode decomposition to determine the dynamically important modes of the
flow fields of isothermal and heated near-ideally expanded jets. Hildebrand & Nichols
(2015) conducted a global stability analysis about an LES base flow to extract the
instability modes of an ideally expanded jet. Note also that supersonic jets impinging
on an inclined flat plate have been computed by Nonomura, Goto & Fujii (2011) and
Brehm, Housman & Kiris (2016), for example.

In the present paper, compressible LES of an ideally expanded supersonic round
jet impinging on a flat plate are presented. The jet originates from a straight pipe
nozzle with a Mach number of 1.5 and a Reynolds number of 6× 104, and impinges
normally on a flat plate located at a distance from the nozzle exit varying between 6
and 12 times the pipe radius. The LES are carried out on cylindrical grids containing
up to 240 million points using low-dissipation and low-dispersion finite differences.
The numerical solutions are described in detail and compared with experimental data
for validation. In the same way as in Gojon et al. (2016) for planar jets, they are also
compared with the results of the classical feedback-loop model and of an analysis of
the upstream-propagating acoustic wave modes of the jet, which are used jointly in
order to better understand the tone production and selection. In that case, the first
objective is to determine whether the different models of the feedback loop are able
to provide the main characteristics of the feedback tones (frequency, mode number
and symmetric or helical nature), as well as to indicate which tones are likely to be
generated and which are not. The second aim is to give new insights into the feedback
loop, in particular concerning the type and properties of the feedback waves. On this
point, the LES results will be used to identify the presence of waves propagating
upstream inside the jet. This is one of the original features of the present work.

The paper is organized as follows. The parameters and results of the simulations
are documented in § 2. Snapshots and main properties of the flow fields, and the
variations of the convection velocity and velocity spectra in the jet shear layers
are shown. Pressure spectra evaluated near the nozzle and the amplitude and phase
fields obtained for the pressure inside and outside the jets at the tone frequencies
using Fourier analysis are then presented. The LES results are compared with

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.334


Feedback loop in supersonic impinging round jets

L nr nθ nz nr × nθ × nz

JetL6 6r0 500 512 791 202× 106

JetL8 8r0 500 512 803 205× 106

JetL10 10r0 500 512 869 222× 106

JetL12 12r0 500 512 936 240× 106

TABLE 1. Nozzle-to-plate distance L and number of grid points nr, nθ and nz.

the results given by the classical feedback-loop model and by the analysis of the
upstream-propagating acoustic waves, used together or separately, in § 3. Snapshots of
the pressure fields and frequency–wavenumber spectra of pressure are also displayed
to reveal the presence of upstream-propagating waves in the jets. Concluding remarks
are given in § 4. Finally, the influence of the shear-layer thickness on the dispersion
relations of the upstream-propagating acoustic wave modes of the jet is discussed in
the Appendix by considering temporally developing axisymmetric mixing layers.

2. Simulations of ideally expanded impinging round jets
2.1. Jet parameters

Four large-eddy simulations of a supersonic impinging jet impinging on a flat plate
normally have been performed. The jet originates from a straight pipe nozzle of radius
r0 and diameter D, and width l = 1.25r0, whose lip is 0.1r0 thick, in an ambient
medium at temperature T0=293 K and pressure p0=105 Pa. Nozzle-to-plate distances
L of 6r0, 8r0, 10r0 and 12r0 are considered. The four cases are consequently referred
to as JetL6, JetL8, JetL10 and JetL12, as reported in table 1. At the nozzle exit, the
jet is ideally expanded, and has a Mach number of Mj= uj/aj= 1.5, and a Reynolds
number of Rej = ujD/νj = 6× 104, where uj and aj are the jet velocity and the speed
of sound and νj is the kinematic molecular viscosity and the stagnation temperature is
equal to the ambient temperature. At the nozzle inlet, a Blasius laminar boundary-layer
profile of thickness 0.15r0 and a Crocco–Busemann profile are imposed for velocity
and density. The ejection conditions of the jet and the ratios between the nozzle-
to-plate distances and the exit diameter in the simulations are identical to those in
the experiments of Krothapalli et al. (1999). The four nozzle-to-plate distances in the
LES are chosen because of the acoustic measurements available and because of their
regular spacings.

In order to generate velocity fluctuations at the nozzle exit, low-amplitude random
vortical disturbances, not correlated in the azimuthal direction, are added in the
boundary layer in the nozzle, at z = −r0/2, using a procedure detailed in Bogey,
Marsden & Bailly (2011b). The forcing strength is set to α = 0.03 in all cases. The
profiles of mean and root-mean-square (r.m.s.) axial velocities obtained at the nozzle
exit are presented in figure 1. In figure 1(a), the mean velocity profiles are very
similar, and correspond to a Blasius laminar boundary-layer profile of momentum
thicknesses δθ = 0.016r0. As for the radial distributions of the turbulence intensities in
figure 1(b), they differ, and reach peak values u′e/uj of 5.2 %, 3.5 %, 2.8 % and 2.6 %
for JetL6, JetL8, JetL10 and JetL12, respectively. Therefore, the velocity fluctuations
at the nozzle exit are stronger as the nozzle-to-plate distance decreases.
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FIGURE 1. Radial profiles at the nozzle exit (a) of mean axial velocity 〈uz〉 and (b) of
root-mean-square values of axial velocity fluctuations u′z: —— JetL6, — · — JetL8,
– – – JetL10, and JetL12.

2.2. Numerical parameters
The numerical methods and parameters are identical or very similar to those in recent
simulations of supersonic impinging jets (Gojon et al. 2016; Gojon & Bogey 2017).

The unsteady compressible Navier–Stokes equations are solved in a cylindrical
coordinate system (r, θ, z) by using an explicit six-stage Runge–Kutta algorithm for
time integration, and low-dispersion explicit eleven-point finite differences for spatial
derivation (Bogey & Bailly 2004; Berland et al. 2007). At the end of each time step,
a sixth-order eleven-point filtering (Bogey, de Cacqueray & Bailly 2009) is applied to
the flow variables in order to remove grid-to-grid oscillations and to relax turbulent
energy from scales at wavenumbers close to the grid cutoff wavenumber. Thus, the
filtering acts as a subgrid-scale model in the LES (Bogey & Bailly 2006, 2009;
Fauconnier, Bogey & Dick 2013; Kremer & Bogey 2015). The radiation conditions
of Tam & Dong (1994) are implemented at the inflow and lateral boundaries of
the computational domain. A sponge zone combining grid stretching and Laplacian
filtering is also employed in order to damp the turbulent fluctuations before they reach
the lateral boundaries. The axis singularity is treated with the method of Mohseni
& Colonius (2000). Notably, the first point close to the axis is located at r =1r/2,
where 1r is the radial mesh size near the axis. A reduction of the effective resolution
near the origin of the polar coordinates is also implemented (Bogey, de Cacqueray
& Bailly 2011a) in order to increase the time step of the simulation. The present
numerical set-up has been used in past studies to simulate subsonic round jets (Bogey
et al. 2011b; Bogey, Marsden & Bailly 2012a,b; Bogey & Marsden 2016). In the
present LES, adiabatic conditions are imposed at the nozzle walls and at the flat plate.
A shock-capturing filtering is applied in order to avoid Gibbs oscillations near shocks.
It consists in applying a conservative second-order filter at a magnitude determined
each time step using a shock sensor (Bogey et al. 2009). It was successfully used
by de Cacqueray, Bogey & Bailly (2011) for the LES of an overexpanded jet at an
equivalent Mach number of Mj = 3.3.

The simulations have been carried out using an OpenMP-based in-house solver,
and a total of 100 000 iterations are computed in each case after the transient period.
The temporal discretization is equal to 1t = 0.005r0/uj, yielding a simulation time
of 500r0/uj. The meshes are directly derived from those used in recent LES of
underexpanded impinging round jets (Gojon & Bogey 2017). They contain between
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FIGURE 2. Representation of (a) the radial and (b) the axial mesh spacings 1r and 1z:
—— JetL6, — · — JetL8, – – – JetL10, and JetL12.

202 and 240 million points, as noted in table 1 also yielding the number of points
nr, nθ and nz in the radial, azimuthal and axial directions. The variations of the
radial and axial mesh spacings are represented in figure 2. The minimal axial mesh
spacing is equal to 1z = 0.0075r0 near the nozzle lip and the flat plate, and the
maximal axial mesh spacing between the nozzle and the plate is 1z = 0.015r0 for
JetL6 and 1z= 0.03r0 in the three other cases. The minimal radial spacing is equal
to 1r = 0.0075r0 at r = r0, and the maximal radial spacing is 1r = 0.06r0 for
5r0 6 r 6 15r0. Farther from the jet axis, a sponge zone is implemented for r > 15r0.
In the physical domain, the grids are stretched at rates lower than 1 % in order to
preserve numerical accuracy. Note, moreover, that the maximum mesh spacing of
0.06r0 allows acoustic waves with Strouhal numbers up to St= fD/uj= 6.1 to be well
propagated, where f is the frequency.

2.3. Flow snapshots

The jet flow and acoustic fields obtained for JetL8 and JetL12 are represented in
figure 3 displaying 3-D isosurfaces of density and 2-D pressure fields in the planes
θ = 0 and θ = π. The jet shear layers appear weakly disturbed in the vicinity of the
nozzle exit, but exhibit both small- and large-scale turbulent structures for z> 2r0, as
expected at a Reynolds number of 6× 104. Farther downstream, the development of
wall jets on the flat plate after the jet impact is clearly visible. As for the near pressure
fields, they show acoustic waves mainly propagating in the upstream direction, which
seem to be generated in the region of jet impingement.

Density and fluctuating pressure fields obtained in the (z, r) plane for the four
impinging jets are provided in figure 4 and in movie 1 available at https://doi.org/
10.1017/jfm.2017.334. In all cases, large-scale turbulent structures and sound waves
are observed in the shear layers and outside the jet, respectively. Strong acoustic
waves appear to propagate in the upstream direction from the region of jet impact.
Their amplitudes decrease as the nozzle-to-plate distance increases. For jetL8, jetL10
and jetL12, circular waves centred around z ' 3r0 in the jet shear layers are also
visible. Looking at the movie, they seem to result from the interactions of the
upstream-propagating acoustic waves with the shear-layer turbulent structures.
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(a)

(b)

FIGURE 3. (Colour online) Representation for (a) JetL8 and (b) JetL12 of the isosurfaces
of density associated with 1.3 kg m−3, coloured by the local Mach number, and of the
pressure p− p0 at θ = 0 and π using a colour scale ranging from −3000 to 3000 Pa, from
white to red; nozzle and flat plate in grey.

2.4. Flow field properties

The variations of the mean axial velocity on the jet centreline and of the shear-layer
momentum thickness between the nozzle exit at z= 0 and the flat plate at z= L are
presented in figure 5. In figure 5(a), in all cases, the centreline mean velocity remains
very close to the exit velocity uj down to approximately z= L− r0, with a maximum
deviation of only 3.5 % of uj, which supports that the jets are nearly ideally expanded.
For z > L − r0, the centreline velocity decreases sharply to become nil at the wall.
Note that for a free jet at the same Mach number as the present impinging jets, the
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FIGURE 4. (Colour online) Snapshots in the (z, r) plane of density in the jet and near the
flat plate and of pressure p− p0 for (a) JetL6, (b) JetL8, (c) JetL10 and (d) JetL12. The
colour scales range from 1 to 2 kg m−3 for density, from blue to red, and from −5000
to 5000 Pa for pressure, from black to white. The nozzle is in black.

potential core is expected to close farther from z = 12r0, and more precisely at z =
13.3r0 according to Lau, Morris & Fisher (1979).

As for the shear-layer momentum thickness in figure 5(b), it does not vary much
up to z = 0.95, where the end of a very weak shock cell is most likely located in
the jets as suggested by figure 5(a). Farther downstream, it increases nearly linearly
before reaching a peak just upstream of the flat plate at z ' L − r0. The profile
obtained for JetL6 is systematically above those for JetL8, JetL10 and JetL12 which
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FIGURE 5. Variations (a) of the mean axial velocity 〈uz〉 on the jet centreline, and (b) of
the shear-layer momentum thickness δθ : —— JetL6, — · — JetL8, – – – JetL10, and

JetL12.
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FIGURE 6. Variations of the root-mean-square values of axial velocity fluctuations u′z
(a) at r= 0 and (b) at r= r0: —— JetL6, — · — JetL8, – – – JetL10, and JetL12.

are almost superimposed for z 6 5r0. The spreading of the shear layers is therefore
accelerated by the presence of the plate in the former case, but poorly affected in the
three others.

The r.m.s. values of axial velocity fluctuations estimated at r = 0 and r = r0 are
shown in figure 6. Overall, the profiles display similar shapes for the four jets, but
higher levels of velocity fluctuations for shorter nozzle-to-plate distances. On the
jet axis, in figure 6(a), the turbulent intensities are negligible up to z ' r0, then
gently increase with the axial distance and reach strong peak values at z' L− 0.8r0,
ranging from 21.5 % for JetL6 down to 13.4 % for JetL12. On the nozzle lip line,
in figure 6(b), the growth of the turbulent intensities starts at the nozzle exit and
happens rapidly. Farther downstream, two humps are found: one around z = 3.3r0,
and another just upstream of the flat plate. The maximum levels obtained vary from
22 % down to 18.6 % at the first location and from 22.8 % down to 20.5 % at the
other.
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FIGURE 7. Representation (a) of the convection velocity uc at r = r0 for —— JetL6,
— · — JetL8, – – – JetL10, and JetL12, and (b) of the average convection velocity
〈uc〉 between the nozzle and the plate from × LES and (2.1).

2.5. Convection velocity
In most models of the feedback loop establishing in impinging jets, the convection
velocity of the turbulent structures in the shear layers is required to describe the
aerodynamic part of the loop. The variations of the local convection velocity uc
estimated in the present jets at r = r0 from cross-correlations of axial velocity
fluctuations are thus represented in figure 7(a). As observed in previous simulations
(Gojon et al. 2016; Gojon & Bogey 2017), the convection velocity grows with the
axial distance, from approximately 0.5uj near the nozzle exit up to 0.65uj much
farther downstream.

The average convection velocities 〈uc〉 then calculated between the jet nozzle and
the flat plate are displayed in figure 7(b) as a function of the nozzle-to-plate distance.
They increase with L/r0, as in the experiments of Krothapalli et al. (1999). Ranging
from 0.58uj for JetL6 up to 0.62uj for JetL12, they appear to be well predicted by
the equation

〈uc〉(L/r0)= 0.65uj − (0.65uj − 0.5uj)×
1

1+ 0.15(L/r0)2
, (2.1)

which tends to 0.65uj for large L/r0 and to 0.5uj for small L/r0.

2.6. Velocity spectra
The spectra of axial velocity fluctuations calculated on the lip line at the three axial
locations z = 0.25r0, z = r0 and z = 4r0 are presented in figure 8 as a function of
the Strouhal number St = fD/uj. At the first location very near the nozzle, several
tones emerge at Strouhal numbers below 1, with dominant tones at St = 0.455 in
JetL6, 0.445 in JetL8, 0.44 in JetL10 and 0.38 in JetL12. The same tones will
be found in the near-nozzle pressure spectra in the next section. They correspond
to the tones generated by the aeroacoustic feedback loop establishing between the
nozzle and the flat plate. At the second location, at z= r0, the highest levels are still
obtained at the tone frequencies, but another instability-like component is observed
for St > 0.8 in all cases. This extra component is non-tonal, and centred around
St ' 1.8, yielding Strouhal numbers based on the nozzle exit momentum thickness
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FIGURE 8. Power spectral densities (PSD) of axial velocity fluctuations u′z obtained at
r = r0, at —— z = 0.25r0, z = r0 and z = 4r0, as a function of St, in dB/St:
(a) JetL6, (b) JetL8, (c) JetL10 and (d) JetL12.

of Stθ = f δθ/uj ' 0.014. This peak frequency falls within the range of frequencies
predominating early on in unforced initially laminar mixing layers according to
linear stability analyses (Michalke 1984) and experiments (Gutmark & Ho 1983).
Further downstream, at z = 4r0, the velocity spectra display broadband shapes.
The contribution of the tones are however visible, especially for small flat-to-plate
distances.

2.7. Pressure spectra and tone frequencies
The pressure spectra obtained at z= 0 and r= 2r0 for the different jets are represented
in figure 9 as a function of the Strouhal number. They are very similar to the velocity
spectra computed at z= 0.25r0 in the shear layer, shown in figure 8. A large number
of tones emerge, as observed experimentally by Norum (1991) and Krothapalli
et al. (1999), among others, for rectangular and round ideally expanded impinging
jets. In the present cases, the dominant tones with the highest amplitude are found
at St = 0.455 in JetL6, 0.445 in JetL8, 0.44 in JetL10 and 0.38 in JetL12, thus
remaining in the same range of frequencies. Their levels are more than 10 dB higher
than the broadband noise level, and decrease with the nozzle-to-plate distance, which
is consistent with recent LES results for ideally expanded planar jets (Gojon et al.
2016) and with the reduction in turbulent intensities with L/r0 reported in § 2.5.

The Strouhal numbers St1, St2, St3 and St4 of the first four tones in the pressure
spectra are collected in table 2. These tones include the dominant tones, which are
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FIGURE 9. Sound pressure levels (SPL) obtained at z = 0 and r = 2r0 as a function of
Strouhal number St: (a) JetL6, (b) JetL8, (c) JetL10 and (d) JetL12.

St1 St2 St3 St4

JetL6 0.26 0.345 0.455 0.57
JetL8 0.205 0.29 0.365 0.445
JetL10 0.165 0.29 0.375 0.44
JetL12 0.175 0.255 0.305 0.38

TABLE 2. Strouhal numbers of the first four tones emerging in the spectra of figure 9;
dominant tones in bold.

the third or the fourth tones in all cases, and a first low-frequency tone at St1 varying
between 0.165 in JetL10 up to 0.26 in JetL6. This tone is weak, especially in JetL8
and JetL10, but it is provided here because it will be considered in the analysis of the
feedback loop conducted in § 3. On the contrary, the tones at Strouhal numbers St>
St4 are disregarded because most of them are harmonics of the first four tones. This
is the case for instance for JetL6, for which these tones are found at St5= 0.69= 2St2,
St6 = 0.80= St2 + St3 and St7 = 0.90= 2St3. Note that the first four tone frequencies
will be compared with the experimental data of Krothapalli et al. (1999) in § 3.1.

2.8. Fourier decomposition of the pressure field
In order to determine the amplitude and phase fields associated with the different tones
of the jets, a Fourier transform in time has been applied to the near pressure fields

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.334


C. Bogey and R. Gojon

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

6420–2 6 8420–2 6 8 10420–2 6 8 10 12420–2

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

8
6
4
2
0

–2
–4
–6
–8

6420–2 6 8420–2 6 8 10420–2 6 8 10 12420–2

(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 10. (Colour online) Amplitude (a–d) and phase (e–h) fields obtained for the
pressure at the dominant tone frequencies in (a,e) JetL6 at St = 0.455, (b, f ) JetL8 at
St = 0.445, (c,g) JetL10 at St = 0.44 and (d,h) JetL12 at St = 0.38. The colour scales
range from 115 dB/St to 165 dB/St and from −π to π, respectively, from blue to red.

recorded every 50th LES time step in the (z, r) plane. The results obtained at the
dominant tone frequencies are represented in figure 10. The amplitude fields in the top
views exhibit cell structures between the jet nozzle and the flat plate. By considering
the two semi-cells near the nozzle and the plate as one cell, the structures contain a
whole number of cells Nsw, namely 4 cells in JetL6, 5 cells in JetL8, and 6 cells in
JetL10 and JetL12. They are due to the presence of hydrodynamic-acoustic standing
waves at the tone frequencies, with wavenumbers equal to

ksw = kp + ka =
2πNsw

L
, (2.2)

where kp and ka are the wavenumbers of the hydrodynamic and acoustic waves (Panda,
Raman & Zaman 1997; Gojon et al. 2016).

As for the three-dimensional organization of the jet pressure fields at the dominant
tone frequencies, it is revealed by the phase fields in the bottom views of figure 10,
and by those obtained for the pressure at z = 0, provided in figure 11. In all cases,
the phase is identical on both sides of the jet in the first figure, and does not vary
appreciably in the azimuthal direction on the second figure. These results indicate that
the jet oscillations are axisymmetric at the frequencies considered.

The amplitude and phase fields obtained for JetL8 at the four tone frequencies given
in table 2 are displayed in figure 12. In the top views, the standing-wave patterns
contain 2 cells at Strouhal number St1, 3 cells at St2, 4 cells at St3 and 5 cells at St4.
In the bottom views, the phase fields appear symmetric with respect to the jet axis
at St1, St3 and St4, and antisymmetric at St2. Moreover, the phase fields computed
from for the pressure at z= 0 are shown in figure 13. In the azimuthal direction, the
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frequencies in (a) JetL6, (b) JetL8, (c) JetL10 and (d) JetL12; colour scale from −π to
π, from blue to red.

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

8

6

4

2

0

–2

–4

–6

–8
6 8420–2

(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 12. (Colour online) Amplitude and phase fields obtained for the pressure in JetL8
at the tone Strouhal numbers of (a,b) St1 = 0.205, (c,d) St2 = 0.29, (e, f ) St3 = 0.365 and
(g,h) St4 = 0.445. The colour scales range from 115 dB/St to 165 dB/St, and from −π
to π, respectively, from blue to red.

phase remains nearly constant at St1, St3 and St4, but varies by 2π at St2. Therefore,
the modes of jet oscillation are the axisymmetric mode at the frequencies of the first,
third and fourth tones, and the first helical mode at the frequency of the second tone.

The results obtained for the other jets are reported in table 3.

3. Modelling of the feedback loop
3.1. Aeroacoustic feedback model

As pointed out in the introduction, it has been well known since the work of Powell
(1953) that the tones generated by impinging jets are due a feedback mechanism
between the nozzle lips and the flat plate, involving aerodynamic disturbances growing
and convected downstream in the jets and acoustic waves travelling in the upstream
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FIGURE 13. (Colour online) Phase fields obtained for the pressure in JetL8 at (a) St1,
(b) St2, (c) St3 and (d) St4; colour scale from −π to π, from blue to red.

St1 St2 St3 St4

JetL6 Nsw = 2, helical Nsw = 3, helical Nsw = 4, axisymmetric Nsw = 5, helical
JetL8 Nsw = 2, axisymmetric Nsw = 3, helical Nsw = 4, axisymmetric Nsw = 5, axisymmetric
JetL10 Nsw = 2, axisymmetric Nsw = 4, helical Nsw = 5, axisymmetric Nsw = 6, axisymmetric
JetL12 Nsw = 3, axisymmetric Nsw = 4, helical Nsw = 5, helical Nsw = 6, axisymmetric

TABLE 3. Number of cells in the standing waves and axisymmetric or helical nature of
the jet oscillations at the first four tone Strouhal numbers.

direction. In the feedback model of Ho & Nosseir (1981) and Nosseir & Ho (1982),
these acoustic waves are assumed to propagate outside the jets. By considering that the
fundamental period of the feedback loop is given by the sum of the time necessary
for shear-layer disturbances to travel from the nozzle down to the plate and of the
time of propagation of acoustic waves from the plate up to the nozzle, the relation

L
〈uc〉
+

L
a0
=

N
f

(3.1)

was obtained, where 〈uc〉 is the average convection velocity in the shear layers, a0 is
the speed of sound outside of the jet and N is the mode number.

The Strouhal numbers of the four tones given in table 2 for the present jets are
represented in figure 14 as a function of the nozzle-to-plate distance. In figure 14(a),
the tone frequencies measured in the experiments of Krothapalli et al. (1999) and
those estimated from relation (3.1) using the average convection velocity provided by
(2.1) are also plotted. The tone Strouhal numbers in the LES are comparable with
the experimental data or, when this is not true, are located on the paths followed by
these data as L/r0 varies. For JetL6, for example, the first case is observed for the
first and fourth tones, the second case for the second and third tones. Furthermore,
the tone frequencies seem to be approximately predicted by the feedback model. In
this way, the tones can be associated with different feedback modes: modes 2, 3, 4
and 5 for JetL6 and JetL8, modes 2, 4, 5 and 6 for JetL10 and modes 3, 4, 5 and 6
for JetL12. As expected (Gojon et al. 2016), the mode numbers N correspond to the
number of cells Nsw in the standing-wave patterns. Regarding the main tones, they can
be related to the fourth feedback mode in JetL6, to the fifth mode in JetL8 and to the
sixth mode in JetL10 and JetL12. A similar switch of the dominant tone frequency
as the nozzle-to-plate distance increases was noted in the experiments of Krothapalli
(1985) for a rectangular supersonic impinging jet. Such a staging behaviour is also
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FIGURE 14. Representation of the tone Strouhal numbers as a function of the
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× experimental data of Krothapalli et al. (1999) and values predicted by (3.1);
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St= 0.225, 0.355 and 0.5.

encountered in other self-oscillating flows, such as the flow over a cavity for instance
(Rockwell & Naudascher 1978).

In figure 14(b), the LES tone frequencies are represented alone using different
symbols according to the axisymmetric or helical nature of the associated oscillation
modes. By also plotting arbitrary horizontal lines on the figure, they clearly appear
to be arranged in bands corresponding respectively, as the Strouhal number increases,
to the axisymmetric mode for St < 0.225, the helical mode for 0.225 < St < 0.355,
the axisymmetric mode for 0.355< St < 0.5 and the helical mode for St > 0.5. This
behaviour cannot be explained by the feedback model reported above. For that reason,
an alternative feedback model, in which the acoustic feedback waves do not only
travel outside of the jet, is considered in what follows.

3.2. Analysis of the upstream-propagating acoustic wave modes of the jet
In the modified feedback model proposed by Tam & Ahuja (1990), and later extended
by Tam & Norum (1992), it is assumed that the feedback loop in high-speed
impinging jets is closed by waves belonging to the upstream-propagating acoustic
wave modes of the jets. These waves were clearly identified in the theoretical study
of Tam & Hu (1989), and their importance to the capture of a feedback link from
acoustic disturbances downstream was recently emphasized by Nichols & Lele (2011).
They were recently detected in the potential core of subsonic free jets by Towne et al.
(2016). As with the familiar Kelvin–Helmholtz instability waves, they are instability
waves that can be determined from the jet mean flow (Berman & Williams 1970;
Mack 1990; Sabatini & Bailly 2014).

In this work, they are characterized for an ideally expanded round jet of radius
r0 and velocity uj with the same Mach number Mj = 1.5 as the present jets. The
jet is modelled as a uniform stream bounded by a vortex street. The mathematical
developments necessary to derive the dispersion relations of the upstream-propagating
acoustic waves in a round jet using a vortex-sheet jet model that can be found in
Tam & Ahuja (1990). By starting from the linearized governing equations for a
compressible inviscid fluid, and noting that the waves considered here are neutral

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.334


C. Bogey and R. Gojon

1.2

A4

A3

A2

A1

H3

H2

H1

1.0

0.8

0.6

0.4

0.2

0
–15 –10

kD kD
–5 0 –15 –10 –5 0

1.2

1.0

0.8

0.6

0.4

0.2

0

St

(a) (b)

FIGURE 15. Representation of the dispersion relations of the (a) axisymmetric and
(b) helical neutral acoustic wave modes for an ideally expanded round jet at Mj = 1.5;
u lower limits of the modes; – – – k=−ω/a0.

for a vortex-sheet jet model, i.e. that they have both real wavenumber k and angular
frequency ω, these authors obtained the following relations

|ξ+|Jn(|ξ−α|)
Kn−1(|ξ+α|)+Kn+1(|ξ+α|)

Kn(|ξ+α|)

+
C2
|ξ−|

(a0C/aj −Mj)2
[Jn−1(|ξ−α|)− Jn+1(|ξ−α|)] = 0, (3.2)

where a0 and aj are the sound speeds in the ambient medium and in the jet, C =
ω/(ka0), Jn is the nth-order Bessel function of the first kind, ξ+ = |C2

− 1|1/2, ξ− =
|(a0C/aj −Mj)

2
− 1|1/2, α = kr0 and Kn is the nth-order modified Bessel function.

The solutions of the dispersion relations calculated for the present jet for the
axisymmetric modes (n = 0) and the first helical modes (n = 1) are represented in
figure 15 as functions of the Strouhal number and the wavenumber. For St 6 1.2, four
axisymmetric neutral acoustic wave modes, referred to as A1, A2, A3 and A4, and
three helical modes denoted by H1, H2 and H3, appear.

For the different modes, the upstream-propagating acoustic waves are situated on
the part of the dispersion curves where the slope dSt/dk and hence the group velocity
dω/dk are negative, which leads to the existence of allowable frequency ranges. Their
upper and lower limits correspond to the maximum and minimum Strouhal numbers
reached for the modes. The first ones are taken from the dispersion curves. The
second ones can be calculated since they are necessarily associated with acoustic
waves propagating with a group velocity of −a0, and located on the dashed line of
figure 15 defined by

k=−
ω

a0
. (3.3)

In this way, Tam & Ahuja (1990) demonstrated that the lower limit for the first
axisymmetric mode A1 is at Stmin

A0 = 0, and that the lower limits for the axisymmetric
modes Ai with i> 0 are

Stmin
Ai =

σi

πMj(aj/a0)|(a0/aj +Mj)2 − 1|1/2
, (3.4)
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where σi is the ith root of J1. For the first helical modes (n= 1), the lower limits Stmin
Hi

are the roots of the equation

2J1(|ξ−α|)+
|ξ−α|

((a0/aj)+Mj)2
(J0(|ξ−α|)− J2(|ξ−α|))= 0 (3.5)

obtained from (3.2) as k→−ω/a0. The values computed for the modes A1, A2, A3
and A4 and H1, H2 and H3 of the present jet using (3.5) and (3.5) are depicted in
figure 15.

The allowable frequency ranges determined for the axisymmetric and the first
helical upstream-propagating wave modes are represented in figure 16 as a function
of the exit Mach number Mj. The first four tone frequencies of the simulated
jets at Mj = 1.5, given in table 2 in § 2.6, are also plotted. They are additionally
displayed in figure 17 as a function of the nozzle-to-plate distance using different
symbols according to the axisymmetric or helical nature of the associated oscillation
modes, together with the allowable frequency ranges obtained for a Mach number of
Mj = 1.5.

The tones at Strouhal numbers 0.165 6 St 6 0.205 (first tones in JetL8, JetL10 and
JetL12) fall in or just above the range of the mode A1, and those at 0.3656St60.455
(third tones in JetL6, JetL8 and JetL10 and fourth tones in JetL8, JetL10 and JetL12)
lie in or just below the range of the mode A2. The tones at 0.255 6 St 6 0.345 (first
tone in JetL6, second tones in all cases and third tone in JetL12) and those at St=0.57
(fourth tone in JetL6) are located in most case below but close to the ranges of the
modes H1 and H2, respectively. These results are consistent with the axisymmetric
or helical oscillations of the jet pressure fields at the tone frequencies, found in § 2.8
and reported in table 3. The disagreements observed, which are stronger for the helical
modes than for the axisymmetric modes, may be due to the use of a vortex-sheet jet
model instead of a jet with a mixing layer of finite thickness (Tam & Ahuja 1990).
Despite this, the analysis of the upstream-propagating acoustic wave modes seems to
predict the nature of the oscillation modes of the present round impinging jets, as was
previously the case for supersonic planar impinging jets (Tam & Norum 1992; Gojon
et al. 2016). However, it does not provide information on which discrete frequencies
will be selected, for a given nozzle-to-plate distance, over the ranges of the different
modes.

3.3. Combination of the feedback model and the wave analysis
As carried out in Gojon et al. (2016) for supersonic planar jets, the classical feedback
model and the wave analysis presented above are combined. In order to achieve this,
the acoustic wavenumber in the feedback loop is assumed to be equal to the opposite
of the wavenumber k of the upstream-propagating acoustic waves of the wave analysis.
Thus, (2.2) relating the wavenumber ksw of the hydrodynamic-acoustic standing wave
due to the feedback mechanism and the acoustic and hydrodynamic wavenumbers ka

and kp yields

f =
N〈uc〉

L
+ k
〈uc〉

2π
(3.6)

given that Nsw=N, kp= 2πf /〈uc〉 and ka=−k. The solutions of this equation, which
depend on the nozzle-to-plate distance, and those of the dispersion relations (3.2),
which do not, can then be represented in the same figure.
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This is done for JetL6 in figure 18 by showing the dispersion relations of the
acoustic wave modes for a jet at Mj = 1.5 and the solutions of (3.6) for the first
seven modes of the feedback mechanism as functions of the Strouhal number and
the wavenumber. The first four tones of JetL6 are also indicated on the line k =
−ω/a0, using different symbols according to the axisymmetric or helical nature of the
corresponding oscillation modes. In figure 18(a), the tone at St3 = 0.455 is located at
the intersection of the curve for the axisymmetric mode A2 of the jet and of the line
for the mode N = 4 of the feedback loop. In figure 18(b), the tones at St1 = 0.26,
St2= 0.345 and St4= 0.57 are on or just below the curves for the helical mode H1 in
the first two cases and for the mode H2 in the third one, and near the lines associated
with the modes N = 2, N = 3 and N = 5 of the feedback loop, respectively.

In the same way, the results of the model combination for JetL8, JetL10 and JetL12,
and the first four tones in these jets, are displayed in figures 19–21 as functions of the
Strouhal number and the wavenumber. For JetL8, in figure 19, the tone at St1= 0.205
lies on the curve for the axisymmetric mode A1 and near the line for the feedback
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FIGURE 19. Representation of —— the dispersion relations of the (a) axisymmetric and
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frequencies of JetL8 associated with6 axisymmetric and ∗ helical modes.

mode N = 2, the tone at St2 = 0.29 is just below the curve of the helical mode H1
and near the feedback mode N = 3, and the tones at St3 = 0.365 and St4 = 0.445 are
close to the intersection points of the axisymmetric mode A2 and the feedback modes
N= 4 and N= 5. For JetL10, in figure 20, the first four tones of the jet at St1= 0.165,
St2= 0.29, St3= 0.375 and St4= 0.44 stand on the curve for the mode A1 for St1, and
close to the lower limits of the modes H1 for St2 and A2 for St3 and St4, and near
the lines associated with the feedback modes N = 2, N = 4, N = 5 and N = 6. Finally,
for JetL12, in figure 21, the tones of the jet are on the curve of the mode A1 for St1,
in the vicinity of the lower limits of the modes H1 for St2 and St3 and A2 for St4,
and very close to the lines for the feedback modes N = 3, N = 4, N = 5 and N = 6.

The above results are in agreement with the properties of the jet pressure fields
revealed in § 2.8, and summarized in table 3. Therefore, the model combination
appears able to predict at the same time the tone frequencies and mode number
of the feedback mechanism, and the antisymmetric or symmetric nature of the
associated oscillation modes. For all modes except for the axisymmetric mode A1
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(b) helical neutral acoustic wave modes for an ideally expanded round jet at Mj = 1.5,
u lower limits of the modes; – – – k=−ω/a0; relation (3.6) for L= 10r0; LES tone
frequencies of JetL10 associated with6 axisymmetric and ∗ helical modes.
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FIGURE 21. Representation of —— the dispersion relations of the (a) axisymmetric and
(b) helical neutral acoustic wave modes for an ideally expanded round jet at Mj = 1.5,
u lower limits of the modes; – – – k=−ω/a0; relation (3.6) for L= 12r0; LES tone
frequencies of JetL12 associated with6 axisymmetric and ∗ helical modes.

whose minimum Strouhal number is zero, the tones are located just above or below
the lower limits of the modes, the latter case being probably due to the use of a
vortex-sheet model (Tam & Ahuja 1990). Given that on the dispersion curves, the
waves have a group velocity, but also a phase velocity very close to −a0 near the
lower limits of the modes, the model combination seems to indicate that the tones
which are likely to be generated are those for which the feedback loop is closed
by waves with such velocities. This is also one assumption made for the feedback
waves of the classical aeroacoustic feedback model, which may explain the validity
of (3.1). Furthermore, the model combination helps us to clarify why certain tones
do not emerge. This is the case for instance in JetL10 for the tone associated with
the mode N = 3 of the feedback loop. Indeed, the line corresponding to that mode in
figure 20(a) intersects on the dispersion curve for the mode A1 in a region where the
group velocity, albeit negative, differs strongly from −a0, and this line in figure 20(b)
is too far below the dispersion curve for the mode H1.
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An additional indirect evidence of the role of the neutral acoustic wave modes in
the upstream part of feedback loop is provided by the amplitude fields obtained for
the pressure at the frequencies of the tones associated with axisymmetric oscillations.
For JetL8, for instance, the levels are very small along a line around r = 0.5r0 for
St3 = 0.365 and St4 = 0.445 in figure 12(c–d), which is not true for St1 = 0.205
in figure 12(a). This is consistent with the eigenfunction distributions of the neutral
acoustic wave modes A2 and A1, given by Tam & Ahuja (1990) for Mj= 1.4, which
reach a zero value at r= 0.5r0 in the former case, but not in the latter.

3.4. Upstream-propagating waves in the jets
An attempt is now made to directly detect the upstream-propagating waves mentioned
above in the present jets, as recently done by Towne et al. (2016) in the potential
core of subsonic free jets. For that purpose, the LES pressure and density fields
are re-examined, and pressure spectra are computed in the frequency–wavenumber
space.

Snapshots of the pressure obtained for JetL12 in the (z, r) plane over 06 z6 4r0 are
provided in figure 22 at twelve consecutive times separated by 0.28r0/uj or 0.22r0/a0.
A weak shock cell structure appears to form near the nozzle exit, as suggested
previously by the centreline profile of mean velocity of figure 5. Kelvin–Helmholtz
instability waves also develop and travel downstream in the jet shear layers. More
importantly, waves are clearly found to propagate upstream inside the supersonic jet
core. These waves are also well visible in the density fields of the four jets, which
are given in movie 1 available as supplementary material. They look like oblique
waves trapped inside the jet column. Some of these waves seem symmetric with
respect to the jet axis as in figure 22(a–d), or antisymmetric as in figure 22(h–l).

The pressure signals acquired for JetL12 on the jet axis just downstream of the
shock cell are depicted in figure 23 at the first four times considered in figure 22.
A peak is noted to move in the upstream direction. It is consecutively located at
z = 2.16r0, 1.94r0, 1.66r0 and 1.40r0, yielding an average displacement of 0.25r0
between two snapshots separated by a time period of 0.22r0/a0. This indicates a
wave propagation at a phase velocity close to the ambient speed of sound.

In order to characterize the properties of the upstream-propagating waves in jetL12
more precisely, a space–time Fourier transform has been applied to the pressure
fluctuations at r = 0 and r = r0, between z = 0 and z = L − 2r0. The spectrum
calculated on the jet axis is represented in figure 24 as a function of the Strouhal
number and the wavenumber. Only the negative wavenumber part of the spectrum is
shown. Significantly levels are found along bands resembling the dispersion relations
of the axisymmetric acoustic wave modes A1, A2 and A3 of a jet at Mj = 1.5,
which are also plotted in the figure. These bands are slightly above the theoretical
curves, which is likely due to the hypothesis of an infinitely thin shear layer in the
vortex-sheet model, as discussed in the Appendix. Strong levels also appear along the
line k=−ω/a0 at specific frequencies, in particular at the tone Strouhal numbers St1
and St4 associated with axisymmetric jet oscillations. On the contrary, the levels are
weak at the tone Strouhal numbers St2 and St3 associated with helical oscillations, as
expected on the jet axis.

The pressure spectra determined at r= r0 for JetL12 for the azimuthal modes n= 0
and n = 1 are represented in figure 25 as a function of the Strouhal number and
the wavenumber. The levels are lower than on the jet axis, which is in line with the
eigenfunction distributions of the neutral acoustic wave modes (Tam & Ahuja 1990).
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FIGURE 22. (Colour online) Representation of the pressure p− p0 obtained at θ = 0 and
π for JetL12 at twelve consecutive times separated by 0.28r0/uj, from (a) to (l), using a
colour scale ranging from −2500 to 2500 Pa from blue to red. Some waves propagating
in the upstream direction inside the jet are marked by arrows.
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FIGURE 23. Profiles of pressure p− p0 obtained at r= 0 between z= 1.2r0 and z= 2.4r0
for JetL12 at ——, , — — — and the four consecutive times considered in
figure 22(a–d).

However, as previously, peak levels are reached along the line k=−ω/a0 at the tone
Strouhal numbers St1 and St4 in figure 25(a) and St2 and St3 in figure 25(b). Therefore,
at the frequencies of the axisymmetric and helical tones, there exist axisymmetric
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1.5; – – – k=−ω/a0; LES tone frequencies associated with6 axisymmetric and ∗ helical
modes. The colour scale levels spread over 30 dB from blue to red.
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FIGURE 25. (Colour online) Frequency–wavenumber spectra of pressure fluctuations at
r = r0 between z= 0 and z= L− 2r0 for JetL12 for the azimuthal modes (a) n= 0 and
(b) n= 1; —— dispersion relations of the axisymmetric neutral acoustic wave modes for
an ideally expanded round jet at Mj = 1.5; – – – k = −ω/a0; and LES tone frequencies
associated with6 axisymmetric and ∗ helical modes. The colour scale levels spread over
30 dB from blue to red, with a −6 dB shift compared to figure 24.

and helical waves, respectively, which propagate in the shear layers in the upstream
direction at the phase speed a0. These waves are very likely to close the feedback
loop just downstream of the nozzle exit, thus exciting the instability waves observed
in the shear-layer velocity spectra of figure 8.

4. Conclusion
In this paper, the production of tones by ideally expanded supersonic round jets at

a Mach number of 1.5 and a Reynolds number of 6× 104 impinging on a flat plate
at four distances from the nozzle between 6 and 12 nozzle radii has been investigated.
With this aim in view, the results of large-eddy simulations and of different models of
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the aeroacoustic feedback mechanism responsible for the tones are compared. Upwind-
propagating acoustic waves probably closing the feedback loop are also detected in the
simulated jets, for the first time to the best of our knowledge for a supersonic jet flow.

In a first step, the main characteristics of the flow fields obtained by LES, including
velocity spectra and convection velocity in the shear layers, are presented. The near
pressure fields are then explored using Fourier transform. Standing-wave patterns
and axisymmetric or helical oscillation modes are observed at the tone frequencies.
In a second step, the predictions obtained from the classical feedback model, in
which the feedback loop is closed by acoustic waves travelling outside the jets, and
those provided by an analysis of the upstream-propagating subsonic acoustic wave
modes of the jets are shown. Overall, they are in fair agreement with the LES
data. More interestingly, it is found that combining the feedback model and the
wave analysis allows us to determine the tone frequencies, the mode number of the
feedback loop, and the axisymmetric or helical nature of the jet oscillation modes,
but also the probability of the tones to emerge. Indeed, a tone at a certain frequency
appears likely to be generated when at this frequency there exists, based on the wave
analysis, upstream-propagating acoustic waves with a group velocity and a phase
velocity very close to the ambient sound speed. Such waves are clearly identified
in the flow fields of the present ideally expanded impinging jets, and characterized
using frequency–wavenumber spectra of pressure along the jet axis and the nozzle lip
line. These results suggest that the feedback loop is closed by acoustic (instability)
waves of the jets travelling upstream at the ambient speed of sound inside the flow,
but also outside for supersonic jets (Tam & Ahuja 1990).

Acknowledgements
This work was granted access to the High-Performance-Computing resources of

FLMSN (Fédération Lyonnaise de Modélisation et Sciences Numériques), partner
of EQUIPEX EQUIP@MESO, and of CINES (Centre Informatique National de
l’Enseignement Supérieur), and IDRIS (Institut du Développement et des Ressources
en Informatique Scientifique) under the allocation 2016-2a0204 made by GENCI
(Grand Equipement National de Calcul Intensif). It was performed within the
framework of the Labex CeLyA of Université de Lyon, operated by the French
National Research Agency (grant no. ANR-10-LABX-0060/ANR-11-IDEX-0007).

Supplementary movie
A supplementary movie is available at https://doi.org/10.1017/jfm.2017.334.

Appendix
In order to examine the influence of the thickness of the jet mixing layer on

the dispersion relations of the upwind-propagating acoustic wave modes, the results
provided by the simulations of two temporally developing axisymmetric mixing layers
are presented in this appendix. The mixing layers are characterized by the same
conditions as the jet considered in this paper, including a Mach number of 1.5 and a
Reynolds number of 6× 104. They are initially defined by hyperbolic-tangent velocity
profiles of momentum thicknesses equal to δθ = 0.016r0 and δθ = 0.12r0. These values
corresponds to those measured in the present impinging jets, respectively, at z= 0 and
farther downstream at z ' 5r0, that is, at the nozzle exit and approximately midway
between the nozzle and the flat plate for JetL10 and JetL12, refer to figure 5(b).
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FIGURE 26. (Colour online) Representation of (a) vorticity norm and (b) pressure
fluctuations p−〈p〉 obtained at t= 6.25r0/uj for the mixing layer of momentum thickness
δθ = 0.016r0. The colour scales range up to −18.75× r0/uj for vorticity, and from −0.04
up to 0.04 Pa for pressure.

(a) (b)1.5

0

–1.5

1.5

0

–1.5
0 1.5 3.0 4.5 6.0 0 1.5 3.0 4.5 6.0

FIGURE 27. (Colour online) Representation of (a) vorticity norm and (b) pressure
fluctuations p− 〈p〉 obtained at t= 15r0/uj for the mixing layer of momentum thickness
δθ = 0.12r0. The colour scales range up to −2.5× r0/uj for vorticity, and from −0.04 up
to 0.04 Pa for pressure.

Random pressure fluctuations of a maximum amplitude of 1 Pa are also added at
time t= 0 in the jets for r 6 0.5r0 in order to excite the jet acoustic wave modes.

The numerical framework is identical to that used in the recent computations of
a temporal subsonic round jet (Bogey 2017). The simulations are performed using
a cylindrical grid extending up to z = 500r0 in the axial direction and out to r =
10r0 in the radial direction. The grid contains nr × nθ × nz = 279 × 256 × 20 000
points, yielding, in particular, a mesh size of 1z= 0.025r0 in the axial direction. The
total number of iterations is equal to 815 for δθ = 0.016r0 and 1950 for δθ = 0.12r0,
allowing us to reach a final time of t = 6.25r0/uj in the first case and t = 15r0/uj

in the second case. At that times, given the weak initial forcing of the jet flow, the
mixing layers are still laminar, as illustrated by the vorticity fields of figures 26(a)
and 27(a). Instability waves are however visible in the pressure fields of figures 26(b)
and 27(b). They consist of Kelvin–Helmholtz instability waves in the mixing layers,
and of pressure waves confined inside the supersonic jet core. The latter are the waves
of interest here.

A space–time Fourier transform has been applied to the pressure fluctuations on the
lines at r = 0, 0.1r0, 0.2r0, 0.3r0, 0.4r0 and 0.5r0. In time, the Fourier transform is
performed using the full signals from t= 0 to t= 6.25r0/uj for δθ = 0.016r0 and from
t= 0 to t= 15r0/uj for δθ = 0.12r0, without windowing function. The spectra obtained
for the azimuthal modes n = 0 and n = 1 by averaging the results at the six radial
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azimuthal modes (a) n= 0 and (b) n= 1; —— dispersion relations of the axisymmetric
neutral acoustic wave modes for an ideally expanded round jet at Mj = 1.5; – – – k =
−ω/a0. The colour scale levels spread over 30 dB from blue to red.
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FIGURE 29. (Colour online) Frequency–wavenumber spectra of pressure fluctuations in
a temporal axisymmetric mixing layer of initial momentum thickness δθ = 0.12r0 for the
azimuthal modes (a) n= 0 and (b) n= 1; same lines as and colour scale range 7 dB lower
than in figure 28.

locations are represented in figures 28 and 29 as functions of the Strouhal number and
the wavenumber. Only the negative wavenumber part of the spectra are shown. The
dispersion relations of the acoustic neutral wave modes determined using the vortex-
sheet model for a jet at Mj = 1.5 are also displayed. For the temporal jet with δθ =
0.016r0 in figure 28, despite the very short duration of the pressure signal, significant
levels are found along bands centred around the theoretical dispersion relation curves.
The use of the vortex-sheet model thus appears well appropriate in this case. For the
temporal jet with δθ = 0.12r0 in figure 29, the bands given by the simulation are
slightly above the theoretical curves, especially for wavenumbers kD < −10. These
results are consistent with the findings of Tam & Ahuja (1990) for a jet at Mj= 0.8.
Above all, they are very similar to those observed in figure 24 for JetL12, which is not
surprising given that δθ =0.12r0 corresponds roughly to the mean shear-layer thickness
between the nozzle exit and the flat plate in JetL12. The vortex-sheet model however
remains a good first approximation in that case.
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