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How important is the seizure onset zone for seizure dynamics?
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A B S T R A C T

Purpose: Research into epileptic networks has recently allowed deeper insights into the epileptic

process. Here we investigated the importance of individual network nodes for seizure dynamics.

Methods: We analysed intracranial electroencephalographic recordings of 86 focal seizures with

different anatomical onset locations. With time-resolved correlation analyses, we derived a sequence of

weighted epileptic networks spanning the pre-ictal, ictal, and post-ictal period, and each recording site

represents a network node. We assessed node importance with commonly used centrality indices that

take into account different network properties.

Results: A high variability of temporal evolution of node importance was observed, both intra- and

interindividually. Nevertheless, nodes near and far off the seizure onset zone (SOZ) were rated as most

important for seizure dynamics more often (65% of cases) than nodes from within the SOZ (35% of cases).

Conclusion: Our findings underline the high relevance of brain outside of the SOZ but within the large-

scale epileptic network for seizure dynamics. Knowledge about these network constituents may

elucidate targets for individualised therapeutic interventions that aim at preventing seizure generation

and spread.

� 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Seizure

jou r nal h o mep age: w ww.els evier . co m/lo c ate /ys eiz
1. Introduction

Research over the last decade has provided strong evidence for
the existence of epileptic (also referred to as epileptogenic)
networks comprising cortical and subcortical areas in the genesis
and expression of not only primary generalised but also focal onset
seizures,1–3 which has led to new concepts and terminology for
classifying seizures and epilepsies.4 A network (or graph) is usually
considered as a set of nodes and a set of links, connecting the
nodes. Functional (or interaction) brain networks can be derived
from measurements of neural activity, and the connectedness
between any pair of brain regions (nodes) can be assessed by
evaluating interdependencies between their neural activities.

In addition to investigating structural alterations of epileptic
brain networks, studies of functional alterations that make use of
electroencephalographic recordings have identified network
properties that provide new insights into global aspects of seizure
dynamics 5–9 and the inter-ictal state.10–13 In the majority of
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studies, methods from graph theory 14,15 had been employed
which allow one to characterise global properties such as the
clustering in an epileptic network, its efficiency to transport
information, or the stability of the globally synchronised state.

There are by now only a few studies that investigated the
relevance of local network properties for the dynamics of focal
seizures.5,16–18 The importance of nodes and links within the
network is usually assessed with so-called centrality indices, and
each of these indices characterises importance differently by
taking into account the diverse roles nodes or links play in a
network.19–24 For patients with seizures arising from neocortex 16

or from focal cortical dysplasias,17 most important network nodes
have mainly been observed to coincide with the seizure onset zone
(SOZ). These nodes have been interpreted as so-called network
hubs that are assumed to play a leading role in the generation
and propagation of ictal activity.16,17 These findings, however,
may be debated taking into account shortcomings of previous
investigations (such as a limited number of seizures, a limited
number of investigated brain regions, or usage of only one or a few
centrality indices) as well as the many previous studies that
reported on the high relevance of brain outside of the SOZ for
seizure dynamics.25,26,5,27–30
served.
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Here, we investigated the importance of nodes in large-scale
epileptic networks, derived from a large, heterogeneous set of focal
seizures with different anatomical onset locations. By employing
different but commonly used centrality indices,31 we aimed at
assessing a more comprehensive characterisation of importance of
the SOZ, its neighbourhood, and of all other investigated brain
regions during the pre-ictal, ictal, and post-ictal period. Our
findings complement previous studies and extend the understand-
ing on the role of different brain regions in the generation,
propagation, and termination of seizures in large-scale epileptic
networks.

2. Methods

2.1. Clinical data

The 52 patients (20 women, 32 men; mean age at the time of
presurgical evaluation 36 � 12 years, range 12–65; mean duration of
epilepsy 24 � 14 years, range 2–58) included in this retrospective
study suffered from pharmacoresistant focal epilepsy with different
anatomical onset locations that required invasive monitoring with
intrahippocampal depth electrodes and subdural grid- and strip-
electrodes (all manufactured by AD-TECH, WI, USA). Decisions
regarding electrode placement were purely clinically driven and
were made independently of this study. All patients signed informed
consent that their clinical data might be used and published for
research purposes. The study protocol had previously been approved
by the ethics committee of the University of Bonn.

We analysed intracranial electroencephalographic (iEEG)
recordings of 86 epileptic seizures, which were part of previous
analyses.6,32 They included 38 seizures with mesial-temporal,
22 with extra-mesial temporal, 19 with frontal, 5 with occipital
and 2 with parietal lobe onset. There were 46 complex partial
seizures without and 40 with secondary generalization as judged
by studying seizure semiology on the accompanying video.

Using a Stellate Harmonie recording system (Stellate, Montreal,
Canada; amplifiers constructed by Schwarzer GmbH, Munich,
Germany) iEEG signals from, on average, 66 electrodes (range 26–
124) were band-pass filtered between 0.1 and 70 Hz, sampled at
200 Hz using a 16 bit A/D converter, and referenced against the
average of two electrode contacts outside the focal region.
Reference contacts were chosen independently for each patient.

The peri-ictal recordings lasted, on average, 451 s (range 112–
1702 s). The mean seizure duration amounted to 120.2 s (range
33.8–395.8 s), with seizure onsets and endings detected fully
automatically using the method described by Schindler et al.32 We
assigned electrode contacts to three location categories, thereby
making use of knowledge concerning location and extent of the
SOZ, which is defined as the contacts where first ictal discharges
were recorded.33 Category f (focal) comprised all contacts located
within the SOZ (on average 17.8% (2.6–52.4) of all contacts over all
seizures and contacts) and category n (nearby) those contacts not
more than two contacts distant to those from f (20.5% (1.0–96.0)).
All remaining contacts were assigned to category o (other; 61.7%
(0–93.0)).

2.2. Construction of functional networks

In order to construct functional networks from iEEG recordings,
we associated each electrode contact with a network node and
defined functional links between any pair of nodes i and j—
regardless of their anatomical connectivity—using the cross-
correlation function (see Appendix A) as a simple and most
commonly used measure for interdependence between two
signals.6,34 iEEG data of each window were normalised to zero
mean and unit variance. With a sliding-window approach (2.5 s
window duration, 500 sampling points; no overlap) we calculated,
for each seizure recording, a sequence of undirected, weighted
functional networks spanning the pre-ictal, ictal, and post-ictal
period.

2.3. Assessing node importance with centrality indices

Centrality indices (for details of calculation, see Appendix B)
variously assess importance of individual nodes by considering e.g.
a node’s connectedness to other parts of the network or by its
capability to influence other nodes through short paths. Degree
centrality (or strength centrality (CS) in case of a weighted
network) is defined as the number of links (or the sum of their
weights) incident upon a node. A node with a high CS is important
since it interacts with many other nodes in the network.
Eigenvector centrality (CE) recursively determines importance of
a node not only on the basis of its links to other nodes, but also with
respect to how those other nodes are linked (and so on). A node
with high CE is important since it has links to many other nodes
that are themselves highly linked and central within the network.
Closeness centrality (CC) expresses the average geodesic (i. e.,
shortest path) distance of a node to all other nodes. A node with
high CC is important since it can reach all other nodes in the
network via short paths and may thus exert more direct influence
over the nodes. Betweenness centrality (CB) is defined as the
fraction of shortest paths between pairs of nodes that pass through
a given node. A node with high CB is important since it connects
different regions of the network by acting as a bridge and thus can
control the information flow in the network.

The complex spatial and temporal changes in frequency content
are known to influence statistical properties of functional net-
works—such as clustering coefficient, average shortest path length
and betweenness centrality—derived from seizure recordings.8,16

In order to avoid spurious centrality estimates, that can trivially be
related to spectral properties of the iEEG recording we applied a
correction scheme (for details, see Appendix C), and in the
following, we refer to these corrected centrality indices.

3. Results

With our analyses we observed a high variability of the various
centrality indices for nodes in functional networks spanning the
pre-ictal, ictal, and post-ictal period. In Fig. 1 we show, for each
centrality index, temporal evolutions of the centrality values of a
node from each of the three location categories for two focal
seizures. From the nodes within each category, we show data from
the one with highest average centrality over the course of the
seizure. Interestingly, although the employed centrality indices
rated importance of nodes differently, there was a rather close
relationship between the temporal evolutions of CS, CC , and CE

(Pearson correlation coefficients ranged between 0.85 and 1.00)
and these indices rated the same node from each location category
as most important (highest respective centrality value). In
contrast, CB behaved differently and, with this centrality index,
some prominent peaks could be observed for a node from the SOZ
(category f) during both seizures.

During the course of the seizures, none of the sampled brain
regions was rated as most and constantly important. We note that
neither the described temporal evolutions of node centralities nor
some prominent features could be regarded as exemplary for all
investigated seizures. Nevertheless, the observed relationships
between centrality indices were quite stable over all seizures
(Pearson correlation coefficients (means and standard deviations);
ðCS; CEÞ : 0:99 � 0:00; ðCS; CCÞ : 0:89 � 0:18; ðCS; CBÞ : 0:20 � 0:14;

ðCE; CCÞ : 0:87 � 0:18; ðCE; CBÞ : 0:18 � 0:15; ðCC ; CBÞ : 0:21 � 0:15Þ .



Fig. 1. (A) Schematics of implanted electrodes from a patient with left extra-mesial temporal SOZ (left) and from a patient with right mesial temporal SOZ (right). Colors

indicate location categories to which electrode contacts (nodes) belong: SOZ ( f), black; nearby (n), orange (light grey); other (o), green (dark grey). (B) Temporal evolutions of

centrality indices (top to bottom: eigenvector centrality (CE), strength centrality (CS), closeness centrality (CC ), and betweenness centrality (CB)) of selected nodes from the

location categories. From each category the node with the highest average centrality during the ictal phase was selected. Colors as in (A). The grey vertical lines indicate the

beginning and end of the seizure. For readability, time profiles are smoothed using a moving average (three-point). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Due to the strong relationships observed for CS and CE, we restrict the
following presentations to data obtained with CS; CC , and CB.

Because of the high variability of temporal evolutions of node
centralities and taking into account the different durations of
seizures investigated here, we partitioned each seizure into five
equidistant time bins and, in addition, regarded a pre-ictal and a
post-ictal bin with a duration that corresponded to a seizure bin.6,8

For each centrality index, we assigned the time-dependent
centrality values to the respective time bins. In order to control
for the different numbers of electrode contacts across location
categories, we then determined, for each location category and
each time bin, the third quartile of the respective distribution of
centrality values. Eventually, we regarded the category with the
highest third quartile value as the most important category for that
time bin.

In Fig. 2, we show how often which brain region (location
category) is indicated as most important over the course of the
86 seizures. Strength centrality CS indicated the SOZ (category f)
and its neighbourhood (category n) to attain highest importance
approximately equally often (in about 30–40% of cases), with only
minor differences as seizures evolved. Other brain regions
(category o) were rated most important in only about 20–25% of
cases, except during the middle phase of seizures, where
importance frequency increased above 30%.

Interestingly, although we observed the relationship between
strength CS and closeness centrality CC to be quite high, the latter
index rated brain regions neighbouring the SOZ (i.e., from category
n) as most important in about 40–45% of cases. Importance
frequency of these nodes was rather stable as seizures evolved. The
SOZ (category f) and other brain regions (category o) were rated as
most important only in about 20–30% of cases, both pre-ictally and
up to the middle phase of seizures. Towards the end of seizures and
extending into the post-ictal phase, importance frequencies of the
SOZ and other brain regions exhibited divergent trends, with the
former slightly increasing up to 35% and the latter slightly
decreasing down to 20% of cases.

With betweenness centrality CB, we attained a completely
different picture. Pre-ictally, brain regions neighbouring the SOZ
(i.e., from category n) were rated most important in more than half
the cases (around 55%). As seizures evolved, the high abundance of
these nodes decreased, reaching a minimum importance frequency
of about 35% at seizure ending and then slightly increased again
to about 40% post-ictally. In contrast, in only about 25% of cases
was the SOZ (category f) rated most important pre-ictally, but



Fig. 2. Frequencies with which brain regions (seizure onset zone (f), black; nearby

(n), orange (light grey); other (o), green (dark grey)) are indicated as most important

for pre-seizure, discretised seizure, and post-seizure time periods using strength

(CS , top), closeness (CC , middle), and betweenness centrality (CB , bottom). Seizures

were partitioned into five equidistant time bins. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)
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importance frequency increased up to 45% towards the last quarter
phase of the seizures. At the end of the seizures and extending into
the post-ictal period, importances of the SOZ and its neighbour-
hood were rated with around the same frequency. In only 10–15%
of cases were other brain areas (category o) rated as most
important, except for the end of seizures, where importance
frequency increased up to 25%.

4. Discussion

We investigated the importance of different brain regions in
large-scale epileptic networks derived from multichannel iEEG
recordings for the generation, propagation, and termination of
86 focal seizures with different anatomical onset locations.
Importance of network nodes can be characterised with various
centrality indices,19–24 but it is not yet clear, which index is best
suited for a characterisation of peri-ictal network dynamics. We
therefore decided to employ indices that had been used most often
in other network studies, namely strength (or degree), closeness,
betweenness, and eigenvector centrality. Previous studies that
also investigated the importance of brain regions in large-scale
epileptic networks employed at least two indices.5,17

This study revealed three main findings. First we observed a
high temporal variability of node importance in epileptic networks
spanning the pre-ictal, ictal, and post-ictal period. Second, in about
65% of seizures, nodes off the clinically defined SOZ were
identified—on average—as most important throughout the course
of the seizure, while nodes from the SOZ were indicated as
important in only 35% of cases. Third, we observed rather strong
correlations between strength, closeness, and eigenvector central-
ity, while betweenness centrality behaved differently from the
other three indices.

4.1. Temporal variability of centrality indices

The temporal variability of centrality indices in epileptic
networks spanning the pre-ictal, ictal, and post-ictal period was
high both inter- and intraindividually. We investigated a number
of potentially influencing factors such as seizure type (with and
without secondary generalisation), the vigilance states seizures
arose off, and the anatomical location of the SOZ (data not shown).
None of these factors appeared indicative of the temporal
variability. Moreover, different seizures from the same patient
sometimes yielded similar temporal evolutions of centrality
indices and sometimes very different ones. We also checked a
possible impact of some crucial steps of analysis (such as
normalisation of the interaction matrix (see Appendix A) or the
surrogate correction) but the temporal variability was conserved
even without these steps.

Yet our findings are in line with previous observations by
Kramer et al.5 who reported on similar temporal evolutions of
centrality indices during seizures from four patients. The high
temporal variability seen intra- and interindividually possibly
points to crucial but as yet only poorly understood spatial and
temporal aspects of seizures. These aspects may not be fully
identifiable with analysis techniques that characterise seizure
dynamics only locally 35 or through global, large-scale interac-
tions,32,36 but may be better assessable with techniques that take
into account local properties within the context of an interaction
network.37,9

4.2. Importance of the seizure onset zone

In contrast to previous studies,16,17 which reported most
important network nodes to coincide with the seizure onset zone,
our investigations indicated the latter to be, in general, neither
more nor less often important than other nodes in epileptic
networks spanning the pre-ictal, ictal, and post-ictal period. This
discrepancy might be due to the applied methodology to derive
network links (directed vs. weighted), the higher number of
seizures from a higher number of patients investigated here as well
as due to a higher number of recording sites which leads to
networks of vastly increased size (i.e., number of nodes). Moreover,
we considered focal seizures with different anatomical onset
locations.

Our findings are, however, in line with previous reports on the
high relevance of brain outside of the SOZ but within the epileptic
network for seizure dynamics.25,26,5,27–30 Particularly brain areas
neighbouring the SOZ were most often rated as important (using
betweenness centrality) pre-ictally and during the first half of a
seizure which would characterize these non-focal nearby struc-
tures as a bridge between the SOZ and other brain regions. This
would support previous reports on a decoupling of the SOZ from the
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rest of the brain that has been observed interictally,38,39,3

pre-ictally,40–43 and at seizure onset.44–46 One might speculate,
whether network nodes that were identified as most important for
seizure dynamics but were located far off the SOZ (on average, in
23% of cases) could serve as target for resective therapies,
particularly in cases where the SOZ is located within or close to
eloquent cortex and thus can not be accessed surgically (see,
however, 47). Moreover, these nodes and in particular brain areas
neighbouring the SOZ might also serve as target for novel
therapeutic intervention in order to prevent or abort ictal
activities.48,49 Nodes neighbouring the SOZ were rated as most
important pre-ictally in up to 60% of cases, and we might thus
hypothesise that they not only facilitate seizure generation but
may be a better target for prevention strategies. For these
alternative therapy options to become feasible, however, meth-
odological improvement as well as prospective studies are needed,
including studies on the importance of network nodes during the
interictal state. On the other hand, since importance frequency of
the SOZ increased towards the end of the seizures, we might
further hypothesise that this brain region plays a role not only in
seizure spread but also in seizure termination. A better under-
standing of large-scale interactions underlying seizure dynamics in
epileptic networks may elucidate targets for treatments that aim
at preventing or at least confining seizure spread, which has
devastating consequences for patient safety and quality of life.50

4.3. Similarities and differences between centrality indices

Although the centrality indices employed here rate node
importance differently, we observed a very strong correlation
between strength and eigenvector centrality, and to a lesser extent
also between strength and closeness centrality. This finding is in
line with previous studies that reported on similar correlations,
although for networks of different origin.51,52 Betweenness
centrality behaved differently from the other indices, although
betweenness and closeness centrality rely on the concept of
shortest paths. Betweenness centrality identifies nodes as most
important that are between most other network nodes, but it
remains to be shown whether nodes identified as important with
this index indeed facilitate seizure dynamics. Given the fact that a
number of electrode contacts usually comprise the SOZ, it also
remains to be shown whether other centrality indices are better
suited to identify important nodes in epileptic networks.

4.4. Limitations of the study

With intracranial recordings, access to brain regions other than
those suspected to be involved in the epileptic process is limited,
thus undersampling bias is inevitable. Since electrode placements
were driven by clinical needs in each patient and were thus not
standardised, an electroencephalographic signal is not represen-
tative of exactly the same anatomic regions in each patient. In
addition, different number of electrodes lead to networks of
different size, and it is not yet clear how exactly this affects global
and local network indices and how to compare such networks.53,54

Our patients received different antiepileptic drugs (AED) with
different mechanisms of action, and the majority of patients were
under combination therapy with two or more AED. It is, however,
not known if and to what extent AED affect the global and local
properties of epileptic networks.

5. Conclusion

In summary, our study suggests that in only a limited number of
cases, the SOZ can be regarded important for the generation,
propagation, and termination of seizures. Monitoring the
importance of other brain regions that together with the SOZ
constitute the epileptic network, can help to identify network
nodes, which are crucial for seizure facilitation and termination
and can thus be regarded as potential targets for individualised
focal therapies.
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Appendix A. Interaction matrix

Given iEEG signals xi(t) and xj(t) from electrodes i and j (i, j = 1, . . .,
N), normalised such that each has zero mean and unit variance,
the normalised maximum-lag correlation reads

Iij ¼ max
t

Kðxi; x jÞðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðxi; xiÞð0ÞKðx j; x jÞð0Þ

p
�����

�����
( )

; (A.1)

with the cross-correlation function

Kðxi; x jÞðtÞ ¼
XT�t

t¼1

xiðt þ tÞx jðtÞ; t � 0

Kðx j; xiÞð�tÞ; t < 0:

8><
>: (A.2)

This function yields high values for such time lags t for which
iEEG signals xi(t + t) and xj(t) have a similar course in time.
Calculating Iij for all pairs (i, j) of electrodes, we derive a symmetric
weighted interaction matrix I with entries Iij and size N � N, which
is usually interpreted as an undirected weighted network.15 For
i = j we set Iij = 0 to avoid self-connections. In order to rule out a
possible influence of the mean strength of interaction,11,55 we
normalise the interaction matrix I such that it represents a
weighted network with a mean weight of 1, by dividing each
element Iij by the mean weight of I.

Appendix B. Centralities

Strength centrality CS of node i is defined as56

CSðiÞ ¼
P

jIij

N � 1
: (B.1)

It can be regarded as a weighted version of degree centrality, which
is not a sensible measure for a weighted network in which all links
exist (but might have a small weight).

Closeness centrality CC of node i is defined as:

CCðiÞ ¼ N � 1P
jdij

; (B.2)

where dij is the length of the shortest path between nodes i and
j. On a weighted network, paths can be defined by assuming the
length dij to vary inversely with its weight Iij.

11,16

Betweenness centrality CB of node i is defined as:

CBðiÞ ¼ 2

ðN � 1ÞðN � 2Þ
XN

h ¼ 0
h 6¼ i; j

XN

j ¼ 0
j 6¼ i

hhjðiÞ
hhj

; (B.3)
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with hhj the number of all shortest paths between the nodes h and j

and hhj(i) is the number of these paths running through node i. We
used the algorithm proposed by Brandes57 to estimate CC and CB.

Eigenvector centrality CE of node i is defined as the ith entry of
the eigenvector~v (v(i)) corresponding to the dominant eigenvalue
lmax of the weighted interaction matrix I:

CEðiÞ ¼ vðiÞ; (B.4)

which we derive from the eigenvector equation I~v ¼ l~v using the
power iteration method.

Appendix C. Surrogate correction

Not taking into account spectral properties of the iEEG recording
can result in spurious centrality estimates. In order to minimise the
influence of the power spectrum we applied a surrogate correction
proposed by Bialonski et al.8 and by Bialonski and Lehnertz.9 To
this end, we generated, for each iEEG recording from each
electrode contact, 20 surrogate time series,58 which have power
spectral contents and amplitude distributions that are practically
indistinguishable from those of iEEG recording but are otherwise
random. Amplitudes are iteratively permuted while the power
spectrum of each iEEG recording is approximately preserved. This
randomization scheme destroys any significant linear or non-linear
dependencies between iEEG recordings. Eventually, we performed
the same steps of analysis (construction of functional networks and
calculation of centrality indices) as described above. For all nodes in
each network, we corrected the centrality indices by subtracting the
respective mean values derived from the surrogate analyses.
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