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Abstract

The holographic RG flow in AdS/CFT correspondence naturally defines a holographic scheme
in which the central charge c and the beta function are related by the formula ċ = −2cβaβbG

ab,
where Gab is the metric of the kinetic term of the supergravity scalars. In particular, the
metric in the space of couplings is fab = 2cGab. We perform some checks of that result and we
compare it with the quantum field theory expectations. We discuss alternative definitions of the
c-function. In particular, we compare, for a particular supersymmetric flow, the holographic
c-function with the central charge computed directly from the two-point function of the stress-
energy tensor.
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In this letter, we discuss the properties of the c-function proposed in ref. [1] using the

“holographic” supergravity/gauge theory correspondence. We also directly compute the

c-function using the correlator of two stress-energy tensors, always using the holographic

correspondence, and compare the two definitions. We explain why the two definitions

are compatible (in particular, both positive and interpolating monotonically between the

critical values) even though they are not equal.

In conformal field theories that admit a supergravity dual at large N it is well known

that c = a up to O(1/N2) [2], c and a denoting the two basic central charges (see for

instance [3]). The subset of c = a conformal field theories shares many properties with

two dimensional conformal field theory [4]. We recall that using 5-d gauged supergravity

one usually studies massive (IR relevant) flows [1, 5, 6, 7, 8, 9].

A candidate c-function, decreasing along the RG flow was proposed in [1, 8]. In the

notation of [1] the c-function is:

c = const. (Tyy)
−3/2 =

(
dφ

dy

)−3

, (1)

Where φ is the scale factor of the 5-d supergravity metric, and y is its radial coordinate:

ds2 = dy2 + exp(2φ)dxµdx
µ.

The equations for a holographic RG flow generated by one of the perturbations that

can be studied within 5-d gauged supergravity are, in the notations of ref. [1] 1:

d

dy

(
e4φGab

dλb

dy

)
= e4φ ∂V

∂λa
, 6

(
dφ

dy

)2

=
∑
ab

Gab
dλa

dy

dλb

dy
− 2V. (2)

Here λa denotes the 42 scalars of 5-d N=8 gauged supergravity, and Gab denotes the

metric of their kinetic term. From now on we will set for simplicity and with no loss of

generality Gab = δab.

These equations imply, in particular, that the second derivative of φ does not depend

on the potential V :

d2φ

dy2
= −2

3

∑
a

(
dλa

dy

)2

.

We also have
dc

dφ
= −3

(
dφ

dy

)−5
d2φ

dy2
= 2c

∑
a

(
dλa

dφ

)2

.

To obtain quantitative agreement with QFT results (see [10]) and a consistent picture of

the RG flow we must set

φ = lnµ, βa =
dλa

dφ
. (3)

1These perturbations have UV dimension 2 or 3; in gauge theory, they correspond to mass terms for
scalars and/or fermions, and trilinear terms in the scalar potential. In supergravity, they correspond to
VEVs of some of the 42 scalars in the 5-d, N=8 supergravity multiplet.
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Therefore:

ċ = − dc

dφ
= −2c

∑
a

β2
a. (4)

Let us recall a few other results from quantum field theory [11]. Defining

Θ = βaOa (5)

and

µ
d

dµ
βa = −β̇a = ∆abβb,

a theorem proved in [11] states that the critical value h∗ of the Θ-anomalous dimension,

〈Θ(x) Θ(0)〉 =
const.

|x|8+2h∗
,

equals the minimal real part of the ∆-eigenvalues, in the IR limit, and the maximal real

part of the ∆-eigenvalues in the UV limit. Note that h∗ is also the anomalous dimension

of the off-critical deformation of the theory, i.e. the operator λaOa (the deformation

being L∗ → L = L∗ + λaOa, where L∗ denotes the critical Lagrangian).

Formula (4) implies, in particular,

− c̈

2ċ
=

∑
a,b βa∆abβb∑

a β2
a

+
∑
a

β2
a. (6)

At criticality the second term vanishes, while the first term selects the minimal- or

maximal-real-part eigenvalue of the matrix ∆ab, as we now show. Note that ∆ab is

in general not symmetric. We can diagonalize it in a complex space. Let ∆ = P−1DP ,

with D = diag(δa), δa denoting the eigenvalues. Let us write, around the critical point,

βa(λ) = ∆abλb, βa(µ) = ∆ab µ
∆bckc = (P−1DµDPk)a,

kc denoting arbitrary constants. Now, in the UV limit (µ→ ∞) the behavior of the first

term of (6) is dominated by the eigenvalue of the matrix ∆ab with maximal real part.

It is dominated by the eigenvalue with minimal real part in the IR limit (µ → 0). The

imaginary parts of the eigenvalues are irrelevant phases. In conclusion, we have

− c̈

2ċ
= max Re δa in the UV, − c̈

2ċ
= min Re δa in the IR.

These are also the values of the anomalous dimensions of the operators Oa at criticality,

as proved in [11]. Therefore we have, in complete generality,

h∗ = − lim∗
c̈

2ċ
, (7)
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where the star denotes criticality.

The “anomalous dimension” h∗ denotes the deviation of the total dimension from the

reference value 4, h∗ = ∆ − 4 in the conventional notation. We can check, in complete

generality, that this quantum field theoretical prediction is correctly reproduced by the

holographic flows. Indeed, the second equation of (2) implies that, around a fixed point,

dφ

dy
=

1

R
,

R being the AdS radius, and the first of eqs. (2) gives

λ ∼ const. e−(4−∆)y/R = const. e−(4−∆)φ

At this point, it is straightforward to see that (7) gives ∆ − 4. The same can be see

from the definition of β in (3), confirming that the natural definition of holographic beta

function works correctly.

All the results described above generalize to non-canonical scalar metrics, in particular

ċ = −2cGabβaβb. (8)

We must remark that our definition of c is unique only at the critical points ċ = 0.

Away from criticality, c need not coincide with central functions defined in other ways;

indeed, it need not coincide with other holographic definitions of c, as for instance that

given in ref. [12]. This non-uniqueness even within the holographic scheme follows from

the ambiguity in the identification of φ as a function of the scale µ. Only at the critical

points, ċ = 0, is the standard identification, φ = log(µ/µ0), unique, because of the

AdS/CFT correspondence. Away from criticality, uniqueness is lost.

A canonical definition of c as a function of the scale is obtained by computing the

two point function of the stress-energy tensor using the equation [13]

〈Tµν(x)Tρσ(0)〉 = − 1

48π4

∏(2)

µνρσ

[
c(x)

x4

]
+ πµνπρσ

[
f(x)

x4

]
, (9)

where π = ∂µ∂ν − ηµν∂
2, and

∏(2)
µνρσ is the transverse-traceless spin-2 projector. We will

call this c the canonical c-function.

For a generic flow, it is impossible to compute analytically this two-point function,

even in the supergravity approximation. To the best of our knowledge, there are few

exceptions, namely, the solutions describing the Coulomb branch of the N=4 supersym-

metric gauge theory [9] and the N=1 supersymmetric flows studied in ref. [6], which

interpolate between the N=4 UV theory and an IR N=1 pure super Yang-Mills theory.

Here, we mostly consider the flow to pure N=1 YM theory. Only a few modifications

of the computation described below are required to study the N=4 Coulomb branch,

which will be briefly discussed at the end of this paper.
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The flow we shall consider corresponds to an IR vacuum with zero gaugino condensate.

By rescaling the AdS radius to R = 1 and setting the IR singularity of the metric at

y = 0 (see ref. [6] for details), the 5-d metric is completely specified by the scale factor

e2φ(y) = e2y − 1. (10)

To compute the two-point function of the transverse-traceless part of the stress-energy

tensor using the holographic correspondence, we need to solve the linearized equations

of motion for the 5-d graviton on the background specified by eq. (10). These equations

simplify dramatically for the transverse-traceless part, when they become identical with

the equations of motion of a minimally-coupled massless scalar, denoted here by χ(x).

By writing χ(x) = exp(ikµx
µ)χk we find

− d2

dy2
χk − 4φ

d

dy
χk + k2χk = 0. (11)

With the change of variable x = exp(−2y), a few elementary algebraic manipulations,

and dropping the label k, eq. (11) reduces to a standard hypergeometric equation

x(1 − x)
d2

dy2
χ− (1 + x)

d

dy
χ+ a2χ = 0, a2 ≡ −k

2

4
, (12)

whose two solutions are (cfr. [14] for notations)

χ1 = x2F (a+ 2,−a + 2; 3; x), (13)

χ2 = x2 log(x)F (a+ 2,−a + 2; 3; x) +
∞∑

n=1

[ψ(a+ n + 2) − ψ(a + 2) + ψ(−a + n + 2) +

−ψ(−a + 2) − ψ(n+ 3) + ψ(3) − ψ(n+ 1) + ψ(1)]
(a+ 2)n(−a+ 2)n

3nn!
xn+2 +

+
4

a2(a2 − 1)
− x. (14)

The linear combination of χ1, χ2 regular at x = 1 and normalized to 1 at x = 0 is

χ =
a2(a2 − 1)

4
{χ2 − [2 − ψ(a+ 2) − ψ(−a + 2) + ψ(3) + ψ(1)]χ1}. (15)

The two-point function of the stress-energy tensor is extracted from this expression in

the usual manner [15, 16]. Namely, we compare eq. (15) with eq. (9), and normalize the

central charge in the UV using formula (32) of ref. [15]. To simplify, we choose as in [15]

a Euclidean 4-momentum (k2 ≥ 0) oriented along the z coordinate, and we find

〈T̃xy(k)Txy(0)〉 = − N2

64π2
k2(k2 + 4)Reψ(2 + ik) + P (k2). (16)
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Here P (k2) denotes a polynomial in k2 which only contributes to contact terms. In the

UV this formula approaches, obviously, the pure-AdS form

〈T̃xy(k)Txy(0)〉 = − N2

64π2
k4 log(k2) + P̃ (k2). (17)

The 2-point function of the transverse-traceless part of Tµν is proportional to eq. (16),

as we noticed above. From equation (9), we can read the c-function

∫
d4xeikx c(x)

|x|4 = −π
2N2

4

k2 + 4

k2
Reψ(2 +

ik

2
) = −π

2N2

4

∞∑
n=2

k2 + 4

n(4n2 + k2)
(18)

where we used the series expansion for ψ. In the right hand side of this equation, we

discarded any contact or trace term.

The Fourier transform can be inverted (modulo contact terms) to give a closed ex-

pression for c(x)

c(x) =
N2

2

∞∑
n=2

(n2 − 1)|x|3K1(2n|x|) =
N2

2
|x|3

∫ ∞

0

3e2x cosh t − 1

(e2x cosh t − 1)3
cosh tdt (19)

Every candidate c-function has to satisfy some crucial requirements. First of all, it must

be positive definite; this is manifest from equation (19). Second, it must coincide with

the value of the central charge at the fixed points of the RG group. This is indeed the

case. For small x, c(x) → cUV = N2/8, while for large x, c(x) ∼ x5/2e−4x → cIR = 0, as

appropriate for a confining theory. Finally, it must be monotonic. This can be checked

by an explicit computation:

ċ = x
dc

dx
=

3N2x3

2

∫ ∞

0

(3e2x cosh t − 1)(e2x cosh t − 1) − 4x cosh te4x cosh t

(e2x cosh t − 1)4
cosh tdt (20)

One can easily check that the integrand is negative definite. This is a non-trivial result

that confirms the interpretation of supergravity solutions as description of quantum field

theory RG flows.

We can compute the first terms in the small x-expansion of c(x)

c(x) = N2

[
1

8
+
x2

4
log x+O(x2)

]
(21)

Inserting this expansion into formula (7) we find correctly hUV = −1, since the deforma-

tion is generated by a fermionic mass term (∆ = 3).

The holographic c-function for the flow to pure N=1 YM is easily computed from

equation (10). With the naive identification φ = log(µ/µ0), µ0 = constant, one finds

cH(µ) =
N2

8

µ6

(µ2 + µ2
0)

3
(22)
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The c-function given by eq. (9), instead, depends non-analytically from µ ∝ 1/x

already at small x, as shown by eqs. (21) and (22). This result does not mean that

the two definitions are incompatible, rather, as pointed out before, it means that the

identification of exp(φ) with the scale µ does not hold outside of the critical points.

The computation of the function f(x) in eq. (9) would be interesting because, as

noticed in ref. [10], it is related to the derivative of c(x). Unfortunately, the computation

of f(x) can not be reduced to the one for a minimally coupled scalar field and requires

the full stress-energy tensor two point function.

We conclude with a few observations about the holographic scheme.

i) An ansatz such as ċ ∼ βk with k 6= 2 would disagree with the AdS/CFT correspon-

dence (it would not verify the check above). It would disagree also with quantum field

theory [10]. In this sense we have a consistent check of holography versus quantum field

theory.

ii) The metric f in the space of couplings [10] – i.e. the higher dimensional analogue

of the Zamolodchikov metric – is the metric of the 5-d supergravity scalars times c itself:

fab = 2cGab. (23)

Therefore, the monotonicity of c is directly implied by the positivity of c and Gab, and

vice versa. This is not completely surprising, because we can expect the metric f to

be related to the normalization of the two-point functions of scalar operators. From 5d

supergravity,

S =
∫ √

g
(
−R

4
+Gab∂λ

a∂λb
)

(24)

we can see by a simple scaling that, at least at the fixed points, where ds2 = R2[dy2 +

exp(2y)
∑

i dx
2
i ]

〈T (x)T (0)〉 =
c

|x|8 → c ∼ R3 ∼ (Λ)−3/2

〈λa(x)λb(0)〉 =
fab

|x|2∆ → fab ∼ R3Gab ∼ cGab (25)

The first equation reproduces the known result for c [2], the second one confirms equa-

tion (23).

iii) Using the arguments of [10] it is straightforward to show that (23) defines a

consistent scheme choice, at least when cIR 6= 0. We call this scheme the “holographic

scheme” and can be considered in the class of “proper” schemes of [10], in which the

metric f is set equal to a known, positive function: the identity in [10], 2cGab here. The

choice fab = δab defines the proper beta function βP and relates the total c-flow to the

area of the graph of the beta function. In the holographic scheme, instead, we have (for

Gab = δab), fab = 2cδab, i.e. the total flow of ln c is (twice) the area of the graph of

7
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Figure 1: Plot of the holographic (continuous line) versus proper (dashed line) beta

functions, the latter being defined by fab = δab, i.e. βP = βH

√
2c.

the holographic beta function. In Fig. 1 the two beta functions are compared for the

model of [6], involving the flow to the (confining) pure N=1 super-Yang Mills theory. The

holographic beta function tends to a costant in the IR, while the proper beta function

better resembles an ordinary beta function. When cIR = 0, as in our last example, it is

natural to expect that the holographic scheme (23) is still consistent, because, although

the holographic beta function tends to a constant, the metric f is zero in the “null” IR

theory. This is what our explicit computation of the Tµν correlator shows.

iv) In the presence of many couplings the formula ċ = −2cβaβbG
ab does not give all

the beta functions separately. Yet, the sum βaβbG
ab is sufficient both to fix h∗ and to

identify the fixed points. In this sense we may call

βH ≡ −
√
βaβbGab = −

√
− ċ

2c
(26)

the holographic beta function, so that ċ = −2cβ2
H. The proper beta function is instead

βP = βH

√
2c, so that ċ = −β2

P.

v) With obvious changes, various formulas above apply for the a-function of [10] in

the general case c 6= a. Indeed, the relationship between the critical exponent h∗ and the

a-function does not require inputs from the AdS/CFT correspondence and holds purely

in quantum field theory. This generalization is straightforward and left to the reader.

vi) In refs. [9], explicit formulas for the two-point function of minimally-coupled,

massless scalars in the Coulomb branch of N=4 supersymmetric gauge theory are given.

From those formulas, one can extract a c-function using the same techniques described in
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Figure 2: Plot of 8c/N2 vs x, for different cases. In the case of the flow to N=1 SYM,

the canonical c (eq. (19)) is given by the dashed line, and the holographic c (eq. (22))

is given by the dotted line. Finally, in the case of N=4 Coulomb branch, the canonical

c-function (eq. (27)) is given by the continuous line.

this paper. As an example we now briefly discuss the case of a a 4-dimensional distribution

of branes, giving rise to the two-point function described in eq. (25) of ref. [9]. Following

the same steps that led us to eq. (19) we find the central function:

c(x) =
N2

4

∞∑
n=2

(2n− 1)
√
n2 − n|x|3K1(2

√
n2 − n|x|). (27)

This function is also positive and monotonic as shown in Figure 2.

The holographic scheme is natural and simple. Other schemes and definitions for

c-functions are less natural from the point of view of the AdS/CFT correspondence, but

still have great interest in their own and give results for c = a theories that share many

properties with 2d conformal field theories. In particular, we considered the definition of

a c-function from the two-point function of the stress-energy tensor. We computed such

a c(x) for a particular supersymmetric flow. The fact that it is monotonic is a highly

non-trivial check of the AdS/CFT correspondence as well as of the fact that supergravity

solutions may be interpreted as quantum field theory RG flows. Notice that the particular

solution used in the computation is singular in the IR (as it happens for all the cases

where analytical computations of two-point functions can be performed). Nevertheless,

we obtained a sensible result, which indicates that the basic physical properties of such

solutions are not completely spoiled by the IR singularity.

We conclude by mentioning some possible extensions of this work that we find partic-
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ularly interesting. 1) To compute the two-point function for a RG flow between CFTs,

as the one connecting the N=4 theory to an IR N=1 CFT, discussed in ref. [8]. 2) To

prove in full generality that the canonical c-function is always monotonic, as it happens

for the holographic c-function. 3) To generalize formula (8) to the canonical c-function.
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