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Abstract

In flat space,γ5 and the epsilon tensor break the dimensionally continued Lorentz symmetry, but propagators ha
Lorentz invariant denominators. When the Standard Model is coupled with quantum gravityγ5 breaks the continued loca
Lorentz symmetry. I show how to deform the Einstein Lagrangian and gauge-fix the residual local Lorentz symmetry
the propagators of the graviton, the ghostsand the BRST auxiliary fields have fully Lorentz invariant denominators. This mak
the calculation of Feynman diagrams more efficient.
 2004 Elsevier B.V.Open access under CC BY license.
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The dimensional regularization technique[1,2] is
the most efficient technique for the calculation
Feynman diagrams in quantum field theory. Its m
virtue is that it is manifestly gauge invariant, wh
gauge bosons couple to fermions in a chiral inva
ant way. When gauge bosons couple to chiral curre
gauge anomalies can be generated. If the gauge anom
alies vanish at one-loop, as in the Standard Mo
then, by the Adler–Bardeen theorem[5], there exists
a subtraction scheme where they vanish at each o
of perturbation theory. This ensures internal con
tency.
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The definition ofγ5 in dimensional regularizatio
[2–4] breaks the Lorentz symmetry in the dimensio
ally continued spacetime.The calculation of Feynma
diagrams in parity violating theories is still efficien
because the continued Lorentz symmetry is not b
ken in the denominators of propagators, but only
vertices and numerators of propagators. Using ap
priate projectors, a Feynman integral can be dec
posed in a basis of scalar and fully Lorentz invari
integrals. The complication introduced byγ5 is only
algebraic and a computer can easily deal with it. C
culations have the same conceptual difficulty than
the parity invariant theories.

When the Standard Model is coupled with quant
gravity, γ5 breaks the dimensionally continuedlocal
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Lorentz symmetry. It is less obvious how to break
continued local Lorentz symmetry and maintain e
ciency in the calculation of Feynman diagrams. In t
Letter I show how this can be done.

In the vielbein formalism the Einstein Lagrangia

(1)L = 1

2κ2

√
gR

is more symmetric than the complete theory and m
be supplemented with appropriate evanescent te
It is natural to look for an arrangement of the re
ularization technique such that the denominators
propagators are fully Lorentz invariant. The symm
ric gauge is not allowed, but a derivative gauge-fix
for the residual Lorentz symmetry, combined with
certain trick for the BRST auxiliary fields, do the jo
The prescription of this Letter works in arbitrary d
mensions.

I work in the Euclidean framework. The conversi
to the Minkowskian framework is straightforward.
denote the physical spacetime dimension withD and
the continued dimension withd = D−ε. The Einstein
action(1) is SO(d) invariant, while the complete the
ory is only assumed to beSO(D) ⊗ SO(−ε) invariant.
Since no confusion can arise, the EuclideanSO(· · ·)
symmetries will be called “Lorentz” symmetries.

Before dealing with theSO(d) breaking theories i
is instructive to reformulate the regularization of pu
gravity and gravity coupled with parity invariant ma
ter. Here noSO(d) breaking occurs, yet it is conve
nient to use a derivative gauge fixing for the Lore
symmetry (rather than the symmetric gauge), becaus
it admits a straightforward generalization to the cas
of gravity coupled with parity violating matter.

The vielbein is defined as usual ind dimensions.
The curved space conventions for torsion, curvatu
covariant derivatives and connections are

Dea = dea − ωabeb = 0,

Γ ρ
µν = eρa∂µea

ν + ωab
µ ea

νeρb,

ωab
µ = 1

2

(
∂µea

ν − ∂νe
a
µ

)
eνb − 1

2

(
∂µeb

ν − ∂νe
b
µ

)
eνa

+ 1

2
gµν

(
eρb∂ρeνa − eρa∂ρeνb

)
,

Rab = 1

2
Rab

µν dxµ dxν = dωab − ωacωcb,

Rµ
νρσ = ∂σ Γ µ

νρ − ∂ρΓ µ
νσ − Γ λ

νσΓ
µ
λρ + Γ λ

νρΓ
µ
λσ ,
.

Dµψi = ∂µψi − i

4
ωab

µ σabψi + iAµψi

(2)+ Aa
µT a

ijψj + · · · .
The Ricci tensor and the scalar curvature are defi
as Rµν = Rab

µρeρbea
ν , R = Rµνg

µν , where of course
gµν = ea

µea
ν . The BRST transformations are

sea
µ = −ea

ρ∂µCρ − Cρ∂ρea
µ − Cabeb

µ,

sCρ = −Cσ ∂σ Cρ, sC̄µ = Bµ, sBµ = 0,

sCab = −CacCcb − Cρ∂ρCab,

sC̄ab = Bab − CacC̄cb − CbcC̄ac − Cρ∂ρC̄ab,

(3)sBab = −CacBcb − CbcBac − Cρ∂ρBab.

HereCµ, C̄µ, Bµ are the ghosts, antighosts and a
iliary fields of diffeomorphisms, whileCab, C̄ab, Bab

are those of theSO(d) local Lorentz symmetry.
Perturbation theory around flat space is defined

(4)ea
µ = δa

µ + φ̃a
µ.

The matrix φ̃ is decomposed into its symmetric a
antisymmetric componentsφ andφ′, respectively,

φ̃ab = δacφ̃
c
µδ

µ
b = φab + φ′

ab.

Diffeomorphisms can be gauge-fixed with the co
mon Lorentz-invariant gauge functions

(5)Gµ ≡ ∂ν

(√
ggµν

)
.

The gauge-fixing and ghost Lagrangians are the BR
variation of

C̄µ

(
Gµ − λ

2
Bµ

)
.

Integrating the auxiliary fieldBµ out, we find the fa-
miliar expressions

Ldiff
gf = 1

2λ

(
Gµ

)2
,

(6)Ldiff
ghost=

√
g∂νC̄µ

(
DµCν +DνCµ − gµνDαCα

)
.

Lorentz gauge-fixing for SO(d) invariant theories.
The most popular gauge-fixing of the Lorentz sy
metry isφ′

ab = 0 (symmetric gauge). This is not ve
convenient for the generalization to parity violati
matter. For reasons that will become clear later, I
the Lorentz symmetry by means of the gauge-fix
functions

(7)Gab
L =Dµωab

µ = 1√
g

∂µ

(√
ggµνωab

ν

)
.
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These functions are scalars under diffeomorphis
so the ghost Lagrangian is already diagonalized.
serve that the gauge-fixing(7) is higher-derivative
To avoid propagators behaving like 1/p4 in the in-
frared, the “auxiliary” fieldsBab have to be inserted i
an unconventional derivative way. This is legitima
because the fieldsBab are anyway BRST-exact. Pre
cisely, the gauge-fixing and ghost Lagrangian of
Lorentz symmetry are the BRST variation of

−√
gC̄ab

(
ξ

2
D2Bab + Gab

L

)
,

whereξ is an arbitrary gauge-fixing parameter (th
can be set to zero in the “Landau” gauge) andD2 =
DµDµ:

LL
gf = −√

g

(
ξ

2
BabD2Bab + BabGab

L

)
,

(8)LL
ghost= −√

gC̄abDµ∂µCab.

In total, the gauge-fixed and ghost Lagrangians

Lgrav= L+Ldiff
gf +LL

gf,

(9)Lghost= Ldiff
ghost+LL

ghost.

The ghost propagators equal the identity divided
p2. The graviton propagators are
〈
φµν(p) φρσ (−p)

〉
0

= κ2

2p2 (δµρδνσ + δµσ δνρ) − κ2δµνδρσ

(d − 2)p2

+ λ − 2κ2

4p4 (δµρpνpσ + δµσ pνpρ

+ δνρpµpσ + δνσpµpρ),〈
φµν(p) φ′

ρσ (−p)
〉
0

= λ

4p4 (δµρpνpσ − δµσ pνpρ

+ δνρpµpσ − δνσpµpρ),〈
φ′

µν(p) φ′
ρσ (−p)

〉
0

= − ξ

2p2 (δµρδνσ − δµσ δνρ)

+ λ

4p4 (δµρpνpσ − δµσ pνpρ

− δνρpµpσ + δνσpµpρ),〈
φµν(p)Bρσ (−p)

〉
0 = 0,
〈
φ′

µν(p)Bρσ (−p)
〉
0 = 1

2p2
(δµρδνσ − δµσ δνρ),

(10)
〈
Bµν(p) Bρσ (−p)

〉
0 = 0.

A more standard structure in(8), with non-propa-
gating auxiliary fieldsBab, namely

LL
gf = −√

g

(
ξ

2
BabBab + BabGab

L

)
,

can be obtained from(8) formally replacingξ with
ξ/D2. The corresponding propagators are obtained
placing ξ with −ξ/p2 in (10). Then, however, the
first term of the new〈φ′φ′〉 behaves like 1/p4 in the
infrared. This behavior generates annoying IR div
gences inD = 3 andD = 4. The trick (8) is safer
because it avoids this problem.

Now I prove that the formulation(8) admits an im-
mediate generalization toSO(d) breaking models.

The breaking of SO(d) to SO(D) ⊗ SO(−ε): prop-
agators with SO(d) invariant denominators. Now
I assume that the regularization preserves diff
morphisms and the local Lorentz symmetry gro
SO(D) ⊗ SO(−ε). The Lorentz indicesa, b, c, . . . ,
running from 1 tod are decomposed into physic
Lorentz indices̄a, b̄, c̄, . . . , running from 1 toD, and
evanescent Lorentz indicesâ, b̂, ĉ, . . . , running from
D to d (with D excluded):a = (ā, â), b = (b̄, b̂), etc.
The curvature tensor decomposes into

Rāb̄ = R̄āb̄ + ωāĉωb̄ĉ,

Rāb̂ = Dωāb̂,

Râb̂ = R̂âb̂ + ωc̄âωc̄b̂,

etc., whereR̄āb̄ andR̂âb̂ are theSO(D) andSO(−ε)

curvatures, respectively, andDµ denotes theSO(D)⊗
SO(−ε) covariant derivative. Observe thatωāb̂ trans-
forms as a tensor. Similarly, objects such asωāb̂

µ ωāb̂
ν gµν

are scalars. The vielbein can be used to define
variant D’Alembertians in the physical and evanesc
portions of spacetime:

D̄2 = eāµeāνDµDν, D̂2 = eâµeâνDµDν.

The BRST transformations split as follows

seā
µ = −eā

ρ∂µCρ − Cρ∂ρeā
µ − Cāb̄eb̄

µ,

sCāb̄ = −Cāc̄Cc̄b̄ − Cρ∂ρCāb̄,

sC̄āb̄ = Bāb̄ − Cāc̄C̄c̄b̄ − Cb̄c̄C̄āc̄ − Cρ∂ρC̄āb̄,
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(11)sBāb̄ = −Cāc̄Bc̄b̄ − Cb̄c̄Bāc̄ − Cρ∂ρBāb̄,

plus analogous rules obtained replacing all barred
dices with hatted indices. HereCāb̄ are the ghosts o

the physicalSO(D) Lorentz symmetry,Câb̂ are the
ghosts of the evanescentSO(−ε) Lorentz symmetry
and so on.

Since the symmetrySO(d) is broken, it is not pos
sible to choose a completely symmetric gauge
the fluctuationφ̃a

µ. The simplest generalization of th
symmetric gauge,

(12)φ′
āb̄

= 0, φ′
âb̂

= 0,

kills the antisymmetric parts of theD ×D and(−ε)×
(−ε) diagonal blocks of the matrixφ′. The compo-
nentsφ′

āb̂
are unconstrained. Since the Einstein L

grangian(1) is independent ofφ′
āb̂

, the propagator o

φ′
āb̂

should be provided by extra Lagrangian term

e.g.,
√

gωāb̂
µ ωāb̂

ν gµν . Then, however, it is not easy t
haveSO(d) invariant denominators. Instead, a gen
alization of the Lorentz gauge functions(7) does the
job in a simple way.

The Lorentz gauge functions(7) are replaced with
the reduced set of gauge functions

(13)Gāb̄
rL = Dµωāb̄

µ , Gâb̂
rL = Dµωâb̂

µ .

The auxiliary fields and antighosts are correspo

ingly reduced to the blocks̄Cāb̄,Bāb̄ andC̄âb̂,Bâb̂, so
the gauge-fixing and ghost Lagrangians in the Lore
sector read

L̃rL
gf = −√

g

(
ξ̄

2
Bāb̄D2Bāb̄ + Bāb̄Gāb̄

rL

(14)+ ξ̂

2
Bâb̂D2Bâb̂ + Bâb̂Gâb̂

rL

)
,

(15)
L̃rL

ghost= −√
gC̄āb̄Dµ∂µCāb̄ − √

gC̄âb̂Dµ∂µCâb̂,

whereD2 = DµDµ. The total ghost Lagrangian is

(16)L̃ghost= Ldiff
ghost+ L̃rL

ghost.

The ghost propagators are still the identity times 1/p2,
so their denominators areSO(d) invariant.

The sum of the Einstein Lagrangian(1) plus the
gauge-fixing termsLdiff

gf andL̃rL
gf of formulas(6) and

(14), are still insufficient to give a propagator toφ′
ˆ .
āb
For this purpose, introduce an evanescent tensor

Bāb̂ transforming as a scalar under diffeomorphis
and as a vector under bothSO(D) andSO(−ε) rota-
tions and add

(17)�L= −2
√

g

(
ξ

2
Bāb̂D2Bāb̂ + Bāb̂Gāb̂

rL

)
,

whereGāb̂
rL = Dµωāb̂

µ , to the Einstein action(1). This
addition is clearly a scalar density. In this way t
matricesBab and Gab

rL are fully reconstructed. Th

diagonal blocksBāb̄,Bâb̂ are auxiliary fields for the
Lorentz gauge-fixings, while the non-diagonal co

ponentsBāb̂ are extra evanescent fields used for r
ularization. Since(17) vanishes in the formal limi
ε → 0, �L is truly a regularization term. Therefor

even if Bāb̂ is not BRST exact, its introduction doe
not change the physics.

Recapitulating, the total gauge-fixed Lagrangian

(18)L̃grav= L+ �L+Ldiff
gf + L̃rL

gf .

Now, set for a moment the gauge-fixing parame
ξ̄ andξ̂ equal toξ . Then the quadratic part of the La
grangian(18) coincides precisely with the quadrat
part ofLgrav in (9):

Lgrav= L+Ldiff
gf +LL

gf

= L+ �L+Ldiff
gf + L̃rL

gf

= L̃grav

(19)for ξ = ξ̄ = ξ̂ ,

up to cubic terms, due to the different definitions
covariant derivatives. In this case the propagator
φ,φ′ andB coincide with the ones of formula(10).

More generally, the propagators depend linearly
ξ̄ and ξ̂ , because these are gauge-fixing parame
It is easy to prove by direct computation that wh
ξ �= ξ̄ �= ξ̂ the propagators(10)are unmodified excep
for 〈φ′

µν(p)φ′
ρσ (−p)〉0, which is corrected by the re

placement

− ξ

2p2
(δµρδνσ − δµσ δνρ)

→ − ξ̄

2p2 (δµ̄ρ̄δν̄σ̄ − δµ̄σ̄ δν̄ρ̄ )

− ξ̂

2p2
(δµ̂ρ̂δν̂σ̂ − δµ̂σ̂ δν̂ρ̂ )
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2p2 (δµ̄ρ̄δν̂σ̂ − δµ̄σ̄ δν̂ρ̂

(20)+ δµ̂ρ̂δν̄σ̄ − δµ̂σ̂ δν̄ρ̄ ).

I have therefore proved that all propagators h
SO(d) invariant denominators.

The regularization can be simplified ifSO(d) is
broken just toSO(D). Then the last two terms of(14)

are moved fromL̃rL
gf to �L. The fieldBâb̂ is inter-

preted as an extra evanescent tensor field, on the s

footing asBāb̂. The ghostsC̄âb̂, Câb̂ and the last term
of L̃rL

ghost in (15) are suppressed. Finally,Dµ is inter-
preted as theSO(D) covariant derivative.

Here I have used the second order formalism,
the arguments of this Letter can be easily adapte
the first order formalism, where the Lorentz gau
fixing (7) looks even more natural. In the first ord
formalism, gravity is described by the independ
fields ea

µ andωab
µ . Relations(2) hold, except for the

formula expressingωab
µ in terms of ea

µ. The BRST
auxiliary fields and the ghosts are unchanged.
BRST transformations are(3) plus

sωab
µ = −ωab

ρ ∂µCρ − Cρ∂ρωab
µ −DµCab

(or the corresponding reduced versions, when
continued Lorentz symmetry is broken). The gau
fixings and the ghost Lagrangians are formally id
tical: it is sufficient to interpretωab

µ as an indepen
dent field. When the continued Lorentz symmetry
broken, the evanescent extra tensor field(s) are
same (Bāb̂ and eventuallyBâb̂) and the evanescen
deformations�L are formally identical to those o
the second order formalism. However, the propa
tors become considerably more involved, since
quadratic part of the Lagrangian is non-diagona
the fields φµν , φ′

µν , ωab
µ and Bab. The first order

formalism is useful when the torsion is non-ze
and, in particular, for the regularization of supergr
ity.

It is also immediate to generalize the argume
of this Letter when the metric and the vielbein a
expanded around generic curved backgrounds.
is useful for calculations with the background fie
method and in the presence of a cosmological c
stant.

A final comment concerns the stability of the a
tion under renormalization. The action(18) produces
nice propagators, but is obtained choosing the eva
e

cent deformation�L and the gauge-fixing in a ver
special way. It is natural to wonder if renormalizati
spoils this structure. Divergences can be subtracte
a RG invariant way only if every allowed Lagrangia
term is turned on, multiplied by an independent ren
malized coupling that runs appropriately. So, to h
complete RG invariance all types of evanescent de
mations should be included in�L at the tree level, no
just (17), but then the propagators do not haveSO(d)

invariant denominators. This problem is avoided
follows. Known theorems[4,6] ensure that the evane
cent sector of the theory does not mix into the ph
ical sector, but produces at most a scheme cha
Therefore, evanescent counterterms can be subtra
just as they come, at higher orders, with no introd
tion of new independent parameters at the tree-le
If a special evanescent deformation, such as the�L
of (18), is used at the tree level, instead of the m
general evanescent deformation, then RG invaria
is violated in the renormalized correlation functio
only by contributions that vanish in the physical lim
ε → 0. It is therefore possible to carry out every c
culation with the propagators produced by(18) and
(16). Observe that this argument is analogous to
argument commonly used for gauge-fixing param
ters: if the gauge fixing-parameterξ is not left free
to run, but set to some special value, as in the Fe
man and Landau gauges, then RG invariance is
lated, but only in the BRST-exact sector of the th
ory.

Summarizing, for an efficient calculation of Fey
man diagrams in the Standard Model coupled w
quantum gravity using the dimensional regularizati
the gravity sector can be regularized in the way j
described and the matter sector can be regularize
the usual fashion.

The results of this Letter are dimension-indep
dent (forD > 2). In particular, they apply also to mod
els such as three-dimensional Chern–Simons ga
theories coupled with two-component fermions a
gravity [7]. At the theoretical level, they are usef
for the study of consistent irrelevant deformations
renormalizable theories and the predictivity of cert
classes of power-counting non-renormalizable th
ries, such as those studied in Refs.[8,9]. At the phe-
nomenological level, they are useful for calculations
gravitational radiative corrections in low-energy ph
nomenological models.
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