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Abstract

I identify the subclass of higher-dimensional conformal field theories that is most similar to
two-dimensional conformal field theory. In this subclass the domain of validity of the recently
proposed formula for the irreversibility of the renormalization-group flow is suitably enhanced.
The trace anomaly is quadratic in the Ricci tensor and contains a unique central charge. This
implies, in particular, a relationship between the coefficient in front of the Euler density (charge
a) and the stress-tensor two-point function (charge c). I check the prediction in detail in four,
six and eight dimensions, and then in arbitrary dimension. In four and six dimensions there is
agreement with results from the AdS/CFT correspondence. A by-product is a mathematical
algorithm to construct conformal invariants.
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In quantum field theory, scale invariance is broken, in general, by the radiative corrections
and measured by a non-vanishing beta function. Scale invariance is recovered in the large- and
small-distance limits, where the theory becomes conformal. In the conformal window the UV
limit is typically free (asymptotic freedom), while the IR limit is interacting. The motivation
for studying the conformal window is that this region separates the perturbative domain from
the truly non-perturbative one, where QCD leaves. A better understanding of conformal field
theory in four dimensions, hopefully the achievement of a complete classification, is expected
to shed light on some of the open problems of quantum field theory.

Four-dimensional conformal field theories have two central charges, c and a, defined by the
trace anomaly in a gravitational background. The charge c multiplies the conformal invariant
W 2

µνρσ (square of the Weyl tensor) and is the coefficient of the two-point function of the stress
tensor. The quantity a multiplies the Euler density G4. A third term, 2R, is multiplied by a
coefficient a′:

Θ =
1

(4π)2

[
−cW 2 +

a

4
G4 − 2

3
a′2R

]
, (1)

where c = 1
120 (Ns + 6Nf + 12Nv), a = 1

360 (Ns + 11Nf + 62Nv) for free field theories of Ns,f,v

real scalars, Dirac fermions and vectors, respectively.
In higher even dimension, the number of independent conformal invariants, and consequently

the number of central charges c, increases with the dimension; yet there is a unique term related
to the stress-tensor two-point function and it has the form Wµνρσ2n/2−2W µνρσ+cubic terms
proportional to W .

In two dimensions [1], on the contrary, the trace anomaly has a unique term, so that we
can say that “c = a = a′” there. It is natural to expect that there exists a class of higher-
dimensional conformal field theories that is most similar to two-dimensional conformal field
theory.

The main purpose of this paper is to identify this special class of conformal theories, col-
lecting present knowledge and offering further evidence in favour of our statement. We use the
sum rule of refs. [2, 3] for the irreversibility of the renormalization-group flow to derive a quan-
titative prediction from this idea. We then proceed to check the prediction. This is first done
in detail in four, six and eight dimensions and then extended to the general case. In four and
six dimensions, there is agreement with statements coming from the AdS/CFT correspondence
[4, 5], which our observations make more precise.

We recall that in four dimensions there are situations where the stress-tensor operator
product expansion (OPE) closes with a finite number of operators up to the regular terms [6, 7].
It turns out that when c = a the OPE closure is achieved in a way that is reminiscent of two-
dimensional conformal field theory, with the stress tensor and the central extension. Instead,
when c 6= a this algebraic structure is enlarged and contains spin-1 and spin-0 operators, yet in
finite number.

The subclass of theories we are looking for is therefore identified, in four dimensions, by
the equality of c and a and the “closed limit” of [7], which is the limit in which all higher-spin
currents decouple from the OPEs. The idea of this limit was suggested by a powerful theorem,
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due to Ferrara, Gatto and Grillo [8] and to Nachtmann [9], on the spectrum of anomalous
dimensions of these higher-spin currents, which follows from very general principles (unitarity)
and is therefore expected to hold in arbitrary dimension.

Less straightforward is to formulate the generalization of the identification c = a to arbitrary
(even) dimension. It is well known that Θ vanishes on Ricci-flat metrics when c = a in four
dimensions. A closer inspection of (1) shows that actually Θ is quadratic in the Ricci tensor.

We are led to conjecture that the subclass of “c = a”-theories are those that have a trace
anomaly quadratic in the Ricci tensor.

Therefore, in arbitrary dimension we can distinguish the following important subclasses of
conformal field theories:

i) The “closed” theories, when the quantum conformal algebra, i.e. the algebra generated
by the singular terms of the stress-tensor OPE, closes with a finite number of operators. They
can have c = a, but also c 6= a.

ii) The c = a-theories, whose trace anomaly is quadratic in the Ricci tensor. They can be
either closed or open.

iii) The closed c = a-theories, which exhibit the highest degree of similarity with two-
dimensional conformal field theory.

While the equality c = a is a restriction on the set of conformal field theories, the equality
of a and a′ is not. In refs. [2, 3] the equality a = a′ was studied in arbitrary even dimension n,
leading to the sum rule

aUV
n − aIR

n =
1

2
3n
2
−1n n!

∫
dnx |x|n〈Θ(x)Θ(0)〉, (2)

expressing the total renormalization-group (RG) flow of the central charge an induced by di-
mensionless couplings. No restriction or identification of the central charges is required here.
The charge an is normalized so that the trace anomaly reads

Θ = anGn = an(−1)
n
2 εµ1ν1···µn

2
ν n

2
ε
α1β1···α n

2
β n

2

n
2∏

i=1

Rµiνi
αiβi

plus conformal invariants and trivial total derivatives.
Direct inspection of the arguments of [2, 3] shows that they do not apply to massive flows,

for example free massive scalar fields. (In general, the effect of masses can be included straight-
forwardly [10].) The sum rule (2) measures the pure effect of the dynamical RG scale µ in
lowering the amount of massless degrees of freedom of the theory along the RG flow.

The basic reason why massive flows behave differently is that in a finite theory Duff’s
identification [11] a′ = c is consistent (but not unique), while along a RG flow the only consistent
identification is a′ = a, as shown in [2]. Divergences are crucial in discriminating between the
two cases.

Repeating the arguments of [2, 3] in two dimensions, we are led to the same conclusion:
that the sum rule (2) works for RG flows and not necessarily for massive ones. The point
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is, nevertheless, that the two-dimensional version of (2), due to Cardy [12], is universal; in
particular, it does work for massive flows. It is therefore compulsory to understand in what
cases the domain of validity of our sum rule (2) is similarly enhanced in higher dimensions.

The arguments and explicit checks that we now present show that this enhancement takes
place in the subclass of theories with c = a (classes ii and iii above), because of the higher
similarity with the two-dimensional theories.

The two relevant terms of the trace anomaly are

Θ = anGn −
cn(n− 2)

(
n
2

)
!

4(4π)
n
2 (n− 3) (n + 1)!

W2
n
2
−2W + · · · ,

where
cn = Ns + 2

n
2
−1(n− 1)Nf +

n!

2
[(n

2 − 1
)
!
]2 Nv

is the value of the central charge c for free fields, and in arbitrary dimension n, Nv denotes the
number of (n/2− 1)-forms. This calculation is done in ref. [13], section 9, starting from the
stress-tensor two-point function.

Massive flows have been considered, among other things, by Cappelli et al. in [14]. An
explicit computation for free massive scalar fields and fermions gives [14]∫

dnx |x|n 〈Θ(x)Θ(0)〉 =
cn
(

n
2

)
!

π
n
2 (n + 1)

. (3)

Repeating the computation for massive vectors, or (n/2− 1)-forms, is problematic in the UV.
However, the relative coefficient between the scalar and fermion contributions is sufficient to
show that the result is proportional to cn and not an.

Our prediction is that in the special c = a-theories the sum rule (2) should reproduce (3)
for massive flows, which means

cn = an
2

n
2
−1(4π)

n
2 n (n + 1)!(
n
2

)
!

. (4)

The trace anomaly therefore has the form

Θ = an

(
Gn − 2

n
2
−3n(n− 2)
n− 3

W2n/2−2W

)
+ · · · (5)

Formula (4) is the generalized version of the relation c = a. It is uniquely implied by the
requirement that Θ be quadratic in the Ricci tensor and Ricci curvature. This condition fixes all
the central charges of type c in terms of an, not only the constant cn in front of the stress-tensor
two-point function. These further relationships are not important for our purposes.

In four dimensions the combination between the parenthesis in (5) is indeed quadratic in
the Ricci tensor:

G4

4
−W 2 = −2R2

µν +
2
3
R2.
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For RG flows connecting pairs of conformal field theories with c = a formula (2) holds uni-
versally. We regard this observation as a demonstration of the importance of this subclass of
theories from the theoretical point of view and as a further evidence in favour of the ideas of
refs. [2, 3].

In higher dimensions the check is less straightforward, owing to the high number of invari-
ants. Using the results of Bonora et al. from [15], where the terms occurring in the trace
anomaly were classified in six dimensions (see also [16]), we can perform the first non-trivial
check of our prediction. The conformal invariants are three:

I1 = WµνρσW µαβσW ν ρ
αβ , I2 = WµνρσW µναβW ρσ

αβ ,

I3 = Wµαβγ

(
2 δµ

ν + 4Rµ
ν −

6
5
R δµ

ν

)
W ναβγ ,

and the general form of the trace anomaly is

Θ = a6G6 +
3∑

i=1

c(i)Ii + t.t.d.,

where “t.t.d.” means “trivial total derivatives” (as opposed to G6, which is a non-trivial
total derivative). Our notation differs from the one of [15] in the signs of Rµν and R. More
importantly, the invariant I3 differs from the invariant M3 of [15] and other references [16, 17],
the latter containing a spurious contribution proportional to G6 (see also [3], section 3), as well
as a linear combination of I1 and I2. Precisely, we find

M3 =
5
12

G6 +
80
3

I1 +
40
3

I2 − 5I3.

Finally, our I3 differs from the expression of ref. [18], formula (19), by the addition of t.t.d.’s,
which, however, can be consistently omitted for our purposes.

In [15] it is pointed out that there exists a simple combination of the four invariants G6 and
I1,2,3, which reads

J6 = Rµν2Rµν − 3
10

R2R−RRµνR
µν

−2RµνRρσRµρσν +
3
25

R3

=− 1
24

G6 − 4I1 − I2 +
1
3
I3 + t.t.d. (6)

The BPB (Bonora–Pasti–Bregola) term J6 is precisely the combination we are looking for. A
closer inspection of this expression shows that it is uniquely fixed by the requirement that it be
quadratic in the Ricci tensor and Ricci curvature. On the other hand, the requirement that J6

just vanishes on Ricci-flat metrics is not sufficient to fix it uniquely, in particular it does not
imply the relation “c = a” that we need.

In conclusion, the c = a-theories have a unique central charge, multiplying the BPB invariant
J6,

Θ = −24 a6 J6, c(1) = 96a6, c(2) = 24a6, c(3) = −8a6,
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so that Θ is of the predicted form (5):

Θ = a6(G6 − 8W2W ) + · · · . (7)

We now compare these observations with results coming from the AdS/CFT correspondence
[4]. Given that the class of closed c = a-theories is the one with the highest degree of simplicity, it
is conceivable that the conformal field theories admitting the supergravity description envisaged
in ref. [4], are precisely those of our class iii, at least in four and six dimensions (the AdS/CFT
correspondence does not apply to higher dimensions).

Agreement with this picture in four dimensions is well established. Using the results of [5]
it is straightforward to show agreement in six dimensions. This can be read from formula (30)
of [5], apart from the caveat that in [5] the BPB invariant M3 is used, which is misleading. The
correct decomposition of the anomaly into Euler density and conformal invariants is the last
equality of (6), leading directly to (7).

Our prediction, however, is meaningful in arbitrary even dimension. The classification
of conformal invariants in arbitrary dimension is involved and the effort that we have done in
n = 6 suggests that it is preferable to find a clever shortcut leading to the proof of our statement
without passing through the detailed analysis of invariants.

A hint for this shortcut comes precisely from the AdS/CFT correspondence, since the ar-
guments of [5] do not appear to be restricted to four and six simensions. The idea is that the
correspondence captures a mathematical structure (an algorithm for generating the Jn’s) that
is more general than was predicted by the correspondence itself, and that the construction of
[5] answers precisely our question.

We begin with n = 8. The relevant terms of J8 are

J8 = Rµν22Rµν − 2
7
R22R +O(R3) = α8 G8 + c.i.t. + t.t.d.,

α8 being the unknown coefficient and “c.i.t.” denoting conformal-invariants. On a sphere, in
particular, all terms but α8G8 vanish, so that α8 can be found by evaluating the integral of J8:∫

S8

√
gJ8 d8x = 768 α8 (4π)4.

Using

W22W =
10
3

(
Rµν2

2Rµν − 2
7
R22R

)
+O(R3) + t.t.d.,

our prediction (5) is α8 = −1/64. Indeed, applying the method of [5] on a metric with Rµν =
Λgµν , we get, after a non-trivial amount of work,

J8 = α8 G8 = −1440
343

Λ4,

which gives the desired value of α8.
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The check can be generalized for arbitrary n. The invariant Jn is, up to an overall factor
βn, the coefficient of ρn/2 in the expansion of

√
det G, where

Gµν = gµν +
n/2∑
k=1

ρkg(k)
µν +O(ρn/2 ln ρ, ρn/2+1, ρn/2+1 ln ρ, · · ·)

and the ρ-dependence is fixed by the equations [5]

tr[G−1G′′]− 1
2
tr[G−1G′G−1G′] = 0, (8)

2ρ(G′′ −G′G−1G′) = (G− ρG′)tr[G−1G′]

+Ric(G) + (n − 2)G′.

Precisely,

1(n
2

)
!

d
n
2

dρ
n
2

√
detG√
det g

∣∣∣∣∣
ρ=0

= βnJn

= βn(Rµν2
n
2
−2Rµν + αnGn + rest).

First, we consider metrics with Rµν = Λgµν . The form of the solution and the first equation
of (8) read

Gµν = u(ρΛ)gµν ,
u′′

u
=

1
2

(
u′

u

)2

.

The second equation of (8) is used to fix the integration constants, with the result

u(ρΛ) =
(

1− ρΛ
4(n − 1)

)2

, βnJn → (−1)
n
2 n! Λ

n
2

2n(n− 1)
n
2
[(

n
2

)
!
]2 .

Then, we fix the normalization βn by looking for the term Rµν2
n
2
−2Rµν (we can set the Ricci

curvature R to zero for simplicity). We write

Gµν = gµν +
1
2

v(ρ2)Rµν + Rµα
1

22
y(ρ2)Rα

ν + O(R3),

with v(0) = y(0) = y′(0) = 0. We have

βn =
1

2
(n

2

)
!

d
n
2 x

dt
n
2

∣∣∣∣∣
t=0

where t = ρ2 and x = y − v2/2. Integrating Jn over a sphere, we can convert our prediction
(5) to a prediction for βn or

d
n
2 x

dt
n
2

∣∣∣∣∣
t=0

= − 1
2n−1Γ

(
n
2

) . (9)

Equations (8) relate y, and therefore x, to v and imply that v is a Bessel function of the second
type:

x′′ = −(v′)2

2
, 2tv′′ − 1 +

v

2
− (n − 2)v′ = 0. (10)
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βn is a coefficient in the series expansion of the square of a Bessel function of the second type,
and is not usually in the mathematical tables. Solving (10) recursively with the help of a
calculator, we have checked agreement between (9) and (10) up to dimension 1000.

Our picture and the quantitative agreement with prediction (5) explain, among other things,
the physical meaning of the mathematical construction of Henningson and Skenderis [5] and its
extension to arbitrary dimension. Furthermore, the mathematical properties of the invariant
Jn, and therefore the identification of c and a (in the subclasses of theories ii and iii where it
applies), are a nice counterpart of the notion of extended (pondered) Euler density introduced
in [3], which explained the identification a = a′.

The results presented in this paper are a further, unexpected, check of the ideas of [2, 3]
and of the picture offered there. These are, we believe, the first steps towards the classification
of all conformal field theories. In our investigation, higher-dimensional conformal field theory
has mostly been used as a laboratory to better establish ideas on four-dimensional quantum
field theory. Above four dimensions, treatable conformal field theories are the higher-derivative
ones, which admit RG deformations and should presumably be formulated in the spirit of ref.
[19], where it seems that unitarity problems do not arise.
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