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Abstract

We address the problem of detecting changes in
multivariate datastreams, and we investigate the
intrinsic difficulty that change-detection methods
have to face when the data dimension scales. In
particular, we consider a general approach where
changes are detected by comparing the distribu-
tion of the log-likelihood of the datastream over
different time windows. Despite the fact that this
approach constitutes the frame of several change-
detection methods, its effectiveness when data di-
mension scales has never been investigated, which
is indeed the goal of our paper.
We show that the magnitude of the change can
be naturally measured by the symmetric Kullback-
Leibler divergence between the pre- and post-
change distributions, and that the detectability of
a change of a given magnitude worsens when the
data dimension increases. This problem, which we
refer to as detectability loss, is due to the linear rela-
tionship between the variance of the log-likelihood
and the data dimension. We analytically derive
the detectability loss on Gaussian-distributed datas-
treams, and empirically demonstrate that this prob-
lem holds also on real-world datasets and that can
be harmful even at low data-dimensions (say, 10).

1 Introduction

Change detection, namely the problem of detecting changes
in probability distribution of a process generating a datas-
tream, has been widely investigated on scalar (i.e. univariate)
data. Perhaps, the reason beyond the univariate assumption is
that change-detection tests (CDTs) were originally developed
for quality-control applications [Basseville et al., 1993], and
much fewer works address the problem of detecting changes
in multivariate datastreams.

A straightforward extension to the multivariate case would
be to independently inspect each component of the datas-
tream with a scalar CDT [Tartakovsky et al., 2006], but this
does not clearly provide a truly multivariate solution, e.g.,
it is unable to detect changes affecting the correlation among
the data components. A common, truly multivariate approach

consists in computing the log-likelihood of the datastream
and compare the distribution of the log-likelihood over dif-
ferent time windows (Section 2). In practice, computing the
log-likelihood is an effective way to reduce the multivari-
ate change-detection problem to a univariate one, thus eas-
ily addressable by any scalar CDT. Several CDTs for mul-
tivariate datastreams pursue this approach, and compute the
log-likelihood with respect to a model fitted to a training
set of stationary data: [Kuncheva, 2013] uses Gaussian mix-
tures, [Krempl, 2011; Dyer et al., 2014] use nonparametric
density models. Other CDTs have been designed upon spe-
cific multivariate statistics [Schilling, 1986; Agarwal, 2005;
Lung-Yut-Fong et al., 2011; Wang and Chen, 2002; Ditzler
and Polikar, 2011; Nguyen et al., 2014]. In the classifica-
tion literature, where changes in the distribution are referred
to as concept-drift [Gama et al., 2014], changes are typi-
cally detected by monitoring the scalar sequence of classifi-
cation errors over time [Gama et al., 2004; Alippi et al., 2013;
Bifet and Gavalda, 2007; Ross et al., 2012].

Even though this problem is of utmost relevance in datas-
tream mining, no theoretical or experimental study investi-
gate how the data dimension d impacts on the change de-
tectability. In Section 3, we consider change-detection prob-
lems in Rd and investigate how d affects the detectability of a
change when monitoring the log-likelihood of the datastream.
In this respect, we show that the symmetric Kullback-Leibler
divergence (sKL) between pre-change and post-change distri-
butions is an appropriate measure of the change magnitude,
and we introduce the Signal-to-Noise Ratio of the change

(SNR) to quantitatively assess the change detectability when
monitoring the log-likelihood.

Then, we show that the detectability of changes having a
given magnitude progressively reduces when d increases. We
refer to this phenomenon as detectability loss, and we analyti-
cally demonstrate that, in case of Gaussian random variables,
the change detectability is upperbounded by a function that
decays as 1/d. We demonstrate that detectability loss occurs
also in non Gaussian cases as far as data components are inde-
pendent, and we show that it affects also real-world datasets,
which we approximate by Gaussian mixtures in our empirical
analysis (Section 4). Most importantly, detectability loss is
not a consequence of density-estimation problems, as it holds
either when data distribution is estimated from training sam-
ples or known. Our results indicate that detectability loss is a
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potentially harmful also at reasonably low-dimensions (e.g.,
10) and not only in Big-Data scenarios.

2 Monitoring the Log-Likelihood

2.1 The Change Model

We assume that, in stationary conditions, the datastream
{x(t), t = 1, . . . } contains independent and identically dis-
tributed (i.i.d.) random vectors x(t) 2 Rd, drawn from a
random variable X having probability-density-function (pdf)
�0, that for simplicity we assume continuous, strictly positive
and bounded. Here, t denotes the time instant, bold letters in-
dicate column vectors, and 0 is the matrix transpose operator.

For the sake of simplicity, we consider permanent changes
�0 ! �1 affecting the expectation and/or correlation of X :

x(t) ⇠
⇢
�0 t < ⌧

�1 t � ⌧
, where �1(x) = �0(Qx+ v) , (1)

where ⌧ is the unknown change point, v 2 Rd changes the
location �0, and Q 2 O(d) ⇢ Rd⇥d is an orthogonal ma-
trix that modifies the correlation among the components of x.
This rather general change-model requires a truly multivari-
ate monitoring scheme: changes affecting only the correla-
tion among components of x cannot be perceived by analyz-
ing each component individually, or by extracting straightfor-
ward features (such as the norm) out of vectors x(t)1.

2.2 The Considered Change-Detection Approach

We consider the popular change-detection approach that con-
sists in monitoring the log-likelihood of x(t) with respect to
�0 [Kuncheva, 2013; Song et al., 2007; Sullivan and Woodall,
2000]:

L(x(t)) = log(�0(x(t))) , 8t . (2)
We denote by L = {L(x(t)), t = 1, . . . , } the sequence

of log-likelihood values, and observe that in stationary condi-
tions, L contains i.i.d. data drawn from a scalar random vari-
able. When X undergoes a change, the distribution of L(·)
is also expected to change. Thus, changes �0 ! �1 can be
detected by comparing the distribution of L(·) over WP and
WR, two non-overlapping windows of L, where WP refers
to past data (that we assume are generated from �0), and WR

refers to most recent ones (that are possibly generated from
�1). In practice, a suitable test statistic T (WP ,WR), such
as the t-statistic, Kolmogorov-Smirnov or Lepage [Lepage,
1971], is computed to compare WP and WR. In an hypothesis
testing framework, this corresponds to formulating a test hav-
ing as null hypothesis “samples in WP and WR are from the

same distribution”. When T (WP ,WR) > h we can safely
consider that the log-likelihood values over WP and WR are
from two different distributions, indicating indeed a change
in X . The threshold h > 0 controls the test significance.

There are two important aspects to be considered about
this change-detection approach. First, that comparing data
on different windows is not a genuine sequential monitor-
ing scheme. However, this mechanism is at the core of

1We do not consider changes affecting data dispersion as these
can be detected by monitoring the Euclidean norm of x(t).

several online change-detection methods [Kuncheva, 2013;
Song et al., 2007; Bifet and Gavalda, 2007; Ross et al., 2011].
Moreover, the power of the test T (WP ,WR) > h, namely
the probability of rejecting the null hypothesis when the alter-
native holds, indicates the effectiveness of the test statistic T
when the same is used in sequential-monitoring techniques.
Second, that �0 in (2) is often unknown and has to be prelim-
inarily estimated from a training set of stationary data. Then,
�0 is simply replaced by its estimate b�0. In practice, it is
fairly reasonable to assume a training set of stationary data
is given, while it is often unrealistic to assume �1 is known,
since the datastream might change unpredictably.

3 Theoretical Analysis

The section sheds light on the relationship between change
detectability and d. To this purpose, we introduce: i) a mea-
sure of the change magnitude, and ii) an indicator that quan-
titatively assesses change detectability, namely how difficult
is to detect a change when monitoring L(·) as described in
Section 2.2. Afterward, we can study the influence of d on
the change detectability provided that changes �0 ! �1 have
a constant magnitude.

3.1 Change Magnitude

The magnitude of �0 ! �1 can be naturally measured by the
symmetric Kullback-Leibler divergence between �0 and �1

(also known as Jeffreys divergence):

sKL(�0,�1) := KL(�0,�1) + KL(�1,�0)

=

Z

Rd

log

�0(x)

�1(x)
�0(x)dx+

Z

Rd

log

�1(x)

�0(x)
�1(x)dx .

(3)
This choice is supported by the Stein’s Lemma [Cover and
Thomas, 2012], which states that KL(�0,�1) yields an upper-
bound for the power of parametric hypothesis tests that deter-
mine whether a given sample population is generated from
�0 (null hypothesis) or �1 (alternative hypothesis). In prac-
tice, large values of sKL(�0,�1) indicate changes that are
very apparent, since hypothesis tests designed to detect either
�0 ! �1 or �1 ! �0 can be very powerful.

3.2 Change Detectability

We define the following indicator to quantitatively assess the
detectability of a change when monitoring L(·).
Definition 1. The signal-to-noise ratio (SNR) of the change

�0 ! �1 is defined as:

SNR(�0 ! �1) :=

✓
E

x⇠�0

[L(x)]� E
x⇠�1

[L(x)]
◆2

var
x⇠�0

[L(x)] + var
x⇠�1

[L(x)] , (4)

where var[·] denotes the variance of a random variable.

In particular, SNR(�0 ! �1) measures the extent to which
�0 ! �1 is detectable by monitoring the expectation of L(·).
In fact, the numerator of (4) corresponds to the shift intro-
duced by �0 ! �1 in the expectation of L(·) (i.e., the rele-
vant information, the signal) which is easy/difficult to detect
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relatively to its random fluctuations (i.e., the noise), which are
assessed in the denominator of (4). Note that, if we replace
the expectations and the variances in (4) by their sample es-
timators, we obtain that SNR(�0 ! �1) corresponds – up
to a scaling factor – to the square statistic of a Welch’s t-test
[Welch, 1947], that detects changes in the expectation of two
sample populations. This is another argument supporting the
use of SNR(�0 ! �1) as a measure of change detectability.

The following proposition relates the change magnitude
sKL(�0,�1) with the numerator of (4).
Proposition 1. Let us consider a change �0 ! �1 such that

�1(x) = �0(Qx+ v) (5)

where Q 2 Rd⇥d
is orthogonal and v 2 Rd

. Then, it holds:

sKL(�0,�1) � E
x⇠�0

[L(x)]� E
x⇠�1

[L(x)] (6)

Proof. From the definition of sKL(�0,�1) in (3) it follows

sKL(�0,�1) = E
x⇠�0

[log (�0(x))]� E
x⇠�0

[log (�1(x))]+

+ E
x⇠�1

[log (�1(x))]� E
x⇠�1

[log (�0(x))] .

Since L(·) = log (�0(·)), (6) holds if and only if

E
x⇠�1

[log (�1(x))] � E
x⇠�0

[log (�1(x))]. (7)

From (5) it follows that �0(x) = �1(Q
0
(x� v)), thus, by re-

placing the mathematical expectations with their integral ex-
pressions, (7) becomes
Z

log (�1(x))�1(x)dx �
Z

log (�1(x))�1(Q
0
(x� v))dx

(8)
Let us define y = Q0

(x � v), then x = Qy + v and dx =

|det(Q)|dy = dy, since Q is orthogonal. Using this change
of variables in the second summand of (8) we obtain
Z

log (�1(x))�1(x)dx �
Z

log (�1(Qy + v))�1(y)dy.

(9)
Finally, defining �2(y) := �1(Qy + v) turns (9) into
Z

log (�1(x))�1(x)dx�
Z

log (�2(y))�1(y))dy � 0,

(10)
which holds since the left-hand-side of (10) is KL(�1,�2).

3.3 Detectability Loss

It is now possible to investigate the intrinsic challenge of
change-detection problems when data dimension increases.
In particular, we study how the change detectability (i.e.,
SNR(�0 ! �1)) varies when d increases and changes �0 !
�1 preserve constant magnitude (i.e., sKL(�0,�1) = const).
Unfortunately, since there are no general expressions for the
variance of L(·), we have to assume a specific distribution
for �0 to carry out any analytical development. As a rele-
vant example, we consider Gaussian random variables, which
enable a simple expression of L(·). The following theorem
demonstrates the detectability loss for Gaussian distributions,
namely that SNR(�0 ! �1) decays as d increases.

Theorem 1. Let �0 = N (µ0,⌃0) be a d-dimensional Gaus-

sian pdf and �1 = �0(Qx+ v), where Q 2 Rd⇥d
is orthog-

onal and v 2 Rd
. Then, it holds

SNR(�0 ! �1) 
C

d
(11)

where the constant C depends only on sKL(�0,�1).

Proof. Basic algebra leads to the following expression for
L(x) when �0 = N (µ0,⌃0):

L(x) = �1

2

log

�
(2⇡)ddet(⌃0)

�
� 1

2

(x�µ0)
0
⌃

�1
0 (x�µ0) .

(12)
The first term in the right-hand-side of (12) is constant, while
the second term is distributed as a chi-squared having d de-
grees of freedom. Therefore,

var
x⇠�0

[L(x)] = var

�1

2

�2
(d)

�
=

d

2

. (13)

Then, from the definition of SNR(�0 ! �1) in (4) and Propo-
sition 1, it follows that

SNR(�0 ! �1) 
sKL(�0,�1)

2

var[L(x)]
x⇠�0

+ var[L(x)]
x⇠�1

 sKL(�0,�1)
2

var[L(x)]
x⇠�0

=

sKL(�0,�1)
2

d/2
=

C

d
.

Theorem 1 shows detectability loss for Gaussian distribu-
tions. In fact, when d increases and sKL(�0,�1) remains
constant, SNR(�0 ! �1) is upper-bounded by a function
that monotonically decays as 1/d. The decaying trend of
SNR(�0 ! �1) indicates that detecting changes becomes
more difficult when d increases. Moreover, the decaying rate
does not depend on sKL(�0,�1), thus this problem equally
affects all possible changes �0 ! �1 defined as in (1), disre-
garding their magnitude.

3.4 Discussion

First of all, let us remark that Theorem 1 implicates de-
tectability loss only when sKL(�0,�1) is kept constant. As-
suming constant change magnitude is necessary to correctly
investigate the influence of the sole data dimension d on
the change detectability. In fact, when the change magni-
tude increases with d, changes might become even easier to
detect as d grows. This is what experiments in [Zimek et

al., 2012](Section 2.1) show, where outliers2 become eas-
ier to detect when d increases. However, in that experiment,
the change-detection problem becomes easier as d increases,
since each component of x carries additional information
about the change, thus increases sKL(�0,�1).

Detectability loss can be also proved when �0 is non Gaus-
sian, as far as its components are independent. In fact, if

2Even though similar techniques can be sometimes used for both
change-detection and anomaly-detection, the two problems are in-
trinsically different, since the former aims at recognizing process
changes, while the latter at identifying spurious data.
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�0(x) =

Qd
i=0 �

(i)
0 (x(i)

), where (·)(i) denotes either the
marginal of a pdf or the component of a vector, it follows

var[L(x)]
x⇠�0

=

dX

i=0

var
x⇠�0

h
log

⇣
�
(i)
0 (x(i)

)

⌘i
, (14)

since log(�
(i)
0 (x(i)

)) are independent. Clearly, (14) increases
with d, since its summands are positive. Thus, also in this
case, the upperbound of SNR(�0 ! �1) decays with d when
sKL(�0,�1) is kept constant.

Remarkably, detectability loss does not depend on how
the change �0 ! �1 affects X . Our results hold, for in-
stance, when either �0 ! �1 affects all the components of
X or some of them remain irrelevant for change-detection
purposes. Moreover, detectability loss occurs independently
of the specific change-detection method used on the log-
likelihood (e.g. sequential analysis, or window comparison),
as our results concern SNR(�0 ! �1) only.

In the next section we show that detectability loss affects
also real-world change-detection problems. To this purpose,
we design a rigorous empirical analysis to show that the
power of customary hypothesis tests actually decreases with
d when data are non Gaussian and possibly dependent.

4 Empirical Analysis

Our empirical analysis has been designed to address the fol-
lowing goals: i) showing that SNR(�0 ! �1), which is the
underpinning element of our theoretical result, is a suitable
measure of change detectability. In particular, we show that
the power of hypothesis tests able to detect both changes in
mean and in variance of L(·) also decays. ii) Showing that de-
tectability loss is not due to density-estimation problems, but
it becomes a more serious issue when �0 is estimated from
training data. iii) Showing that detectability loss occurs also
in Gaussian mixtures, and iv) showing that detectability loss
occurs also on high-dimensional real-world datasets, which
are far from being Gaussian or having independent compo-
nents. We address the first two points in Section 4.1, while
the third and fourth ones in Sections 4.2 and 4.3, respectively.

In our experiments, the change-detection performance is
assessed by numerically computing the power of two cus-
tomary hypothesis tests, namely the Lepage [Lepage, 1971]
and the one-sided t-test3 on data windows WP and WR

which contains 500 data each. As we discussed in Section
3.2, the t-statistic on the log-likelihood is closely related to
SNR(�0 ! �1), while the Lepage is a nonparametric statistic
that detects both location and scale changes4. To compute the
power, we set h to guarantee a significance level5 ↵ = 0.05.
Following the procedure in Appendix, we synthetically intro-
duce changes �0 ! �1 having sKL(�0,�1) = 1 which, in
the univariate Gaussian case, corresponds to v equals to the
standard deviation of �0.

3We can assume that �0 ! �1 decreases the expectation of L
since E

x⇠�0

[log (�0(x))]� E
x⇠�1

[log (�0(x))] � 0 follows from (7).
4The Lepage statistic is defined as the sum of the squares of the

Mann-Whitney and Mood statistics, see also [Ross et al., 2011].
5The value of h for the Lepage test is given by the asymptotic

approximation of the statistic in [Lepage, 1971].

4.1 Gaussian Datastreams

We generate Gaussian datastreams having dimension d 2
{1, 2, 4, 8, 16, 32, 64, 128} and, for each value of d, we
prepare 10000 runs, with �0 = N (µ0,⌃0) and �1 =

N (µ1,⌃1). The parameters µ0 2 Rd and ⌃0 2 Rd⇥d have
been randomly generated, while µ1 2 Rd and ⌃1 2 Rd⇥d

have been set to yield sKL(�0,�1) = 1 (see Appendix). In
each run we generate 1000 samples: {x(t), t = 1, . . . , 500}
from �0, and {x(t), t = 501, . . . , 1000} from �1. Then, we
compute the datastream L = {L(x(t)), t = 1, . . . , 1000},
and define WP = {L(x(t)), t = 1, . . . , 500} and WR =

{L(x(t)), t = 501, . . . , 1000}.
We repeat the same experiment replacing �0 with its esti-

mate b�0(x), where bµ0 and b
⌃0 are computed using the sam-

ple estimators over an additional training set TR whose size
grows linearly with d, i.e. #TR = 100 · d. We denote by
bL = { bL(x(t)), t = 1, . . . , 1000} the sequence of estimated
log-likelihood values. Finally, we repeat the whole experi-
ments keeping #TR = 100 for any value of d, and we denote
by bL100 the corresponding sequence of log-likelihood values.

Figure 1(a) shows that the power of both the Lepage and
one-sided t-test substantially decrease when d increases. This
result is coherent with our theoretical analysis of Section
3, and confirms that SNR(�0 ! �1) is a suitable mea-
sure of change detectability. While it is not surprising that
the power of the t-test decays, given its connection with the
SNR(�0 ! �1), it is remarkable that the power of the Lepage
test also decays, as this fact indicates that it becomes more
difficult to detect both changes in the mean and in the disper-
sion of L. The decaying power of both tests indicates that
the corresponding test statistics decrease with d, which imply
larger detection delays when using this statistics in sequential
monitoring schemes.

Note that detectability loss is not due to density-estimation
issues, but rather to the fact that the change-detection prob-
lem becomes intrinsically more challenging, as it occurs in
the ideal case where �0 is known (solid lines). When L is
computed from an estimated b�0 (dashed and dotted lines), the
problem becomes even more severe, and worsens when the
number of training data does not grow with d (dotted lines).

4.2 Gaussian mixtures

We now consider �0 and �1 as Gaussian mixtures, to prove
that detectability loss occurs also when datastreams are gen-
erated/approximated by more general distribution models.
Mimicking the proof of Theorem 1, we show that when d
increases and sKL(�0,�1) is kept constant, the upper-bound
of SNR(�0 ! �1) decreases. To this purpose, it is enough to
show that var

x⇠�0

[L(x)] increases with d.

The pdf of a mixture of k Gaussians is

�0(x) =

kX

i=1

�0,iN (µ0,i,⌃0,i)(x) =

=

kX

i=1

�0,i

(2⇡)d/2det(⌃0,i)
1/2

e�
1
2 (x�µ0,i)

0⌃�1
0,i (x�µ0,i),

(15)
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Figure 1: (a) Power of the Lepage and one-sided t-test empirically computed on sequences generated as in Section 4.1. De-
tectability loss clearly emerges when the log-likelihood is computed using �0 (denoted by L) or its estimates fitted on 100 · d
samples (bL) or from 100 samples (bL100). (b) The sample variance of Lu(·) (16) and Ll(·) (17) computed as in Section 4.2.
As in the Gaussian case, both these variances grow linearly with d and similar results hold when using b�0, which is estimate
from 200 · d training data. (c) The power of both Lepage and one-sided t-test indicate detectability loss on the Particle dataset,
which is approximated by a mixture of 2 Gaussians, using both bLu (16) and bLl (17). Using bLu guarantees better performance
than bLl because this latter yields a larger variance, as shown in (b). We achieve similar results on the Wine dataset, that was
approximated by a mixture of 4 Gaussians. Results have not been reported due to space limitations.

where �0,i > 0 is the weight of the i-th Gaussian
N (µ0,i,⌃0,i). Unfortunately, the log-likelihood L(x) of a
Gaussian mixture does not admit an expression similar to (12)
and two approximations are typically used to avoid severe nu-
merical issues when d � 1.

The first approximation consists in considering only the
Gaussian of the mixture yielding the largest likelihood, as
in [Kuncheva, 2013] i.e.,

Lu(x) = �k�0,i⇤

2

⇣
log

�
(2⇡)ddet(⌃0,i⇤)

�
+

+ (x� µ0,i⇤)
0
⌃

�1
0,i⇤(x� µ0,i⇤)

⌘ (16)

where i⇤ is defined as

i⇤ = argmax
i=1,...,k

✓
�0,i

det(⌃0,i)
1/2

e�
1
2 (x�µ0,i)

0⌃�1
0,i (x�µ0,i)

◆
.

The second approximation we consider is:

Ll(x) = �1

2

kX

i=1

�0,i

⇣
log

�
(2⇡)ddet(⌃0,i)

�
+

+ (x� µ0,i)
0
⌃

�1
0,i (x� µ0,i)

⌘
,

(17)

that is a lower bound of L(·) due to the Jensen inequality.
We consider the same values of d as in Section 4.1 and,

for each of these, we generate 1000 datastreams of 500 data
drawn from a Gaussian mixture �0. We set k = 2 and �0,1 =

�0,2 = 0.5, while the parameters µ0,1, µ0,2, ⌃0,1, ⌃0,2 are
randomly generated. We then compute the sample variance of
both Lu and Ll over each datastream and report their average
in Figure 1(b). As in Section 4.1, we repeat this experiment

by preliminarily estimating b�0 from a training set containing
200 · d additional samples, then we compute bLu and bLl.

Figure 1(b) shows that the variances of Lu and Ll grow
linearly with respect to d, as in the Gaussian case (13). This
indicates that detectability loss occurs also when X is gener-
ated by a simple bimodal distribution and, most importantly,
also when using Lu or Ll that are traditionally adopted when
fitting Gaussian mixtures. As in Section 4.1, we see that log-
likelihoods bLu and bLl computed with respect to fitted models
follow the same trend. We further observe that Ll exhibits a
much larger variance than Lu, thus we expect this to achieve
lower change-detection performance than Lu.

4.3 Real-World Data

To investigate detectability loss in real-world datasets, we de-
sign a change-detection problem on the Wine Quality Dataset

[Cortez et al., 2009] and the MiniBooNE Particle Dataset

[Roe et al., 2005] from the UCI repository [Lichman, 2013].
The Wine dataset has 12 dimensions: 11 corresponding to
numerical results of laboratory analysis (such as density, Ph,
residual sugar), and one corresponding to a final grade (from
0 to 10) for each different wine. We consider the vectors of
laboratory analysis of all white wines having a grade above
6, resulting in a 11-dimensional dataset containing 3258 data.
The Particle dataset contains numerical measurements from
a physical experiment designed to distinguish electron from
muon neutrinos. Each sample has 50-dimensions and we con-
sidered only data from muon class, yielding 93108 data.

In either datasets we have to estimate �0 for both introduc-
ing changes having constant magnitude and computing the
log-likelihood. We adopt Gaussian mixtures and estimate k
by 5-fold cross validation over the whole datasets, obtaining
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k = 4 and k = 2 for Wine and Particle dataset, respectively.
We process each dataset as follows. Let us denote by D

the dataset dimension and for each value of d = 1, . . . , D we
consider only d components of our dataset that are randomly
selected. We then generate a d-dimensional training set of
200 · d samples and a test set of 1000 samples (datastream),
which are extracted by a bootstrap procedure without replace-
ment. The second half of the datastream is perturbed by the
change e�0 ! e�1, which is defined by fitting at first e�0 on the
whole d-dimensional dataset, and then computing e�1 accord-
ing to the procedure in Appendix. Then, we estimate b�0 from
the training set and we compute T (

cWP ,cWR), where cWP ,
cWR are defined as in Section 4.1. This procedure is repeated
5000 times to estimate the test power numerically. Note that
the number of Gaussians in both e�0 and b�0 is the value of k
estimated from the whole D-dimensional dataset, and that e�0

is by no means used for change-detection purposes.
Figure 1(c) reports the power of both Lepage and one-sided

t-tests on the Particle dataset, considering bLu (16) and bLl (17)
as approximated expressions of the likelihoods. The power of
both tests is monotonically decreasing, indicating an increas-
ing difficulty in detecting a change among cWP and cWR when
d grows. This result is in agreement with the claim of The-
orem 1 and the results in the previous sections. The Lepage
test here turns to be more powerful than the t-test and this
indicates that it is important to monitor also the dispersion of
L(·) when using Gaussian mixtures, where L(·) can be mul-
timodal. Moreover, the decaying power of the Lepage test
indicates that, as in Section 4.1, monitoring both expectation
and dispersion of L(·) does not prevent the detectability loss.
Figure 1(c) indicates that bLu(·) guarantees superior perfor-
mance than bLl(·) since this has lower variance than bLu(·).
This fact also underlines the importance of considering the
variance of L(·) in measures of change detectability, as in
(4). Experiments on Wine dataset, which is approximated
by a more sophisticated distribution (k = 4), confirms de-
tectability loss, but the results have not been reported due to
space limitations.

We finally remark that have set a change magnitude
(sKL(�0,�1) = 1) that is quite customary in change-
detection experiments, as in the univariate Gaussian case this
corresponds to setting v equals to the standard deviation of
�0. Therefore, since in our experiments the power of both
tests is almost halved when d ⇡ 10, we can conclude that
detectability loss is not only a Big-Data issue.

5 Conclusions

We provide the first rigorous study of the challenges that
change-detection methods have to face when data dimension
scales. Our theoretical and empirical analyses reveal that the
popular approach of monitoring the log-likelihood of a mul-
tivariate datastream suffers detectability loss when data di-
mension increases. Remarkably, detectability loss is not a
consequence of density-estimation errors – even though these
further reduce detectability – but it rather refers to an intrin-
sic limitation of this change-detection approach. Our theo-

retical results demonstrate that detectability loss occurs inde-
pendently on the specific statistical tool used to monitor the
log-likelihood and does not depend on the number of input
components affected by the change. Our empirical analy-
sis, which is rigorously performed by keeping the change-
magnitude constant when scaling data-dimension, confirms
detectability loss also on real-world datastreams. Ongoing
works concern extending this study to other change-detection
approaches and to other families of distributions.

Appendix: Generating Changes of Constant

Magnitude

Here we describe a procedure to select, given �0, an or-
thogonal matrix Q 2 Rd⇥d and a vector v 2 Rd such that
�1 = �0(Qx + v) guarantees sKL(�0,�1) = 1 in the case
of Gaussian pdfs, and sKL(�0,�1) ⇡ 1 for arbitrary distri-
butions. Extensions to different values of sKL(�0,�1) are
straightforward. Since �1(x) = �0(Qx + v), we formulate
the problem as generating at first a rotation matrix Q such that

0 < sKL(�0(·),�0(Q·)) < 1

and then defining the translation vector v to adjust �1 such
that sKL(�0,�1) reaches (or approaches) 1.

We proceed as follows: we randomly define a rotation
axis r, and a sequence of rotations matrices {Qj}j around
r, where the rotation angles monotonically decrease toward 0

(thus Qj tends to the identity matrix as j ! 1). Then, we
set Qj⇤ as the largest rotation yielding a sKL < 1, namely

j⇤ = min{j : sKL(�0(·),�0(Qj ·)) < 1}. (18)

When �0 is continuous and bounded (as in case of Gaussian
mixtures) it can be easily proved that such a j⇤ exists.

In the case of Gaussian pdfs, when �0 = N (µ0,⌃0),
sKL(�0,�1) admits a closed-form expression:

sKL(�0,�1) =
1

2


v

0
⌃

�1
0 v + v

0Q⌃

�1
0 Q0

v+

+ 2v

0
⌃

�1
0 (I �Q)µ0 + 2v

0Q⌃

�1
0 (Q0 � I)µ0+

+ Tr(Q0
⌃

�1
0 Q⌃0) + Tr(⌃�1

0 Q0
⌃0Q)� 2d+

+ 2µ0
0(I �Q0

)⌃

�1
0 (I �Q)µ0

�
,

(19)

and sKL(�0(·),�0(Qj ·)) can be exactly computed to solve
(18). When there are no similar expressions for sKL(�0,�1)

this has to be computed via Monte Carlo simulations.
After having set the rotation matrix Q, we randomly gen-

erate a unit-vector u as in [Alippi, 2014] and determine a
suitable translation along the line v = ⇢u, where ⇢ > 0, to
achieve sKL(�0,�1) = 1. Again, the closed-form expression
(19) allows to directly compute the exact value of ⇢ by sub-
stituting v = ⇢u into (19). This yields a quadratic equation
in ⇢, whose positive solution ⇢⇤ provides v = ⇢⇤u that leads
to sKL(�0,�1) = 1. When the are no analytical expressions
for sKL(�0,�1), we generate an increasing sequence {⇢n}n
such that ⇢0 = 0 and ⇢n ! 1 as n ! 1, and set

n⇤
= max{n : sKL(�0(·),�0(Q ·+⇢nu)) < 1}, (20)
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where sKL(�0(·),�0(Q · +⇢nu)) is computed by Monte
Carlo simulations. After having solved (20), we determine
⇢⇤ via linear interpolation of [⇢n⇤ , ⇢n⇤+1] on the correspond-
ing values of the sKL. In this case, we can only guarantee
sKL(�0,�1) ⇡ 1 with an accuracy that can be improved by
increasing the resolution of {⇢n}n.
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