40 research outputs found

    Supernovae and Positron Annihilation

    Get PDF
    Radioactive nuclei, especially those created in SN explosion, have long been suggested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihilation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies.Comment: 7 pages, accepted for publication in New Astronomy Reviews (Astronomy with Radioactivites III

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, ν+pν+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp2Eν2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νˉe+pe++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of νμ\nu_\mu, ντ\nu_\tau, νˉμ\bar{\nu}_\mu, and νˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex

    Nuclear Level Density and the Determination of Thermonuclear Rates for Astrophysics

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We discuss the model mostly employed for such calculations: the statistical model (Hauser-Feshbach). Special emphasis is put on the uncertainties arising from nuclear level density descriptions and an improved global description is presented. Furthermore, criteria for the applicability of the statistical model are investigated and a "map" for the applicability of the model to reactions of stable and unstable nuclei with neutral and charged particles is given.Comment: REVTeX paper + 7 B/W figures + 2 color figures; PRC, in press. Also available at http://quasar.physik.unibas.ch/preps.htm

    Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    Get PDF
    Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic γ \gamma -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,γ \gamma) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment
    corecore