4 research outputs found

    Spectral Engineering with Coupled Microcavities: Active Control of Resonant Mode-Splitting

    Full text link
    Optical mode-splitting is an efficient tool to shape and fine-tune the spectral response of resonant nanophotonic devices. The active control of mode-splitting, however, is either small or accompanied by undesired resonance shifts, often much larger than the resonance-splitting. We report a control mechanism that enables reconfigurable and widely tunable mode-splitting while efficiently mitigating undesired resonance shifts. This is achieved by actively controlling the excitation of counter-traveling modes in coupled resonators. The transition from a large splitting (80 GHz) to a single-notch resonance is demonstrated using low power microheaters (35 mW). We show that the spurious resonance-shift in our device is only limited by thermal crosstalk and resonance-shift-free splitting control may be achieved.Comment: 4 pages, 3 figure

    Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation

    No full text
    The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.BN/Cees Dekker La

    A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

    Get PDF
    This work presents a genetic symbiotic algorithm to minimize the number of objects and the setup in a one-dimensional cutting stock problem. The algorithm implemented can generate combinations of ordered lengths of stock (the cutting pattern) and, at the same time, the frequency of the cutting patterns, through a symbiotic process between two distinct populations, solutions and cutting patterns. Working with two objectives in the fitness function and with a symbiotic relationship between the two populations, we obtained positive results when compared with other methods described in the literature.<br>Neste trabalho desenvolvemos um algoritmo genético simbiótico com objetivo de minimizar o número de objetos processados e o setup num problema de corte unidimensional. Nosso algoritmo genético gera seus próprios padrões em conjunto com soluções para o problema, através de um processo simbiótico entre duas populações distintas, a de soluções e a de padrões. Trabalhando com os dois objetivos na função de aptidão e com a relação simbiótica entre as duas populações, obtivemos resultados competitivos em relação aos métodos descritos na literatura
    corecore