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Abstract 
 
This work presents a genetic symbiotic algorithm to minimize the number of objects and the setup in a 
one-dimensional cutting stock problem. The algorithm implemented can generate combinations of 
ordered lengths of stock (the cutting pattern) and, at the same time, the frequency of the cutting 
patterns, through a symbiotic process between two distinct populations, solutions and cutting patterns. 
Working with two objectives in the fitness function and with a symbiotic relationship between the two 
populations, we obtained positive results when compared with other methods described in the literature. 
 
Keywords:  cutting stock problem; genetic algorithm; symbiosis. 
 
 

Resumo 
 
Neste trabalho desenvolvemos um algoritmo genético simbiótico com objetivo de minimizar o número 
de objetos processados e o setup num problema de corte unidimensional. Nosso algoritmo genético 
gera seus próprios padrões em conjunto com soluções para o problema, através de um processo 
simbiótico entre duas populações distintas, a de soluções e a de padrões. Trabalhando com os dois 
objetivos na função de aptidão e com a relação simbiótica entre as duas populações, obtivemos 
resultados competitivos em relação aos métodos descritos na literatura. 
 
Palavras-chave:  problema de corte de estoque; algoritmo genético; simbiose. 
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1. Introduction 

The cutting stock problem (CSP) is a classic problem in the area of Operations Research. In 
one-dimensional cases, it can be defined as the problem of finding the best way of cutting 
ordered items from a stock roll of length L such that trim loss is minimized and the total 
order is satisfied. This is a common problem arising in the production of paper (Haeesler, 
1976; Diegel, 1988), steel (Eilon, 1960; Wäscher et al., 1985), windows (Stadler, 1990), etc. 
A CSP can be broken down into two distinct sub-problems: (1) the generation of the cutting 
pattern and (2) the determination of its frequency in the final solution. 

The Cutting Stock Problem is one of the first applications of Operations Research methods; 
it was first studied by Kantorovich in the thirties. Problems of the same nature were dealt 
with by Paull & Walter (1954), Metzger (1958) and Eilon (1960). However, as observed by 
Dowsland & Dowsland (1992), the methods used at that time were only appropriate for small 
problems. The papers of Gilmore & Gomory (1961, 1963) produced a great impact in this 
area by proposing an efficient method to work with a large scale cutting stock problems 
through the use of column generation procedures. Haessler’s (1975) was the first work to 
treat the nonlinear cutting stock problem, considering the reduction of trim loss and the 
number of setups of the cutting machine. 

Genetic Algorithms (GAs) were introduced by Holland (1975) and, in the last decade, they 
became a promising method for finding good solutions to optimization problems. GAs are a 
specific class of evolutionary computation (EC) as they employ techniques inspired by the 
theory of evolution, which was developed in 1859 by Darwin, who tried to establish a logical 
outline of the changes in a population’s inherited traits from generation to generation. 
Several papers attempt to simulate some of the biological aspects, such as predator-prey, 
sexual recombination and so on. In our case, we subdivide the CSP into two sub-problems in 
order to simulate the symbiotic relationship, whereby two or more distinct populations have 
a collaborative relationship. 

Genetic applications of the CSP generally employ cutting patterns generated by other 
methods, such as Branch-and-Bound, Constructive Heuristics with Branch-and-Bound, 
Constructive Heuristics with Random Search, Residual Heuristic with Branch-and-Bound, 
and Residual Heuristic with Random Search. Next, the frequency of each pattern is 
calculated (Boleta et al., 2005; Khalifa et al., 2006). Liang et al. (2002) propose an 
evolutionary programming algorithm (Fogel, 1995) with only one swap mutation operator 
that, according to the authors, outperforms GAs for one-dimensional CSPs with and without 
contiguity. However, the above studies do not aim at minimizing the setup cost. In the 
present study, our objective is to minimize the costs of setup and of processed raw material 
using a genetic algorithm – applied to a symbiotic relationship – that generates the cutting 
pattern together with its frequency. 

In Section 2, we describe a mathematical model of the cutting stock problem for minimizing 
the number of objects and setups. In Section 3, we briefly present the main concepts of 
genetic algorithms. Section 4 is dedicated to the symbiosis process. In Section 5, we describe 
the applications. Finally, in Sections 6 and 7, we exhibit our calculations and final conclusions, 
respectively. 
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2. The One-Dimensional Cutting Stock Problem 

The Standard Cutting Stock Problem is characterized by cutting stock rolls of width W 
(called objects) into smaller rolls of width wi (where W > wi), aiming at satisfying the 
demand di for each item i, for i = 1,2,…,m. According to Dyckhoff’s typology (1990), this 
problem is classified as 1/V/I/R. 

Each combination of items in an object is called the cutting pattern, and each change in the 
cutting pattern has a cutting-machine setup cost. The number of setups is of great importance 
when we have to process a large order in a short period. Wäscher (1990) criticizes the 
traditional planning models for cutting stock problems; he says they do not consider all of the 
process factors that tend to affect a company’s profit, such as the setup number or the amount 
of stockpiled material created during the various cuts. Consequently, we have to find the 
balancing point between the number of setups and the quantity of objects used. 

The mathematical model for minimizing the number of objects and setups can be stated as: 
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We compare our approach with five methods, that also work with the two objective: setup 
and number of processed objects: 

• SHP: This method was proposed by Haessler (1975). It is based on a repeat-pattern 
exhaustion technique (Pierce, 1964), where the cutting patterns are determined 
successively and, for each iteration, some aspiration parameters have to be satisfied. 
These aspiration parameters control the trade-off between the two costs, c1 and c2. 

• Kombi234: This method was developed by Foester & Wäscher (2000). It is based on 
combining cutting patterns to reduce the number of setups for a given solution; it’s an 
extension of the work of Diegel et al. (1993). This method maintains the number of 
processed objects constant; in other words, the sum of frequencies for each pattern is 
kept equal for all iterations. Once the final solution is found, the number of patterns 
can be reduced by up to 60% of the original number. 

• NANLCP: This method, developed by Moretti & Salles Neto (2008), minimizes the 
number of objects and setups through the application of the Lagrangian function. This 
method also uses an adaptation of the column-generation method proposed by 
Gilmore & Gomory (1961, 1963) for non-linear models and a simple rounding 
heuristic to obtain an integer solution. 



Golfeto, Moretti & Salles Neto  –  A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem 

368 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 

• Hybrid Heuristic: This method, proposed by Yanasse & Limeira (2006), is a hybrid 
procedure consisting of three phases. In the first phase, patterns are generated and the 
“good” ones are selected and used to reduce the problem; in the second phase, the 
reduced problem is solved and, in the third phase, a pattern-reduction technique is 
applied. The authors argue that the computational tests performed indicate that the 
proposed scheme provides alternative solutions to the pattern-reduction problem that 
are not overcome by other solutions obtained using procedures previously suggested 
in the literature. 

• ILS: Umetani et al. (2006) presented a local search algorithm that uses two types of 
local search: (1) the 1-add neighborhood and (2) the shift neighborhood. Linear 
programming techniques were added to local search procedures to reduce the number 
of solutions for each neighborhood and improve performance. A sensitivity analysis 
technique was introduced to solve the large number of associated LP problems 
quickly. Umetani et al. (2006) compared ILS to Kombi234, to SHP, and to an exact 
branch-and-price method (BP) suggested by Belov & Scheithauer (2000), who 
proposed a method similar to the work of Vanderbeck (2000), yet with few variables. 
Vanderbeck (2000) investigates the problem of minimizing a number of different 
cutting patterns as in nonlinear integer programming, where the number of objects is 
fixed and determined after solving the problem using the Gilmore-Gomory strategy. 
In his article, Vanderbeck uses a Dantzig-Wolfe breakdown method that he extended 
of Vanderbeck (1999) to solving the resulting integer-programming problem. 
Umetani et al. (2006) claim that the ILS algorithm obtains better solutions than those 
obtained by the SHP, KOMBI234 and BP approaches. 

 
3. Genetic Algorithms 

According to Von Zuben (2003), genetic algorithms (GAs) are based on the works of 
Holland (1962), Bremermann (1962) and Fraser (1957). However, the genetic algorithm was 
actually introduced only in Holland’s work (1975). In the last decade, it became a promising 
method for discovering solutions to optimization problems. 

GAs are a specific class of evolutionary computation (EC), utilizing techniques inspired by 
the theory of evolution – such as natural selection, whereby stronger creatures have greater 
chances of reproducing and introducing their characteristics into the next generation – as a 
problem-solving paradigm. 

The following important concepts are associated with genetic algorithms: 

• Fitness: an individual’s level of adaptability to his environment. 
• Genes: functional blocks of DNA. 
• Genome: an individual’s genetic pattern. 
• Selection: the mechanism responsible for selecting a population’s top individuals for 

reproduction; the following are the most common types of selection: competition, 
elitism, and diversity – or a combination of various types. 

• Crossover: also called recombination, crossover is the genetic operator used to 
combine two individuals to generate a new individual. There are many types of 
crossovers, the most common being One-point, Two-point and Uniform crossovers. 

• Mutation: the probability of one gene mutating; this operator is implemented after the 
crossover. 
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4. Symbiosis 

According to Allaby (1998), symbiosis is a general term describing a situation in which 
dissimilar organisms live together in close association. As originally defined, the term 
embraces all types of mutual and parasitic relationships. Its current use is often limited to 
mutually beneficial species-interaction. Mutualism is defined as an interaction between 
members of two different species, with benefits to both. Pianka (1994) gives some examples 
of interactions between species, such as nectar-feeding birds and flowering plants; ants and 
plants; and birds and buffalos. In Table 1, we can observe the benefit or harm to each 
individual in a symbiotic relationship. 
 

Table 1 – Impact of symbiotic relationships on organisms. 

Relationship Self Opponent 

Amensalism Neutral Harm 
Commensalism Benefit Neutral 

Competition Harm Harm 
Mutualism Benefit Benefit 
Parasitism Benefit Harm 
Predation Benefit Harm 

Proto-cooperation Benefit Benefit 
 
The process of symbiogenesis was introduced in (Watson & Pollack 1999) as the genesis of 
new species via the genetic integration of symbionts. For example, eukaryote cells (from 
which all plants and animals descend) have a symbiogenic origin. This can occur when the 
symbionts have a high degree of association. 

The works of Eguchi et al. (2003), Hirasawa et al. (2000) and Mao et al. (2000) also 
simulate symbiosis relationships. However, in their algorithms, each individual of the 
population is treated as a different species that develops a symbiotic relationship with 
another individual. Hirasawa et al. (2003) give one example of a possible relationship: 
“if individual i exists near individual j and the fitness of individual i is greater than that of 
individual j, then individual i exploits individual j”. 

The genetic symbiotic algorithm (GSA), also called cooperative algorithm (Potter, 1997; 
Kim et al. 2000), basically breaks the problem down into n sub-problems using n different 
species. Dividing the problem into n distinct populations, we can solve the problem utilizing 
simple structures that, working together, can be more powerful than complex structures. 
Kim et al. (2001, 2006) propose an endosymbiotic evolutionary algorithm for optimization; 
the basic idea is to incorporate eukaryotic cell evolution (Margullis, 1981) into the existing 
symbiotic algorithms. Under this approach, when an individual meets a highly fit partner, the 
whole combination evolves for some time without changing the partner. 

Tsujimura et al. (2001) presented a symbiotic genetic algorithm for job shop scheduling. 
Chang et al. (2002) presented a symbiotic evolutionary algorithm for dynamic facility layout 
problems. In the next section, we explain the GSA’s application to the CSP, aiming at 
minimizing raw material and setup costs. We have no knowledge of any other study that 
applies the GSA to the CSP. 
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5. Application 

When applied to the CSP, the main difference between the GSA and the classical genetic 
algorithm (CGA) is its ability to construct cutting patterns regardless of the solution, thus 
eliminating (replacing) inefficient or unused pattern-population cutting patterns. Another 
interesting advantage GSAs have over CGAs is that the patterns are not part of the solution; 
although the solution depends on the pattern, we can work with them separately. 

Khalifa et al. (2006) solve the CSP using a genetic algorithm whereby the genes of each 
solution are processed in pairs and the first gene of each solution represents the frequency of 
the pattern represented by the second gene. In our application, the second gene represents an 
individual from the pattern population. Figure 1 shows patterns 37, 11 and 32 with their 
respective frequencies: 2, 4 and 5. 
 

 
Figure 1 – Gene Structure. 

 
We believe mutualism is the biological relationship that is the most relevant to our 
application, since both individuals benefit from the relationship; in this case, the relationship 
presents great adaptability to the environment. 

In the next subsections, we explain the structure of each population. At this point, it is worth 
mentioning that we call the individuals of the first population solutions and the individuals of 
the second population patterns. 

In the case of our implementation, we considered three stopping criteria: 
• Maximum time of execution: 500 seconds; 
• Maximum number of generations: 10,000 generations; 
• Convergence: if the algorithm cannot find a better solution in 500 generations, it stops. 

 

5.1 Individual Solutions 

Below, we describe the parameters, obtained in an experimental way, of the first population 
(that is, solutions): 

• Population size: 1,000 individuals; 
• Type of selection: elitism, 70% of the best individuals; 
• Crossover rate: 30%; 
• Crossover type: uniform, 70% chance for the best individual (see figure 2); 
• Mutation rate: we calculate the probability of 2 genes mutating; that is, if the 

individual has k genes, the probability of each gene mutating is 2/k (see figure 3). 
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Figure 2 – Uniform crossover. 

 

 
Figure 3 – Mutation of an individual/solution. 

 
To determine the size of the DNA chain (i.e., the number of genes of an individual) in our 
application, we need to estimate the maximum number of setups that one problem could 
have. We chose m to represent this number, since the problem of minimizing the number of 
objects and setups used in a cutting plan can be written as a linear programming problem, 
whereby each constraint represents an item’s demands. The number of an individual’s genes 
is fixed as twice the maximum number of setups. However, if the biggest item in a cutting 
plan is less than or equal to half the size of an object, the following procedure is adopted: 
 
If (Quantity of Items > 30) Then 
    Gs = 32 
Otherwise If (Quantity of Items > 15) Then 
    Gs = 24 
Otherwise 
    Gs = 16 
End-If 
 
where Gs is the number of genes of an individual. We adopted this strategy, seeking to obtain, 
already in the first generations, solutions with a small number of different cutting patterns. 

Represented by the odd genes, the frequency of each pattern has an upper and lower limit. 
This is done to restrict the problem’s search region. The lower limit is set to zero, and the 
upper limit is defined as the largest order in the cutting plan. This is done to produce a 
pattern containing just one type of item. The fitness function for individual i, which contains 
the numbers of both the processed objects and the setups, is defined as 
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• mr  is the number of items that are not present in the solution 

• idr  is the residual demand for item i; that is, 
1

n

i i ij j
j

dr d a x
=

= −∑  

• 4 6
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10 10

m

i
i

mr drρ
=

= × + ×∑  is the penalty incurred if the solution is not feasible. 

The costs c1 and c2 are used explicitly and the parameter τ  has two important functions: 
(1) it is used to measure how good a local minimum is; a little change in the relative trim loss 
will provide an improvement in fitness, extending the application of the method; (2) it is a 
comparison factor; when we have two or more equally suitable solutions, we choose only 
one for the elite list. The elite list contains the 700 most suitable individuals (70% of the 
population’s best individuals). 

Additionally, at every 100 generations we randomly generate 200 individuals and place them 
on the elite list, replacing the 200 worst solutions. We adopt this strategy and the τ  
parameter in order to increase the population’s diversity. 

 

5.2 Individual Patterns 

Pattern-population parameters, also obtained in an experimental way, are significantly 
different when compared to solution-population parameters: 

• Population size: 600 individuals; 
• Type of selection: elitism, 66% of the best individuals; 
• Crossover rate: 34%; 
• Crossover type: 2 points (see figure 4); 
• Mutation rate: 90% chance of one gene mutating (see figure 5). 

Figure 4 shows how the crossover in the pattern population is accomplished. 

 

 
Figure 4 – Two-point crossover. 

 
Figure 5 shows how the mutation in the pattern populations is accomplished. The gene is 
deactivated when its corresponding item doesn’t fit in the pattern, and activated otherwise. 
For instance, the fifth gene, corresponding to the item 5, was deactivated before the 
mutation, because if it made part of the pattern, the sum of the items would be larger than the 
size of the object. As after the mutation the fourth gene changed from 2 to 3, and the item 3, 
unlike item 2, didn’t fit in the pattern, therefore, we have a space to activated item 5. 
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Figure 5 – Mutation of an individual/pattern. 

 
The length of the DNA chain is equal to the largest integer that is smaller or equal to the size 
of the master roll divided by the size of the smallest item. By doing so, we can guarantee that 
it is possible to create a pattern using only one type of item. For example, in the pattern of 
the Figures 4 and 5, the DNA chain has 14 genes. This means that the smallest item has its 

size wi satisfying 14
i

W
w

⎡ ⎤= ⎢ ⎥⎢ ⎥
. 

However, some patterns will not use all the genes available in the DNA chain since we 
generate items in the pattern as long as the sum of their lengths does not exceed the size of 
the master roll. That is, we insert one item into the pattern from left to right, having the DNA 
chain as a reference, if and only if the pattern has enough space to accommodate the item. 

We calculate the fitness of each pattern based on the solution population’s elite list. For each 
individual/solution, we add points to the fitness of the individual pattern considered in the 
solution. We calculate a pattern’s fitness according to the following rule: 
 
For i = 1 to n_EliteSolutions 
    For each pattern j in solution i DO 
        FitnessPattern(j) = FitnessPattern(j) + 1 + (1 / i) 
    End For 
End For 
 
where n_EliteSolutions is the number of individuals/solutions in the elite list; the first 
individual/solution in the list is the most suitable, the second individual/solution is the 
second most suitable, and so on. 

This way, we give priority to the cutting pattern that appears in the most suitable solutions. 
During the evolutionary process, these suitable patterns should generate other suitable 
patterns that, through their symbiotic relationship with the individuals/solutions, will result in 
better solutions. 

 
5.3 Pseudo-Code 

The steps below describe how to obtain a solution for the CSP that minimizes the number of 
processed objects and setups at the same time: 

Step 1: Initialize the population of solutions with random values 
Step 2: Initialize the population of patterns with random values 
Step 3: Calculate the fitness of individuals/solutions 
Step 4: Select the solutions with the greatest fitness 
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Step 5: Add points to the fitness of the patterns of elite solutions 
Step 6: Select the patterns with the greatest fitness 
Step 7: Use the crossover and mutation operators to generate new solutions 
Step 8: Use the crossover and mutation operators to generate new patterns 
Step 9: If any stop criterion has been satisfied, then Stop; otherwise return to Step 3 

 
6. Computational Experiments 

In order to evaluate our method, we solved 1800 problems generated by CUTGEN1 
(as proposed by Gau & Wäscher (1995)), divided into 18 classes, with the same seed and 
parameters used by Foester & Wäscher (2000). In terms of solution quality, we compared 
our approach to the following heuristics: SHP, proposed by Haessler (1975); Kombi234, 
developed by Foester & Wäscher (2000); NANLCP, proposed by Salles Neto & Moretti 
(2008); ILS, proposed by Umetani et al. (2006); and the Hybrid Heuristic, proposed by 
Yanasse & Limeira (2006). 

Table 2 describes the parameters used for each class. We generated six classes with small 
items (classes 1 to 6), six classes with diverse items (classes 7 to 12), and six classes with 
large items (classes 13 to 18). 
 

Table 2 – The parameters associated with the 18 classes. 

Class v1 v2 m d 
1 0.01 0.20 10 10 
2 0.01 0.20 10 100 
3 0.01 0.20 20 10 
4 0.01 0.20 20 100 
5 0.01 0.20 40 10 
6 0.01 0.20 40 100 
7 0.01 0.80 10 10 
8 0.01 0.80 10 100 
9 0.01 0.80 20 10 
10 0.01 0.80 20 100 
11 0.01 0.80 40 10 
12 0.01 0.80 40 100 
13 0.20 0.80 10 10 
14 0.20 0.80 10 100 
15 0.20 0.80 20 10 
16 0.20 0.80 20 100 
17 0.20 0.80 40 10 
18 0.20 0.80 40 100 

 
The method was implemented in FORTRAN 90/95, using the Microsoft FORTRAN Power 
Station compiler, in a PC AMD SEMPRON 2300+ computer (1,5 MHz/640MB RAM) with 
a windows operating system. The source code is available at http://www.otimizacao.net. The 
NANLCP and SHP methods were implemented in FORTRAN using a PC AMD ATHLONXP 



Golfeto, Moretti & Salles Neto  –  A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem 

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 375 

computer (1,800 MHz/512MB RAM) with a Linux operating system. The Kombi234 results 
were obtained from Foester & Wäscher’s study (2000); they implemented their code in 
MODULA-2, using MS-DOS 6.0 on an IBM 486/66. The ILS heuristic was encoded in C 
language and was run on an IBM-compatible personal computer (Pentium IV 2 GHz/1 GB 
memory) using the Linux OS. The Hybrid Heuristic (HH) was performed using C++ on an 
Intel Celeron microcomputer (266 MHz/128MB RAM) and a Sun Ultra 30 workstation 
(296MHz/384MB RAM). 

The method achieved convergence of results in all 1800 problems; that is, the algorithm 
terminated its calculations before reaching 10,000 generations or 500 seconds. 

In Table 3, we present the results for three different setup costs, c2 = {1,5,10}, respectively 
labeled Symbio1, Symbio5 and Symbio10. Table 3 presents the average setup number for the 
SHP, Kombi234, ILS, NANLCP, HH and Symbio methods in each class. The ILS method 
works with an upper limit on the optimal value fopt of the number of processed objects, which 
is calculated using a branch-and-price algorithm based on the column generation technique 
(Umetani et al., 2006). We present the results obtained using the ILS method with a lower 
limit equal to 1.01 fopt (ILS1.01), with no upper limit (ILSinf). 

The ILS method without an upper limit on the objects processed (ILSinf) provided better 
setup averages in all classes (in bold type in Table 3). 

Table 4 shows the average number of processed objects for the methods in each class. The 
Kombi method provided better averages for the objects processed in 17 classes, and the ILS 
method (with an upper limit equal to 1.01fopt) obtained a better average in class 14. 
 

Table 3 – Setup averages for each method. 

Class SHP KOMBI ILS1.01 ILSInf NANLCP HH Symbio1 Symbio5 Symbio10
1 3,95 3,40 2,43 1,67 3,01 3,31 3,09 2,02 1,85 
2 5,94 7,81 4,57 1,67 4,76 6,95 6,11 5,28 4,68 
3 5,00 5,89 4,42 2,57 4,91 4,96 5,74 4,8 4,47 
4 7,31 14,26 7,36 2,57 7,16 10,32 10,59 9,86 9,36 
5 6,87 10,75 9,32 4,28 7,04 7,63 9,89 8,44 8,23 
6 10,81 25,44 12,48 4,28 10,84 13,31 30,07 14,16 14,08 
7 8,84 7,90 5,92 5,01 5,31 7,66 6,36 5,48 5,21 
8 9,76 9,96 6,42 5,01 6,97 9,62 8,51 8,16 7,76 
9 17,19 15,03 11,38 9,27 10,92 13,64 10,94 10,47 10,16 
10 19,37 19,28 12,11 9,27 12,80 18,21 16,7 16,28 16,04 
11 32,20 28,74 22,08 16,95 21,12 24,60 23,04 22,24 21,56 
12 37,25 37,31 22,66 16,95 25,25 33,23 32,93 31,74 31,52 
13 9,38 8,97 7,01 6,26 6,31 8,93 7,28 6,7 6,68 
14 9,85 10,32 7,43 6,26 7,89 10,51 8,62 8,3 8,21 
15 18,03 16,88 13,26 11,76 11,13 16,28 13,66 13,18 12,99 
16 19,63 19,91 13,80 11,76 14,44 19,89 16,68 16,57 16,34 
17 34,39 31,46 24,49 21,50 21,96 29,76 27,22 25,82 25,62 
18 38,23 38,28 25,39 21,50 26,03 37,90 32,7 32,03 32,18 

 



Golfeto, Moretti & Salles Neto  –  A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem 

376 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 

Table 4 – Average numbers of processed objects for each method. 

Class SHP KOMBI ILS1.01 ILSinf NANLCP HH Symbio1 Symbio5 Symbio10 
1 14,17 11,49 12,24 15,15 14,84 11,56 12,59 14,49 14,84 
2 116,47 110,25 111,60 149,78 119,62 110,4 115,17 116,26 117,8 
3 25,29 22,13 23,08 28,01 24,26 22,17 25,96 27,43 28,23 
4 225,33 215,93 218,44 278,57 223,91 215,98 235,93 236,89 239,72 
5 46,89 42,96 43,95 55,12 45,96 42,99 57,17 60,85 61,42 
6 433,59 424,71 429,10 546,64 433,29 424,89 472,95 518,81 518,85 
7 55,84 50,21 50,62 54,14 53,69 51,69 51,58 53,04 53,75 
8 515,76 499,52 500,77 541,50 488,85 502,23 510,5 512,92 514,65 
9 108,54 93,67 94,40 101,21 105,65 99,49 99,36 99,41 100,1 

10 1001,59 932,32 936,18 1008,05 932,67 948,41 970,57 975,56 975,72 
11 202,80 176,97 178,34 193,17 216,67 195,67 198,26 201,43 201,44 
12 1873,05 1766,20 1773,74 1920,39 1839,63 1847,42 1932,16 1932,79 1917,4 
13 69,97 63,27 63,53 67,61 66,77 64,20 65,23 66,51 67,32 
14 643,55 632,12 630,50 675,50 639,88 633,26 646,77 646,31 650,52 
15 136,03 119,43 120,53 125,86 123,93 123,90 127,39 128,43 128,87 
16 1253,55 1191,80 1196,57 1256,92 1169,07 1197,66 1254,69 1253,79 1251,9 
17 256,01 224,68 226,62 239,64 262,07 244,02 244,49 248,67 247,62 
18 2381,54 2242,40 2255,12 2391,53 2247,11 2268,30 2414,07 2419,34 2422,41 

 

Table 5 compares the total Symbio-method costs (c1= c2=1) to the total SHP, Kombi234, 
ILS1.01, ILSinf, HH and NANLCP costs. In order to compute the percentage of deviation of 
the total Symbio1 cost in relation to the NANLCP cost, we used the following formula: 

100Symbio NANLCP

Symbio

TotalCost TotalCost
V

TotalCost
−

= ×  

The same thing was done when we compared Symbio5 and Symbio10 to the other methods. 
Compared to NANLCP, our method provides a better solution when the percentage of 
deviation is negative. Tables 6 and 7 show the same comparisons made in Table 5, using, 
however, Symbio5 (c1=1 and c2=5) and Symbio10 (c1=1 and c2=10) instead of Symbio 1. 

As one can see, when c1= c2=1, Symbio was better than SHP in 11 classes; better than Kombi 
in only one class; and better than ILSinf, NANLCP and HH in 10, 7 and 4 classes, 
respectively. When compared to ILS1.01, Symbio1 produced inferior averages in all classes. 

The best results were obtained when comparing Symbio to the other methods, using c1=1 and 
c2=5. The results we obtained were better than those of SHP in 12 classes; better than 
Kombi234 in 10 classes; better than ILSinf in 3 classes; better than NANLCP in 4 classes; 
and better than HH in 8 classes. Additionally, when compared to Symbio, the ILS method 
(with an upper limit equal to 1.01 fopt) obtained better total-cost averages in all classes. 
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Table 5 – Total-cost deviation percentage (c1= c2) of Symbio1 in relation to SHP, Kombi, ILS, 
NANLCP and HH. 

Class SHP Kombi ILS1.01 ILSinf NANLCP HH 
1 -13,47 5,31 6,88 -6,78 -12,16 5,45 
2 -0,92 2,73 4,40 -19,92 -2,49 3,35 
3 4,66 13,13 15,27 3,66 8,67 16,84 
4 5,97 7,09 9,18 -12,31 6,69 8,94 
5 24,74 24,86 25,89 12,90 26,53 32,48 
6 13,19 11,74 13,91 -8,69 13,26 14,79 
7 -10,42 -0,29 2,48 -2,05 -1,80 -2,38 
8 -1,24 1,87 2,33 -5,03 4,68 1,40 
9 -12,27 1,47 4,27 -0,16 -5,38 -2,50 

10 -3,30 3,75 4,11 -2,95 4,42 2,14 
11 -5,83 7,58 10,42 5,32 -6,93 0,47 
12 2,87 8,96 9,39 1,43 5,37 4,49 
13 -8,62 0,37 2,79 -1,84 -0,78 -0,85 
14 0,30 2,02 2,74 -3,87 1,18 1,80 
15 -8,44 3,48 5,43 2,49 4,44 0,62 
16 -0,14 4,92 5,04 0,21 7,42 4,42 
17 -6,44 6,08 8,20 4,05 -4,34 -0,76 
18 1,12 7,28 7,29 1,40 7,64 6,10 

 
Table 6 – Total-cost deviation percentage (c1=1 and c2=5) of Symbio5 in relation to SHP, 

Kombi, ILS, NANLCP and HH. 

Class SHP Kombi ILS1.01 ILSinf NANLCP HH 
1 -27,51 -13,69 0,82 4,64 -17,73 -12,52 
2 -2,40 -4,45 6,11 -9,78 -0,53 -1,72 
3 2,27 -0,29 13,83 25,87 5,37 9,50 
4 9,28 -0,36 12,13 -1,79 10,20 6,95 
5 26,85 6,56 13,80 34,67 26,97 27,00 
6 20,91 6,83 19,96 3,80 20,95 19,98 
7 -19,59 -10,33 0,27 1,58 0,25 -10,61 
8 -1,92 0,80 3,91 -2,26 5,73 0,62 
9 -21,97 -10,11 0,30 2,85 -5,30 -9,50 
10 -3,78 2,75 6,04 0,24 6,05 1,68 
11 -14,07 -2,51 8,27 12,49 -2,99 -1,90 
12 1,56 7,10 10,83 4,31 6,39 3,87 
13 -14,43 -7,50 1,45 1,11 1,72 -8,12 
14 -0,72 0,60 3,02 -2,69 1,25 0,29 
15 -14,08 -4,66 4,01 5,24 8,21 -5,34 
16 -1,11 3,51 5,62 1,59 7,68 3,05 
17 -11,73 -1,10 8,22 8,82 1,59 -3,83 
18 0,26 5,99 8,29 3,22 8,51 4,95 

 
Symbio10 performed best using c1=1 and c2=10; this algorithm performed better than: SHP 
in 13 classes; Kombi234, in 14 classes; ILS1,01, in 3 classes; ILSinf, in 2 classes; NANLCP, in 
6 classes; and HH, in 8 classes. 
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Table 7 – Total-cost deviation percentage (with c1=1 and c2=10) of Symbio10 in relation to SHP, 
Kombi, ILS, NANLCP and HH. 

Class SHP Kombi ILS1.01 ILSinf NANLCP HH 
1 -37,88 -26,71 -8,76 4,68 -25,81 -25,35 
2 -6,41 -12,61 4,64 -1,13 -1,57 -8,50 
3 -3,13 -10,00 8,40 35,78 -0,59 1,62 
4 11,69 -7,03 14,14 9,55 12,79 4,43 
5 24,34 -4,48 4,79 46,77 23,51 20,48 
6 21,78 -2,87 19,09 11,91 21,78 18,22 
7 -26,62 -18,08 -3,62 1,54 -0,88 -17,49 
8 -3,44 -1,15 4,83 0,11 6,03 -1,03 
9 -28,08 -17,33 -3,12 4,02 -6,12 -14,49 
10 -4,95 0,98 7,46 3,21 7,11 0,50 
11 -20,53 -10,19 4,48 14,99 -2,53 -5,58 
12 -0,58 4,36 11,61 6,83 6,71 2,43 
13 -18,10 -12,32 0,37 3,00 3,27 -12,63 
14 -1,27 -0,37 3,95 -0,74 1,93 -0,78 
15 -18,20 -10,22 2,23 6,29 10,01 -9,74 
16 -2,38 1,75 6,05 2,97 7,75 1,34 
17 -16,02 -6,58 6,85 10,82 4,60 -6,98 
18 -0,71 4,53 9,37 5,28 9,44 3,66 

 
Table 8 – Average processing time for each method (KOMBI, HH and ILS were not implemented 

and tested in the same computational environment). 

Class SHP  Kombi234  ILS  NANLCP  HH Symbio05  
  T(s) T(s) T(s) T(s) T(s) T(s) 
1 0.01 0.14 0.10 0.83 0.23 18.54 
2 0.08 1.14 0.22 1.21 0.48 37.88 
3 0.17 1.74 0.72 0.94 0.12 33.25 
4 0.21 16.00 2.69 1.22 2.75 68.11 
5 0.27 38.03 7.55 0.89 3.43 58.29 
6 0.31 379.17 23.18 1.02 7,81 158.04 
7 0.01 0.07 0.21 13.44 0.11 19.62 
8 0.02 0.20 0.27 16.51 0.60 48.48 
9 0.04 3.37 1.96 75.81 0.49 38.75 
10 0.06 3.25 2.19 142.01 3.36 127.25 
11 0.22 36.26 19.16 168.67 7.17 117.85 
12 0.32 76.31 23.87 420.53 44.62 426.08 
13 0.01 0.08 0.26 5.12 0.13 17.66 
14 0.02 0.13 0.31 4.44 0.25 31.19 
15 0.03 1.81 2.01 61.68 0.97 41.12 
16 0.04 2.60 2.21 78.34 2.46 133.90 
17 0.16 50.93 22.01 250.04 15.46 153.45 
18 0.24 70.94 26.84 390.75 50.61 388.89 



Golfeto, Moretti & Salles Neto  –  A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem 

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 379 

7. Conclusions and Perspectives 

Upon comparing the results, we observed that on the average the Symbio method perform 
better with higher setup costs. Compared to the Kombi234, SHP, ILS and HH methods, one 
Symbio advantage is its capacity to process costs c1 and c2 directly within the objective 
function. NANCLP is the only method described in the literature that works with these costs 
in the objective function. However, NANLCP uses c2 as a penalty setup-parameter, avoiding 
real setup costs. In fact, Moretti & Salles Neto (2008) assign c2 a value of 100 or 300. In the 
real world, these costs vary depending upon several factors such as demand, delivery date, 
and labor costs; they can only be defined if all the data is available. 

Parameters such as the mutation rate, population size and gene quantity greatly influence the 
final solution. For example, for problems involving items smaller than half the size of the 
master roll, the size of the genes was chosen in a different way in order to improve the 
solutions. Analyzing the results, one can see that our algorithm functions better for problems 
involving an average demand of around 10 items. 

In Table 8, one notices that the percentage of difference between the faster and slower 
classes is low for Symbio, which tells us that this method is reasonably stable in relation to 
computing time. However, the computing time is high in comparison to the ILS method, 
which produces better results for most of the classes. 

Finally, since this is the first study to use a genetic symbiotic algorithm in a cutting stock 
problem involving setup costs, we believe that improvements can be made that will result in 
even better methods. 
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