
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 365

A GENETIC SYMBIOTIC ALGORITHM APPLIED TO THE
ONE-DIMENSIONAL CUTTING STOCK PROBLEM

Rodrigo Rabello Golfeto
Escola de Engenharia Industrial Metalúrgica
Universidade Federal Fluminense (UFF)
Volta Redonda – RJ, Brasil

Antonio Carlos Moretti
Inst. de Matemática, Estatística e Computação Científica
Universidade Estadual de Campinas (UNICAMP)
Campinas – SP, Brasil

Luiz Leduíno de Salles Neto*
Departamento de Ciência e Tecnologia
Universidade Federal de São Paulo (UNIFESP)
São José dos Campos – SP, Brasil
luiz.leduino@unifesp.br

* Corresponding author / autor para quem as correspondências devem ser encaminhadas

Recebido em 08/2007; aceito em 04/2009 após 2 revisões
Received August 2007; accepted April 2009 after 2 revisions

Abstract

This work presents a genetic symbiotic algorithm to minimize the number of objects and the setup in a
one-dimensional cutting stock problem. The algorithm implemented can generate combinations of
ordered lengths of stock (the cutting pattern) and, at the same time, the frequency of the cutting
patterns, through a symbiotic process between two distinct populations, solutions and cutting patterns.
Working with two objectives in the fitness function and with a symbiotic relationship between the two
populations, we obtained positive results when compared with other methods described in the literature.

Keywords: cutting stock problem; genetic algorithm; symbiosis.

Resumo

Neste trabalho desenvolvemos um algoritmo genético simbiótico com objetivo de minimizar o número
de objetos processados e o setup num problema de corte unidimensional. Nosso algoritmo genético
gera seus próprios padrões em conjunto com soluções para o problema, através de um processo
simbiótico entre duas populações distintas, a de soluções e a de padrões. Trabalhando com os dois
objetivos na função de aptidão e com a relação simbiótica entre as duas populações, obtivemos
resultados competitivos em relação aos métodos descritos na literatura.

Palavras-chave: problema de corte de estoque; algoritmo genético; simbiose.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional UNIFESP

https://core.ac.uk/display/37708511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

366 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

1. Introduction

The cutting stock problem (CSP) is a classic problem in the area of Operations Research. In
one-dimensional cases, it can be defined as the problem of finding the best way of cutting
ordered items from a stock roll of length L such that trim loss is minimized and the total
order is satisfied. This is a common problem arising in the production of paper (Haeesler,
1976; Diegel, 1988), steel (Eilon, 1960; Wäscher et al., 1985), windows (Stadler, 1990), etc.
A CSP can be broken down into two distinct sub-problems: (1) the generation of the cutting
pattern and (2) the determination of its frequency in the final solution.

The Cutting Stock Problem is one of the first applications of Operations Research methods;
it was first studied by Kantorovich in the thirties. Problems of the same nature were dealt
with by Paull & Walter (1954), Metzger (1958) and Eilon (1960). However, as observed by
Dowsland & Dowsland (1992), the methods used at that time were only appropriate for small
problems. The papers of Gilmore & Gomory (1961, 1963) produced a great impact in this
area by proposing an efficient method to work with a large scale cutting stock problems
through the use of column generation procedures. Haessler’s (1975) was the first work to
treat the nonlinear cutting stock problem, considering the reduction of trim loss and the
number of setups of the cutting machine.

Genetic Algorithms (GAs) were introduced by Holland (1975) and, in the last decade, they
became a promising method for finding good solutions to optimization problems. GAs are a
specific class of evolutionary computation (EC) as they employ techniques inspired by the
theory of evolution, which was developed in 1859 by Darwin, who tried to establish a logical
outline of the changes in a population’s inherited traits from generation to generation.
Several papers attempt to simulate some of the biological aspects, such as predator-prey,
sexual recombination and so on. In our case, we subdivide the CSP into two sub-problems in
order to simulate the symbiotic relationship, whereby two or more distinct populations have
a collaborative relationship.

Genetic applications of the CSP generally employ cutting patterns generated by other
methods, such as Branch-and-Bound, Constructive Heuristics with Branch-and-Bound,
Constructive Heuristics with Random Search, Residual Heuristic with Branch-and-Bound,
and Residual Heuristic with Random Search. Next, the frequency of each pattern is
calculated (Boleta et al., 2005; Khalifa et al., 2006). Liang et al. (2002) propose an
evolutionary programming algorithm (Fogel, 1995) with only one swap mutation operator
that, according to the authors, outperforms GAs for one-dimensional CSPs with and without
contiguity. However, the above studies do not aim at minimizing the setup cost. In the
present study, our objective is to minimize the costs of setup and of processed raw material
using a genetic algorithm – applied to a symbiotic relationship – that generates the cutting
pattern together with its frequency.

In Section 2, we describe a mathematical model of the cutting stock problem for minimizing
the number of objects and setups. In Section 3, we briefly present the main concepts of
genetic algorithms. Section 4 is dedicated to the symbiosis process. In Section 5, we describe
the applications. Finally, in Sections 6 and 7, we exhibit our calculations and final conclusions,
respectively.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 367

2. The One-Dimensional Cutting Stock Problem

The Standard Cutting Stock Problem is characterized by cutting stock rolls of width W
(called objects) into smaller rolls of width wi (where W > wi), aiming at satisfying the
demand di for each item i, for i = 1,2,…,m. According to Dyckhoff’s typology (1990), this
problem is classified as 1/V/I/R.

Each combination of items in an object is called the cutting pattern, and each change in the
cutting pattern has a cutting-machine setup cost. The number of setups is of great importance
when we have to process a large order in a short period. Wäscher (1990) criticizes the
traditional planning models for cutting stock problems; he says they do not consider all of the
process factors that tend to affect a company’s profit, such as the setup number or the amount
of stockpiled material created during the various cuts. Consequently, we have to find the
balancing point between the number of setups and the quantity of objects used.

The mathematical model for minimizing the number of objects and setups can be stated as:

1 2
1 1

1

Minimize ()

subject to , 1,..., .

 1,..., .

n n

j j
j j

n

ij j i
j

j

c x c x

a x d i m

x j n

δ
= =

=

+

≥ =

∈Ν =

∑ ∑

∑

where aij is the number of items i in cutting pattern j; xj is the number of objects processed
with cutting pattern j; n is the number of the cutting pattern and

• c1 is the cost for each master roll (object);

• c2 the cost of setup and
1 if 0,

()
0 if 0.

j
j

j

x
x

x
δ

>⎧⎪= ⎨ =⎪⎩
.

We compare our approach with five methods, that also work with the two objective: setup
and number of processed objects:

• SHP: This method was proposed by Haessler (1975). It is based on a repeat-pattern
exhaustion technique (Pierce, 1964), where the cutting patterns are determined
successively and, for each iteration, some aspiration parameters have to be satisfied.
These aspiration parameters control the trade-off between the two costs, c1 and c2.

• Kombi234: This method was developed by Foester & Wäscher (2000). It is based on
combining cutting patterns to reduce the number of setups for a given solution; it’s an
extension of the work of Diegel et al. (1993). This method maintains the number of
processed objects constant; in other words, the sum of frequencies for each pattern is
kept equal for all iterations. Once the final solution is found, the number of patterns
can be reduced by up to 60% of the original number.

• NANLCP: This method, developed by Moretti & Salles Neto (2008), minimizes the
number of objects and setups through the application of the Lagrangian function. This
method also uses an adaptation of the column-generation method proposed by
Gilmore & Gomory (1961, 1963) for non-linear models and a simple rounding
heuristic to obtain an integer solution.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

368 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

• Hybrid Heuristic: This method, proposed by Yanasse & Limeira (2006), is a hybrid
procedure consisting of three phases. In the first phase, patterns are generated and the
“good” ones are selected and used to reduce the problem; in the second phase, the
reduced problem is solved and, in the third phase, a pattern-reduction technique is
applied. The authors argue that the computational tests performed indicate that the
proposed scheme provides alternative solutions to the pattern-reduction problem that
are not overcome by other solutions obtained using procedures previously suggested
in the literature.

• ILS: Umetani et al. (2006) presented a local search algorithm that uses two types of
local search: (1) the 1-add neighborhood and (2) the shift neighborhood. Linear
programming techniques were added to local search procedures to reduce the number
of solutions for each neighborhood and improve performance. A sensitivity analysis
technique was introduced to solve the large number of associated LP problems
quickly. Umetani et al. (2006) compared ILS to Kombi234, to SHP, and to an exact
branch-and-price method (BP) suggested by Belov & Scheithauer (2000), who
proposed a method similar to the work of Vanderbeck (2000), yet with few variables.
Vanderbeck (2000) investigates the problem of minimizing a number of different
cutting patterns as in nonlinear integer programming, where the number of objects is
fixed and determined after solving the problem using the Gilmore-Gomory strategy.
In his article, Vanderbeck uses a Dantzig-Wolfe breakdown method that he extended
of Vanderbeck (1999) to solving the resulting integer-programming problem.
Umetani et al. (2006) claim that the ILS algorithm obtains better solutions than those
obtained by the SHP, KOMBI234 and BP approaches.

3. Genetic Algorithms

According to Von Zuben (2003), genetic algorithms (GAs) are based on the works of
Holland (1962), Bremermann (1962) and Fraser (1957). However, the genetic algorithm was
actually introduced only in Holland’s work (1975). In the last decade, it became a promising
method for discovering solutions to optimization problems.

GAs are a specific class of evolutionary computation (EC), utilizing techniques inspired by
the theory of evolution – such as natural selection, whereby stronger creatures have greater
chances of reproducing and introducing their characteristics into the next generation – as a
problem-solving paradigm.

The following important concepts are associated with genetic algorithms:

• Fitness: an individual’s level of adaptability to his environment.
• Genes: functional blocks of DNA.
• Genome: an individual’s genetic pattern.
• Selection: the mechanism responsible for selecting a population’s top individuals for

reproduction; the following are the most common types of selection: competition,
elitism, and diversity – or a combination of various types.

• Crossover: also called recombination, crossover is the genetic operator used to
combine two individuals to generate a new individual. There are many types of
crossovers, the most common being One-point, Two-point and Uniform crossovers.

• Mutation: the probability of one gene mutating; this operator is implemented after the
crossover.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 369

4. Symbiosis

According to Allaby (1998), symbiosis is a general term describing a situation in which
dissimilar organisms live together in close association. As originally defined, the term
embraces all types of mutual and parasitic relationships. Its current use is often limited to
mutually beneficial species-interaction. Mutualism is defined as an interaction between
members of two different species, with benefits to both. Pianka (1994) gives some examples
of interactions between species, such as nectar-feeding birds and flowering plants; ants and
plants; and birds and buffalos. In Table 1, we can observe the benefit or harm to each
individual in a symbiotic relationship.

Table 1 – Impact of symbiotic relationships on organisms.

Relationship Self Opponent

Amensalism Neutral Harm
Commensalism Benefit Neutral

Competition Harm Harm
Mutualism Benefit Benefit
Parasitism Benefit Harm
Predation Benefit Harm

Proto-cooperation Benefit Benefit

The process of symbiogenesis was introduced in (Watson & Pollack 1999) as the genesis of
new species via the genetic integration of symbionts. For example, eukaryote cells (from
which all plants and animals descend) have a symbiogenic origin. This can occur when the
symbionts have a high degree of association.

The works of Eguchi et al. (2003), Hirasawa et al. (2000) and Mao et al. (2000) also
simulate symbiosis relationships. However, in their algorithms, each individual of the
population is treated as a different species that develops a symbiotic relationship with
another individual. Hirasawa et al. (2003) give one example of a possible relationship:
“if individual i exists near individual j and the fitness of individual i is greater than that of
individual j, then individual i exploits individual j”.

The genetic symbiotic algorithm (GSA), also called cooperative algorithm (Potter, 1997;
Kim et al. 2000), basically breaks the problem down into n sub-problems using n different
species. Dividing the problem into n distinct populations, we can solve the problem utilizing
simple structures that, working together, can be more powerful than complex structures.
Kim et al. (2001, 2006) propose an endosymbiotic evolutionary algorithm for optimization;
the basic idea is to incorporate eukaryotic cell evolution (Margullis, 1981) into the existing
symbiotic algorithms. Under this approach, when an individual meets a highly fit partner, the
whole combination evolves for some time without changing the partner.

Tsujimura et al. (2001) presented a symbiotic genetic algorithm for job shop scheduling.
Chang et al. (2002) presented a symbiotic evolutionary algorithm for dynamic facility layout
problems. In the next section, we explain the GSA’s application to the CSP, aiming at
minimizing raw material and setup costs. We have no knowledge of any other study that
applies the GSA to the CSP.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

370 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

5. Application

When applied to the CSP, the main difference between the GSA and the classical genetic
algorithm (CGA) is its ability to construct cutting patterns regardless of the solution, thus
eliminating (replacing) inefficient or unused pattern-population cutting patterns. Another
interesting advantage GSAs have over CGAs is that the patterns are not part of the solution;
although the solution depends on the pattern, we can work with them separately.

Khalifa et al. (2006) solve the CSP using a genetic algorithm whereby the genes of each
solution are processed in pairs and the first gene of each solution represents the frequency of
the pattern represented by the second gene. In our application, the second gene represents an
individual from the pattern population. Figure 1 shows patterns 37, 11 and 32 with their
respective frequencies: 2, 4 and 5.

Figure 1 – Gene Structure.

We believe mutualism is the biological relationship that is the most relevant to our
application, since both individuals benefit from the relationship; in this case, the relationship
presents great adaptability to the environment.

In the next subsections, we explain the structure of each population. At this point, it is worth
mentioning that we call the individuals of the first population solutions and the individuals of
the second population patterns.

In the case of our implementation, we considered three stopping criteria:
• Maximum time of execution: 500 seconds;
• Maximum number of generations: 10,000 generations;
• Convergence: if the algorithm cannot find a better solution in 500 generations, it stops.

5.1 Individual Solutions

Below, we describe the parameters, obtained in an experimental way, of the first population
(that is, solutions):

• Population size: 1,000 individuals;
• Type of selection: elitism, 70% of the best individuals;
• Crossover rate: 30%;
• Crossover type: uniform, 70% chance for the best individual (see figure 2);
• Mutation rate: we calculate the probability of 2 genes mutating; that is, if the

individual has k genes, the probability of each gene mutating is 2/k (see figure 3).

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 371

Figure 2 – Uniform crossover.

Figure 3 – Mutation of an individual/solution.

To determine the size of the DNA chain (i.e., the number of genes of an individual) in our
application, we need to estimate the maximum number of setups that one problem could
have. We chose m to represent this number, since the problem of minimizing the number of
objects and setups used in a cutting plan can be written as a linear programming problem,
whereby each constraint represents an item’s demands. The number of an individual’s genes
is fixed as twice the maximum number of setups. However, if the biggest item in a cutting
plan is less than or equal to half the size of an object, the following procedure is adopted:

If (Quantity of Items > 30) Then
 Gs = 32
Otherwise If (Quantity of Items > 15) Then
 Gs = 24
Otherwise
 Gs = 16
End-If

where Gs is the number of genes of an individual. We adopted this strategy, seeking to obtain,
already in the first generations, solutions with a small number of different cutting patterns.

Represented by the odd genes, the frequency of each pattern has an upper and lower limit.
This is done to restrict the problem’s search region. The lower limit is set to zero, and the
upper limit is defined as the largest order in the cutting plan. This is done to produce a
pattern containing just one type of item. The fitness function for individual i, which contains
the numbers of both the processed objects and the setups, is defined as

1 2
1 1

() ()
n n

s j j
j j

F i c x c xδ τ ρ
= =

= + + +∑ ∑

where
• jt is the trim loss for pattern j

• τ is the relative trim loss; that is, 1

1

n

j j
j

n

j
j

t x

W x
τ =

=

=
∑

∑

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

372 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

• mr is the number of items that are not present in the solution

• idr is the residual demand for item i; that is,
1

n

i i ij j
j

dr d a x
=

= −∑

• 4 6

1
10 10

m

i
i

mr drρ
=

= × + ×∑ is the penalty incurred if the solution is not feasible.

The costs c1 and c2 are used explicitly and the parameter τ has two important functions:
(1) it is used to measure how good a local minimum is; a little change in the relative trim loss
will provide an improvement in fitness, extending the application of the method; (2) it is a
comparison factor; when we have two or more equally suitable solutions, we choose only
one for the elite list. The elite list contains the 700 most suitable individuals (70% of the
population’s best individuals).

Additionally, at every 100 generations we randomly generate 200 individuals and place them
on the elite list, replacing the 200 worst solutions. We adopt this strategy and the τ
parameter in order to increase the population’s diversity.

5.2 Individual Patterns

Pattern-population parameters, also obtained in an experimental way, are significantly
different when compared to solution-population parameters:

• Population size: 600 individuals;
• Type of selection: elitism, 66% of the best individuals;
• Crossover rate: 34%;
• Crossover type: 2 points (see figure 4);
• Mutation rate: 90% chance of one gene mutating (see figure 5).

Figure 4 shows how the crossover in the pattern population is accomplished.

Figure 4 – Two-point crossover.

Figure 5 shows how the mutation in the pattern populations is accomplished. The gene is
deactivated when its corresponding item doesn’t fit in the pattern, and activated otherwise.
For instance, the fifth gene, corresponding to the item 5, was deactivated before the
mutation, because if it made part of the pattern, the sum of the items would be larger than the
size of the object. As after the mutation the fourth gene changed from 2 to 3, and the item 3,
unlike item 2, didn’t fit in the pattern, therefore, we have a space to activated item 5.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 373

Figure 5 – Mutation of an individual/pattern.

The length of the DNA chain is equal to the largest integer that is smaller or equal to the size
of the master roll divided by the size of the smallest item. By doing so, we can guarantee that
it is possible to create a pattern using only one type of item. For example, in the pattern of
the Figures 4 and 5, the DNA chain has 14 genes. This means that the smallest item has its

size wi satisfying 14
i

W
w

⎡ ⎤= ⎢ ⎥⎢ ⎥
.

However, some patterns will not use all the genes available in the DNA chain since we
generate items in the pattern as long as the sum of their lengths does not exceed the size of
the master roll. That is, we insert one item into the pattern from left to right, having the DNA
chain as a reference, if and only if the pattern has enough space to accommodate the item.

We calculate the fitness of each pattern based on the solution population’s elite list. For each
individual/solution, we add points to the fitness of the individual pattern considered in the
solution. We calculate a pattern’s fitness according to the following rule:

For i = 1 to n_EliteSolutions
 For each pattern j in solution i DO
 FitnessPattern(j) = FitnessPattern(j) + 1 + (1 / i)
 End For
End For

where n_EliteSolutions is the number of individuals/solutions in the elite list; the first
individual/solution in the list is the most suitable, the second individual/solution is the
second most suitable, and so on.

This way, we give priority to the cutting pattern that appears in the most suitable solutions.
During the evolutionary process, these suitable patterns should generate other suitable
patterns that, through their symbiotic relationship with the individuals/solutions, will result in
better solutions.

5.3 Pseudo-Code

The steps below describe how to obtain a solution for the CSP that minimizes the number of
processed objects and setups at the same time:

Step 1: Initialize the population of solutions with random values
Step 2: Initialize the population of patterns with random values
Step 3: Calculate the fitness of individuals/solutions
Step 4: Select the solutions with the greatest fitness

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

374 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

Step 5: Add points to the fitness of the patterns of elite solutions
Step 6: Select the patterns with the greatest fitness
Step 7: Use the crossover and mutation operators to generate new solutions
Step 8: Use the crossover and mutation operators to generate new patterns
Step 9: If any stop criterion has been satisfied, then Stop; otherwise return to Step 3

6. Computational Experiments

In order to evaluate our method, we solved 1800 problems generated by CUTGEN1
(as proposed by Gau & Wäscher (1995)), divided into 18 classes, with the same seed and
parameters used by Foester & Wäscher (2000). In terms of solution quality, we compared
our approach to the following heuristics: SHP, proposed by Haessler (1975); Kombi234,
developed by Foester & Wäscher (2000); NANLCP, proposed by Salles Neto & Moretti
(2008); ILS, proposed by Umetani et al. (2006); and the Hybrid Heuristic, proposed by
Yanasse & Limeira (2006).

Table 2 describes the parameters used for each class. We generated six classes with small
items (classes 1 to 6), six classes with diverse items (classes 7 to 12), and six classes with
large items (classes 13 to 18).

Table 2 – The parameters associated with the 18 classes.

Class v1 v2 m d
1 0.01 0.20 10 10
2 0.01 0.20 10 100
3 0.01 0.20 20 10
4 0.01 0.20 20 100
5 0.01 0.20 40 10
6 0.01 0.20 40 100
7 0.01 0.80 10 10
8 0.01 0.80 10 100
9 0.01 0.80 20 10
10 0.01 0.80 20 100
11 0.01 0.80 40 10
12 0.01 0.80 40 100
13 0.20 0.80 10 10
14 0.20 0.80 10 100
15 0.20 0.80 20 10
16 0.20 0.80 20 100
17 0.20 0.80 40 10
18 0.20 0.80 40 100

The method was implemented in FORTRAN 90/95, using the Microsoft FORTRAN Power
Station compiler, in a PC AMD SEMPRON 2300+ computer (1,5 MHz/640MB RAM) with
a windows operating system. The source code is available at http://www.otimizacao.net. The
NANLCP and SHP methods were implemented in FORTRAN using a PC AMD ATHLONXP

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 375

computer (1,800 MHz/512MB RAM) with a Linux operating system. The Kombi234 results
were obtained from Foester & Wäscher’s study (2000); they implemented their code in
MODULA-2, using MS-DOS 6.0 on an IBM 486/66. The ILS heuristic was encoded in C
language and was run on an IBM-compatible personal computer (Pentium IV 2 GHz/1 GB
memory) using the Linux OS. The Hybrid Heuristic (HH) was performed using C++ on an
Intel Celeron microcomputer (266 MHz/128MB RAM) and a Sun Ultra 30 workstation
(296MHz/384MB RAM).

The method achieved convergence of results in all 1800 problems; that is, the algorithm
terminated its calculations before reaching 10,000 generations or 500 seconds.

In Table 3, we present the results for three different setup costs, c2 = {1,5,10}, respectively
labeled Symbio1, Symbio5 and Symbio10. Table 3 presents the average setup number for the
SHP, Kombi234, ILS, NANLCP, HH and Symbio methods in each class. The ILS method
works with an upper limit on the optimal value fopt of the number of processed objects, which
is calculated using a branch-and-price algorithm based on the column generation technique
(Umetani et al., 2006). We present the results obtained using the ILS method with a lower
limit equal to 1.01 fopt (ILS1.01), with no upper limit (ILSinf).

The ILS method without an upper limit on the objects processed (ILSinf) provided better
setup averages in all classes (in bold type in Table 3).

Table 4 shows the average number of processed objects for the methods in each class. The
Kombi method provided better averages for the objects processed in 17 classes, and the ILS
method (with an upper limit equal to 1.01fopt) obtained a better average in class 14.

Table 3 – Setup averages for each method.

Class SHP KOMBI ILS1.01 ILSInf NANLCP HH Symbio1 Symbio5 Symbio10
1 3,95 3,40 2,43 1,67 3,01 3,31 3,09 2,02 1,85
2 5,94 7,81 4,57 1,67 4,76 6,95 6,11 5,28 4,68
3 5,00 5,89 4,42 2,57 4,91 4,96 5,74 4,8 4,47
4 7,31 14,26 7,36 2,57 7,16 10,32 10,59 9,86 9,36
5 6,87 10,75 9,32 4,28 7,04 7,63 9,89 8,44 8,23
6 10,81 25,44 12,48 4,28 10,84 13,31 30,07 14,16 14,08
7 8,84 7,90 5,92 5,01 5,31 7,66 6,36 5,48 5,21
8 9,76 9,96 6,42 5,01 6,97 9,62 8,51 8,16 7,76
9 17,19 15,03 11,38 9,27 10,92 13,64 10,94 10,47 10,16
10 19,37 19,28 12,11 9,27 12,80 18,21 16,7 16,28 16,04
11 32,20 28,74 22,08 16,95 21,12 24,60 23,04 22,24 21,56
12 37,25 37,31 22,66 16,95 25,25 33,23 32,93 31,74 31,52
13 9,38 8,97 7,01 6,26 6,31 8,93 7,28 6,7 6,68
14 9,85 10,32 7,43 6,26 7,89 10,51 8,62 8,3 8,21
15 18,03 16,88 13,26 11,76 11,13 16,28 13,66 13,18 12,99
16 19,63 19,91 13,80 11,76 14,44 19,89 16,68 16,57 16,34
17 34,39 31,46 24,49 21,50 21,96 29,76 27,22 25,82 25,62
18 38,23 38,28 25,39 21,50 26,03 37,90 32,7 32,03 32,18

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

376 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

Table 4 – Average numbers of processed objects for each method.

Class SHP KOMBI ILS1.01 ILSinf NANLCP HH Symbio1 Symbio5 Symbio10
1 14,17 11,49 12,24 15,15 14,84 11,56 12,59 14,49 14,84
2 116,47 110,25 111,60 149,78 119,62 110,4 115,17 116,26 117,8
3 25,29 22,13 23,08 28,01 24,26 22,17 25,96 27,43 28,23
4 225,33 215,93 218,44 278,57 223,91 215,98 235,93 236,89 239,72
5 46,89 42,96 43,95 55,12 45,96 42,99 57,17 60,85 61,42
6 433,59 424,71 429,10 546,64 433,29 424,89 472,95 518,81 518,85
7 55,84 50,21 50,62 54,14 53,69 51,69 51,58 53,04 53,75
8 515,76 499,52 500,77 541,50 488,85 502,23 510,5 512,92 514,65
9 108,54 93,67 94,40 101,21 105,65 99,49 99,36 99,41 100,1

10 1001,59 932,32 936,18 1008,05 932,67 948,41 970,57 975,56 975,72
11 202,80 176,97 178,34 193,17 216,67 195,67 198,26 201,43 201,44
12 1873,05 1766,20 1773,74 1920,39 1839,63 1847,42 1932,16 1932,79 1917,4
13 69,97 63,27 63,53 67,61 66,77 64,20 65,23 66,51 67,32
14 643,55 632,12 630,50 675,50 639,88 633,26 646,77 646,31 650,52
15 136,03 119,43 120,53 125,86 123,93 123,90 127,39 128,43 128,87
16 1253,55 1191,80 1196,57 1256,92 1169,07 1197,66 1254,69 1253,79 1251,9
17 256,01 224,68 226,62 239,64 262,07 244,02 244,49 248,67 247,62
18 2381,54 2242,40 2255,12 2391,53 2247,11 2268,30 2414,07 2419,34 2422,41

Table 5 compares the total Symbio-method costs (c1= c2=1) to the total SHP, Kombi234,
ILS1.01, ILSinf, HH and NANLCP costs. In order to compute the percentage of deviation of
the total Symbio1 cost in relation to the NANLCP cost, we used the following formula:

100Symbio NANLCP

Symbio

TotalCost TotalCost
V

TotalCost
−

= ×

The same thing was done when we compared Symbio5 and Symbio10 to the other methods.
Compared to NANLCP, our method provides a better solution when the percentage of
deviation is negative. Tables 6 and 7 show the same comparisons made in Table 5, using,
however, Symbio5 (c1=1 and c2=5) and Symbio10 (c1=1 and c2=10) instead of Symbio 1.

As one can see, when c1= c2=1, Symbio was better than SHP in 11 classes; better than Kombi
in only one class; and better than ILSinf, NANLCP and HH in 10, 7 and 4 classes,
respectively. When compared to ILS1.01, Symbio1 produced inferior averages in all classes.

The best results were obtained when comparing Symbio to the other methods, using c1=1 and
c2=5. The results we obtained were better than those of SHP in 12 classes; better than
Kombi234 in 10 classes; better than ILSinf in 3 classes; better than NANLCP in 4 classes;
and better than HH in 8 classes. Additionally, when compared to Symbio, the ILS method
(with an upper limit equal to 1.01 fopt) obtained better total-cost averages in all classes.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 377

Table 5 – Total-cost deviation percentage (c1= c2) of Symbio1 in relation to SHP, Kombi, ILS,
NANLCP and HH.

Class SHP Kombi ILS1.01 ILSinf NANLCP HH
1 -13,47 5,31 6,88 -6,78 -12,16 5,45
2 -0,92 2,73 4,40 -19,92 -2,49 3,35
3 4,66 13,13 15,27 3,66 8,67 16,84
4 5,97 7,09 9,18 -12,31 6,69 8,94
5 24,74 24,86 25,89 12,90 26,53 32,48
6 13,19 11,74 13,91 -8,69 13,26 14,79
7 -10,42 -0,29 2,48 -2,05 -1,80 -2,38
8 -1,24 1,87 2,33 -5,03 4,68 1,40
9 -12,27 1,47 4,27 -0,16 -5,38 -2,50

10 -3,30 3,75 4,11 -2,95 4,42 2,14
11 -5,83 7,58 10,42 5,32 -6,93 0,47
12 2,87 8,96 9,39 1,43 5,37 4,49
13 -8,62 0,37 2,79 -1,84 -0,78 -0,85
14 0,30 2,02 2,74 -3,87 1,18 1,80
15 -8,44 3,48 5,43 2,49 4,44 0,62
16 -0,14 4,92 5,04 0,21 7,42 4,42
17 -6,44 6,08 8,20 4,05 -4,34 -0,76
18 1,12 7,28 7,29 1,40 7,64 6,10

Table 6 – Total-cost deviation percentage (c1=1 and c2=5) of Symbio5 in relation to SHP,

Kombi, ILS, NANLCP and HH.

Class SHP Kombi ILS1.01 ILSinf NANLCP HH
1 -27,51 -13,69 0,82 4,64 -17,73 -12,52
2 -2,40 -4,45 6,11 -9,78 -0,53 -1,72
3 2,27 -0,29 13,83 25,87 5,37 9,50
4 9,28 -0,36 12,13 -1,79 10,20 6,95
5 26,85 6,56 13,80 34,67 26,97 27,00
6 20,91 6,83 19,96 3,80 20,95 19,98
7 -19,59 -10,33 0,27 1,58 0,25 -10,61
8 -1,92 0,80 3,91 -2,26 5,73 0,62
9 -21,97 -10,11 0,30 2,85 -5,30 -9,50
10 -3,78 2,75 6,04 0,24 6,05 1,68
11 -14,07 -2,51 8,27 12,49 -2,99 -1,90
12 1,56 7,10 10,83 4,31 6,39 3,87
13 -14,43 -7,50 1,45 1,11 1,72 -8,12
14 -0,72 0,60 3,02 -2,69 1,25 0,29
15 -14,08 -4,66 4,01 5,24 8,21 -5,34
16 -1,11 3,51 5,62 1,59 7,68 3,05
17 -11,73 -1,10 8,22 8,82 1,59 -3,83
18 0,26 5,99 8,29 3,22 8,51 4,95

Symbio10 performed best using c1=1 and c2=10; this algorithm performed better than: SHP
in 13 classes; Kombi234, in 14 classes; ILS1,01, in 3 classes; ILSinf, in 2 classes; NANLCP, in
6 classes; and HH, in 8 classes.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

378 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

Table 7 – Total-cost deviation percentage (with c1=1 and c2=10) of Symbio10 in relation to SHP,
Kombi, ILS, NANLCP and HH.

Class SHP Kombi ILS1.01 ILSinf NANLCP HH
1 -37,88 -26,71 -8,76 4,68 -25,81 -25,35
2 -6,41 -12,61 4,64 -1,13 -1,57 -8,50
3 -3,13 -10,00 8,40 35,78 -0,59 1,62
4 11,69 -7,03 14,14 9,55 12,79 4,43
5 24,34 -4,48 4,79 46,77 23,51 20,48
6 21,78 -2,87 19,09 11,91 21,78 18,22
7 -26,62 -18,08 -3,62 1,54 -0,88 -17,49
8 -3,44 -1,15 4,83 0,11 6,03 -1,03
9 -28,08 -17,33 -3,12 4,02 -6,12 -14,49
10 -4,95 0,98 7,46 3,21 7,11 0,50
11 -20,53 -10,19 4,48 14,99 -2,53 -5,58
12 -0,58 4,36 11,61 6,83 6,71 2,43
13 -18,10 -12,32 0,37 3,00 3,27 -12,63
14 -1,27 -0,37 3,95 -0,74 1,93 -0,78
15 -18,20 -10,22 2,23 6,29 10,01 -9,74
16 -2,38 1,75 6,05 2,97 7,75 1,34
17 -16,02 -6,58 6,85 10,82 4,60 -6,98
18 -0,71 4,53 9,37 5,28 9,44 3,66

Table 8 – Average processing time for each method (KOMBI, HH and ILS were not implemented

and tested in the same computational environment).

Class SHP Kombi234 ILS NANLCP HH Symbio05
 T(s) T(s) T(s) T(s) T(s) T(s)
1 0.01 0.14 0.10 0.83 0.23 18.54
2 0.08 1.14 0.22 1.21 0.48 37.88
3 0.17 1.74 0.72 0.94 0.12 33.25
4 0.21 16.00 2.69 1.22 2.75 68.11
5 0.27 38.03 7.55 0.89 3.43 58.29
6 0.31 379.17 23.18 1.02 7,81 158.04
7 0.01 0.07 0.21 13.44 0.11 19.62
8 0.02 0.20 0.27 16.51 0.60 48.48
9 0.04 3.37 1.96 75.81 0.49 38.75
10 0.06 3.25 2.19 142.01 3.36 127.25
11 0.22 36.26 19.16 168.67 7.17 117.85
12 0.32 76.31 23.87 420.53 44.62 426.08
13 0.01 0.08 0.26 5.12 0.13 17.66
14 0.02 0.13 0.31 4.44 0.25 31.19
15 0.03 1.81 2.01 61.68 0.97 41.12
16 0.04 2.60 2.21 78.34 2.46 133.90
17 0.16 50.93 22.01 250.04 15.46 153.45
18 0.24 70.94 26.84 390.75 50.61 388.89

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 379

7. Conclusions and Perspectives

Upon comparing the results, we observed that on the average the Symbio method perform
better with higher setup costs. Compared to the Kombi234, SHP, ILS and HH methods, one
Symbio advantage is its capacity to process costs c1 and c2 directly within the objective
function. NANCLP is the only method described in the literature that works with these costs
in the objective function. However, NANLCP uses c2 as a penalty setup-parameter, avoiding
real setup costs. In fact, Moretti & Salles Neto (2008) assign c2 a value of 100 or 300. In the
real world, these costs vary depending upon several factors such as demand, delivery date,
and labor costs; they can only be defined if all the data is available.

Parameters such as the mutation rate, population size and gene quantity greatly influence the
final solution. For example, for problems involving items smaller than half the size of the
master roll, the size of the genes was chosen in a different way in order to improve the
solutions. Analyzing the results, one can see that our algorithm functions better for problems
involving an average demand of around 10 items.

In Table 8, one notices that the percentage of difference between the faster and slower
classes is low for Symbio, which tells us that this method is reasonably stable in relation to
computing time. However, the computing time is high in comparison to the ILS method,
which produces better results for most of the classes.

Finally, since this is the first study to use a genetic symbiotic algorithm in a cutting stock
problem involving setup costs, we believe that improvements can be made that will result in
even better methods.

Acknowledgements

We would like to thank two anonymous referees for very helpful comments on this paper.
The authors have been partially supported by M.E.C. (Spain), Project MTM2007-063432.
The second author is also supported by CNPq (Brazil), Project 307907/2007-4.

References

(1) Allaby, M. (1998). Dictionary of Ecology. Oxford University Press, 1998, New York.

(2) Boleta, D.A.F.; Araújo, S.A.; Constantino, A.A. & Poldi, K.C. (2005). Uma heurística
para o problema de corte e estoque unidimensional inteiro. Anais do XXXVII Simpósio
Brasileiro de Pesquisa Operacional, 1869-1879.

(3) Bremermann, H.J. (1962). Optimization through evolution and recombination. In:
Self-Organizing Systems [edited by M.C. Yovits, G.T. Jacobi and G.D. Goldstine],
93-106, Spartan Books.

(4) Chang, M.; Ohkura, K.; Ueda, K. & Sugiyama, M. (2002). A symbiotic evolutionary
for dynamic facility layout problem. In: Proceedings of the Evolutionary Computation,
1745-1750.

(5) Diegel, A. (1988). Cutting paper in Richards Bay: dynamic local and global
optimization in the trim problem. Orion, 3, 42-55.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

380 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

(6) Diegel, A.; Chetty, M.; Van Schalkwyck, S. & Naidoo, S. (1993). Setup combining in
the trim loss problem – 3-to-2 & 2-to-1. Working paper, Business Administration,
University of Natal, Durban, First Draft.

(7) Dowsland, K. & Dowsland, W. (1992). Packing Problems. European Journal of
Operational Research, 56, 2-14.

(8) Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal
of Operational Research, 56, 145-159.

(9) Eguchi, T.; Hirasawa, K. & Hu, J. (2003). Symbiotic Evolutional Models in Multiagent
Systems. The 2003 Congress on Evolutionary Computation, 2, 739-746.

(10) Eilon, S. (1960). Optimizing the shearing of steel bars. Journal of Mechanical
Engineering Science, 2, 129-142.

(11) Foester, H. & Wäscher, G. (2000). Pattern Reduction in One-dimensional Cutting-Stock
Problem. International Journal of Prod. Res., 38, 1657-1676.

(12) Fogel, D. (1995). Evolutionary computation: toward a new philosophy of machine
intelligence. IEEE Press, New York.

(13) Fraser, A.S. (1957). Simulation of genetic systems by automatic digital computers:
I. Introduction. Austral. J. Biol. Sci., 10, 484-491.

(14) Gau, T. & Wäscher, G. (1995). CUTGEN1: A Problem Generator for the Standard
One-dimensional Cutting Stock Problem. European Journal of Operational Research,
84, 572-579.

(15) Gilmore, P.C. & Gomory, R.E. (1961). A Linear Programming Approach to the Cutting
Stock Problem. Operations Research, 9, 849-859.

(16) Gilmore, P.C. & Gomory, R.E. (1963). A Linear Programming Approach to the Cutting
Stock Problem. Operations Research, 11, 864-888.

(17) Haessler, R. (1975). Controlling Cutting Pattern Changes in One-Dimensional Trim
Problems. Operations Research, 23, 483-493.

(18) Hirasawa, K.; Ishikawa, I.; Hu, J.; Jin, C. & Murata, J. (2000). Genetic Symbiosis
Algorithm. Proceedings of the Congress on Evolutionary Computation, 2, 02-xxvi.

(19) Holland, J.H. (1962). Outline for a logical theory of adaptive systems. J. Assoc.
Comput. Mach., 3, 297-314.

(20) Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press.

(21) Khalifa, Y.; Salem, O. & Shahin, A. (2006). Cutting Stock Waste Reduction Using
Genetic Algorithms. Proceedings of the 8th Conference on Genetic and evolutionary
computation, 1675-1680.

(22) Kantorovich, L.V. (1960). Mathematical Methods of Organizing and Planning
Production. Management Science, 6, 366-422.

(23) Kim, Y.K.; Kim, J.Y. & Kim, Y. (2000). A coevolutionary algorithm for balancing and
sequencing in mixed model assembly lines. Applied Intelligence, 13, 247-258.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009 381

(24) Kim, J.Y.; Kim, Y. & Kim, Y.K. (2001). An endosymbiotic evolutionary algorithm for
optimization. Applied Intelligence, 15, 117-130.

(25) Kim, Y.K.; Kim, J.Y. & Kim, Y. (2006). An endosymbiotic evolutionary algorithm for
the integration of balancing and sequencing in mixed-model U-lines. European Journal
of Operational Research, 168, 838-852.

(26) Liang, K.; Yao, X.; Newton, C. & Hoffman, D. (2002). Evaluation of algorithms for
one-dimensional cutting. Computers & Operations Research, 29, 1207-1220.

(27) Mao, J.; Hirasawa, K.; Hu, J. & Murata, J. (2000). Genetic Symbiosis Algorithm for
Multiobjective Optimization Problem. Proceedings of the IEEE International Workshop
on Robot and Human Interactive Communication, 137-142.

(28) Margulis, L. (1981). Symbiosis in Cell Evolution. W.H. Freeman, San Francisco.

(29) Metzger, R.W. (1958). Stock Slitting, Elementary Mathematical Programming. Wiley.

(30) Moretti, A.C. & Salles Neto, L.L. (2008). Nonlinear cutting stock problem model to
minimize the number of different patterns and objects. Computational & Applied
Mathematics, 27, 61-78, 2008.

(31) Paull, A.E. & Walter, J.R. (1954). The trim problem: an application of linear
programming to the manufacture of news-print paper. Presented at Annual Meeting of
Econometric Society, Montreal, 10-13.

(32) Pianka, E.R. (1994). Evolutionary Ecology. HarperCollins College Publisher, New York.

(33) Pierce, J.F. (1964). Some Large-Scale Production Scheduling Problems in the Paper
Industry. Englewood Cliffs, Prentice Hall.

(34) Potter, M.A. (1997). The design and analysis of a computational model of cooperative
coevolution. Ph.D. Dissertation, George Mason University.

(35) Stadler, H. (1990). A one-dimensional cutting stock problem in the aluminium industry
and its solution. European Journal of Operational Research, 44, 209-223.

(36) Umetani, S.; Yagiura, M. & Ibaraki, T. (2003). One Dimensional Cutting Stock
Problem to Minimize the Number of Different Patterns. European Journal of
Operational Research, 146, 388-402.

(37) Umetani, S.; Yagiura, M. & Ibaraki, T. (2006). One Dimensional Cutting Stock
Problem with a Given Number of Setups: A Hybrid Approach of Metaheuristics and
Linear Programming. Journal of Mathematical Modelling and Algorithms, 5, 43-64.

(38) Tsujimura, Y.; Mafune, Y. & Mitsuo, G. (2001). Effects of symbiotic evolution in
genetic algorithms for job-shop scheduling. IEEE.

(39) Vanderbeck, F. (1999). Computational study of a column generation algorithm for bin
packing and cutting stock problems. Math. Program., 86, 565-594.

(40) Vanderbeck, F. (2000). Exact Algorithm for Minimising the Number of Setups in the
One-Dimensional Cutting Stock Problem. Operations Research, 48, 915-926.

(41) Von Zuben, F.J. (2003). Computação Evolutiva: uma abordagem pragmática. UNICAMP,
Available on: <ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tutorial/tutorialEC.pdf>.

Golfeto, Moretti & Salles Neto – A genetic symbiotic algorithm applied to the one-dimensional cutting stock problem

382 Pesquisa Operacional, v.29, n.2, p.365-382, Maio a Agosto de 2009

(42) Wäscher, G.; Carow, P. & Muller, H. (1985). Entwicklung eines flexiben Verfahrens
für Zuschneideprobleme in einem Kaltwalzwerk. Zeitschrif für Operations Research,
29, B209-B230.

(43) Wäscher, G. (1990). An LP-based approach to cutting stock problems with multiple
objectives. European Journal of Operational Research, 44, 175-184.

(44) Wäscher, G. & Gau, T. (1996). Heuristics for the Integer One-dimensional Cutting
Stock Problem: a computational study. Operations Research Spektrum, 18, 131-144.

(45) Watson, R.A. & Pollack, J.B. (1999). How Symbiosis Can Guide Evolution. Advances
in Artificial Life: 5th European Conference, Springer.

(46) Yanasse, H.H. & Limeira, M. (2006). A hybrid heuristic to reduce the number of
different patterns in cutting stock problems. Computer & Operations Research, 33,
2744-2756.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

