59 research outputs found

    Kiri Chr. W. F. Walchile, Göttingen

    Get PDF
    http://tartu.ester.ee/record=b1881198~S1*es

    Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies

    Get PDF
    The E3/19K protein of human adenovirus type 2 (Ad2) was the first viral protein shown to interfere with antigen presentation. This 25 kDa transmembrane glycoprotein binds to major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER), thereby preventing transport of newly synthesized peptide–MHC complexes to the cell surface and consequently T cell recognition. Recent data suggest that E3/19K also sequesters MHC class I like ligands intracellularly to suppress natural killer (NK) cell recognition. While the mechanism of ER retention is well understood, the structure of E3/19K remains elusive. To further dissect the structural and antigenic topography of E3/19K we carried out site-directed mutagenesis and raised monoclonal antibodies (mAbs) against a recombinant version of Ad2 E3/19K comprising the lumenal domain followed by a C-terminal histidine tag. Using peptide scanning, the epitopes of three mAbs were mapped to different regions of the lumenal domain, comprising amino acids 3–13, 15–21 and 41–45, respectively. Interestingly, mAb 3F4 reacted only weakly with wild-type E3/19K, but showed drastically increased binding to mutant E3/19K molecules, e.g. those with disrupted disulfide bonds, suggesting that 3F4 can sense unfolding of the protein. MAb 10A2 binds to an epitope apparently buried within E3/19K while that of 3A9 is exposed. Secondary structure prediction suggests that the lumenal domain contains six β-strands and an α-helix adjacent to the transmembrane domain. Interestingly, all mAbs bind to non-structured loops. Using a large panel of E3/19K mutants the structural alterations of the mutations were determined. With this knowledge the panel of mAbs will be valuable tools to further dissect structure/function relationships of E3/19K regarding down regulation of MHC class I and MHC class I like molecules and its effect on both T cell and NK cell recognition

    Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation

    Get PDF
    The fabrication of sub-micron pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores are characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. These findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane

    Bey dem Absterben Der Hochedlen und Tugendreichen Frauen Sabina Catharina Frickin, gebohrnen Bornemannin

    No full text
    Wollten ihre Wehmuth bezeigen zwey Vettern Johann Christian von Windheim; Justus von WindheimAutopsie nach Ex. der ULB Sachsen-AnhaltVorlageform des Erscheinungsvermerks: Halle im Magdeburgischen 1740. gedruckt bey Johann Justinus Gebauer, Universitätsbuchdrucker
    corecore