11,195 research outputs found

    Structural Optimisation: Biomechanics of the Femur

    Full text link
    A preliminary iterative 3D meso-scale structural model of the femur was developed, in which bar and shell elements were used to represent trabecular and cortical bone respectively. The cross-sectional areas of the bar elements and the thickness values of the shell elements were adjusted over successive iterations of the model based on a target strain stimulus, resulting in an optimised construct. The predicted trabecular architecture, and cortical thickness distribution showed good agreement with clinical observations, based on the application of a single leg stance load case during gait. The benefit of using a meso-scale structural approach in comparison to micro or macro-scale continuum approaches to predictive bone modelling was achievement of the symbiotic goals of computational efficiency and structural description of the femur.Comment: Accepted by Engineering and Computational Mechanics (Proceedings of the ICE

    Nucleon axial form factors from two-flavour Lattice QCD

    Full text link
    We present preliminary results on the axial form factor GA(Q2)G_A(Q^2) and the induced pseudoscalar form factor GP(Q2)G_P(Q^2) of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with mπ=340 MeVm_\pi = 340 \ \text{MeV} and lattice spacing a0.05 fma \sim 0.05 \ \text{fm}. The relevant three-point functions were computed with source-sink separations ranging from ts0.6 fmt_s \sim 0.6 \ \text{fm} to $t_s \sim \ 1.4 \ \text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.Comment: 7 pages, 12 figures; talk presented at Lattice 2014 -- 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, N

    Nucleon electromagnetic form factors in two-flavour QCD

    Get PDF
    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.Comment: 22 pages, 10 figures, citations modifie

    Coherent states and global entanglement in an N qubit system

    Full text link
    We consider an NN qubit system and show that in the symmetric subspace, S\mathbb{S} a state is not globally entangled, iff it is a coherent state. It is also proven that in the orthogonal complement S\mathbb{S}_{\bot} all states are globally entangled

    Impact of simulated reduced alveolar bone support, increased tooth mobility, and distal post-supported, root-treated abutment tooth on load capability of all-ceramic zirconia-supported cantilever FDP

    Get PDF
    OBJECTIVES The aim of this in vitro study was an analysis of the impact of simulated reduced alveolar bone support and post-restored, endodontically treated distal abutment tooth on load capability of all-ceramic zirconia-based cantilever-fixed dental prosthesis (CFDP). MATERIAL AND METHODS The roots of human lower sound premolars (n = 80) were divided into five experimental groups to be restored with all-ceramic zirconia-supported three-unit CFDP regarding bone loss (BL) relative to the cement-enamel junction (CEJ): 2 mm below CEJ = 0% BL (control group), group 25% distal BL, group 50% distal BL, group 50% mesial and distal BL, and group 50% distal BL and adhesive post-supported restoration. Specimens were exposed to simulated clinical function by thermo-mechanical loading (6.000 cycles 5°-55°; 1.2 × 10 cycles 0-50 N) and subsequent linear loading until failure. RESULTS Tooth mobility increased significantly for groups with simulated bone loss (p < 0.001). Four specimens failed during thermal cycling and mechanical loading (TCML). The maximum load capability ranged from 350 to 569 N, and did not differ significantly between experimental groups (p = 0.095). Groups with simulated bone loss revealed more tooth fractures at distal abutment teeth, whereas technical failures were more frequent in the control group (p = 0.024). CONCLUSIONS Differences of alveolar bone support and respectively increased tooth mobility between mesial and distal abutments did not influence load capability. A distal adhesively post-and-core-supported, root-treated abutment tooth did not increase risk of three-unit CFDP failure. CLINICAL RELEVANCE CFDPs are a treatment option used with caution when reduced alveolar bone support, increased tooth mobility, and distal post-supported, root-treated abutment teeth are involved

    Two types of bone necrosis in the middle triassic pistosaurus longaevus bones: The results of integrated studies

    Get PDF
    Avascular necrosis, diagnosed on the basis of either a specific pathological modification of the articular surfaces of bone or its radiologic appearance in vertebral centra, has been recognized in many Mesozoic marine reptiles as well as in present-day marine mammals. Its presence in the zoological and paleontologic record is usually associated with decompression syndrome, a disease that affects secondarily aquatic vertebrates that could dive. Bone necrosis can also be caused by infectious processes, but it differs in appearance from decompression syndrome-associated aseptic necrosis. Herein, we report evidence of septic necrosis in the proximal articular surface of the femur of a marine reptile, Pistosaurus longaevus, from the Middle Triassic of Poland and Germany. This is the oldest recognition of septic necrosis associated with septic arthritis in the fossil record so far, and the mineralogical composition of pathologically altered bone is described herein in detail. The occurrence of septic necrosis is contrasted with decompression syndrome-associated avascular necrosis, also described in Pistosaurus longaevus bone from Middle Triassic of Germany

    Dependence of pp->pp pi0 near Threshold on the Spin of the Colliding Nucleons

    Full text link
    A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.Comment: 6 pages, 1 table, 4 figures, corrected equations 2 and
    corecore