1,231 research outputs found
UDKM1DSIM A simulation toolkit for 1D ultrafast dynamics in condensed matter
The UDKM1DSIM toolbox is a collection of MATLAB MathWorks Inc. classes and routines to simulate the structural dynamics and the according X ray diffraction response in one dimensional crystalline sample structures upon an arbitrary time dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary layered structures on the atomic level including a rich database of corresponding element specific physical properties. The excitation of ultrafast dynamics is represented by an N temperature model which is commonly applied for ultrafast optical excitations. Structural dynamics due to thermal stress are calculated by a linear chain model of masses and springs. The resulting X ray diffraction response is computed by dynamical X ray theory. The UDKM1DSIM toolbox is highly modular and allows for introducing user defined results at any step in the simulation procedur
A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field
We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turns out to be unique with the sole assumption that the Dyson map is Hermitian. Finally we compute the magnetization of the chain in the z and x direction
Recommended from our members
Reducing Interanalyst Variability in Photovoltaic Degradation Rate Assessments
The economic return on investment of a commercial photovoltaic system depends greatly on its performance over the long term and, hence, its degradation rate. Many methods have been proposed for assessing system degradation rates from outdoor performance data. However, comparing reported values from one analyst and research group to another requires a common baseline of performance; consistency between methods and analysts can be a challenge. An interlaboratory study was conducted involving different volunteer analysts reporting on the same photovoltaic performance data using different methodologies. Initial variability of the reported degradation rates was so high that analysts could not come to a consensus whether a system degraded or not. More consistent values are received when written guidance is provided to each analyst. Further improvements in analyst variance was accomplished by using the free open-source software RdTools, allowing a reduction in variance between analysts by more than two orders of magnitude over the first round, where multiple analysis methods are allowed. This article highlights many pitfalls in conducting 'routine' degradation analysis, and it addresses some of the factors that must be considered when comparing degradation results reported by different analysts or methods
- …