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Five major cereals such as wheat, rice, maize, barley and

sorghum were among the first Neolithic crops that facilitated

the establishment of the early agricultural societies. Since then

they have remained the staple source of calories for the

majority of the human population. Ample archaeological and

molecular evidence has provided important insights into the

domestication history of cereals but the debates on the origin of

cereal crops are still far from resolved. Here, we review the

recent advances in applying genome sequencing technologies

for deciphering the history of cereal domestication. As a model

example, we demonstrate that the evolution of thoughts on

barley domestication closely followed the development of

views on the rise of agriculture in the Near East in general and

greatly accelerated with the advent of the genomic

technologies and resources available for barley research.
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‘‘For every complex problem there is an answer that is clear,
simple, and wrong’’

H.L. Mencken

Introduction
Cereals have a long history of interaction with humans. At

around 40–50 thousand years ago (kA), late Neanderthals
www.sciencedirect.com 
consumed wild Triticeae grains in a cooked form as sug-

gested by the analysis of the dental calculus from multiple

locations in Europe, the Near East, and Africa [1]. The

first fossil remnants of plants exhibiting characteristics of

the domesticated cereal crops have been discovered at

the multiple archaeological sites dated to 8–10 kA — the

historic period marking a transition from the hunter-

gatherer lifestyle to the early sedentary agricultural soci-

eties. The most prominent examples are the non-brittle

spikes of the proto-domesticated wheat (diploid, tetra-

ploid and hexaploid Triticum species) and barley (Hor-
deum vulgare ssp. vulgare) discovered in the excavations in

the Fertile Crescent area of the Near East; the non-

shattering panicles of rice (Oryza sativa) from the Yangtze

river valley, China; and the starchy enlarged seeds of

maize (Zea mays ssp. mays) from the Central Balsas river

valley, Mexico, which distinguish maize from its wild

progenitor teosinte (Z. mays ssp. parviglumis) [2–
6]. The archaeobotanical analyses of the fossil findings

provided direct empirical evidence on the temporal scale

and the location of the early events of cereal domestica-

tion history, which was packaged in the so-called domes-

tication models [2,3,7]. However, to expand on the

archaeological models, detailed understanding of genetic

relationships between the cultivated and wild popula-

tions is crucial. In the pre-genomics era, the pioneering

molecular studies suggested explicit demographic models

of cereal domestication based on the population genetic

analyses of nucleotide variation in isolated genes and

genomic regions [8–12]. The molecular evolutionary

models favored a monophyletic origin of crops and strong

selective pressures under domestication. On the contrary,

the archaeological models assumed a polycentric origin of

domestication traits and a millennia-long process of fixa-

tion of these traits in the cultivated populations.

Advancements in the genome sequencing technologies

enabled the elucidation of the genetic ancestry and

evolutionary history of domesticated genotypes at the

unprecedented resolution and scale [13,14�,15��]. It

was anticipated that the genome-wide diversity estimates

would provide a solid basis to the demographic history

reconstruction. However, for many cereals, the interpre-

tation of the revealed patterns remained controversial

hinting at the complexity of their evolutionary history

[15��,16�]. Population genomics has recently revealed

intriguing patterns in the cultivated barley genomes that

shed light on the trajectory of barley domestication

[17��,18,19��]. We use barley as a model to demonstrate
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how the development of genomic technologies gradually

changed our views on the circumstances of domestication

of the Neolithic Near Eastern crop.

Genome resequencing in cereal
domestication studies
Genomes of cereals greatly vary in size. Asian rice and its

sister African species (Oryza glaberrima) possess the smal-

lest of the cereal genomes of �0.4 gigabase pairs (Gbp)

followed by the sorghum, maize and barley genomes of

�0.73 Gbp, 2.4 Gbp and 5.1 Gbp, respectively [20]. The

hexaploid bread wheat (Triticum aestivum) resides on the

other end of the spectrum with the enormous genome of

�17 Gbp [21]. For these crops and their wild ancestors,

the genome sequences and the physical maps of varying

degree of completion have become available [22–29].

The history and the current status of the cereal genomics

have been discussed in greater details elsewhere [20].

In the genomics era, unraveling domestication history

typically involves comparison of various facets of geno-

mic variation in the large representative samples of the

domesticated and wild progenitor species. Using phylo-

genetic and population genetic analyses, the ancestry of

the domesticated genomes or specific domestication loci

can be traced back to the predefined wild populations and

geographic locations. This, combined with the archaeo-

logical findings, helps to hypothesize a specific scenario

of when and where a crop originated and how it further

evolved also known as a domestication model. The

robustness of such inferences positively correlates with

the representativeness of the investigated plant acces-

sions, the accuracy of genotyping and allele frequency

estimates and the density of interrogated polymor-
Table 1

Genome and target enrichment sequencing resources in cereal crops

Species Wild ancestor Ploidy,

2n

Number of

chromosomes,

1n

Typ

ass

Barley Hordeum

vulgare ssp.

vulgare

H. vulgare ssp.

spontaneum

2x 7 Geno

Exom

Exom

subs

Asian rice Oryza sativa

(indica/japonica)

O. rufipogon 2x 12 Geno

African rice

O. glaberrima

O. barthii 2x 12 Geno

Sorghum Sorghum

bicolor ssp. bicolor

S. bicolor ssp.

verticilliflorum

2x 10 Geno

Maize

Zea mays ssp. mays

Z. mays ssp.

parviglumis

2x 10 Geno

a Size of the physical map.
b >10 read coverage in 95% of accessions.
c >6 read coverage in at least 2 accessions.
d M, millions.
e Fraction of nucleotide diversity retained by the domesticated species co
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phisms. Owing to the rapidly sinking costs of high-

throughput sequencing, whole-genome resequencing

has become common in crop domestication studies since

it provides reliable genotypic information at virtually

every nucleotide position (except for the highly repeti-

tive regions). In the domestication context, genome

resequencing studies have been reported in maize, sor-

ghum, and African and Asian rice; the latter being thus far

the largest survey of �8 million single nucleotide poly-

morphisms (SNP) in >1500 wild and domesticated Asian

rice genotypes (Table 1) [13,14�,15��,30]. For the large

barley and wheat genomes consisting of up to 84% of the

mobile elements and other repeat structures, genome

resequencing is not yet feasible. To circumvent this

limitation, the barley exome sequencing assay, capturing

variation only at the coding regions, was developed and

used to resequence 91 wild and 137 domesticated barley

genotypes [31,32�]. A larger collection of 433 wild and

domesticated accessions has been resequenced using a

custom enrichment assay interrogating a panel of

�500 000 SNPs [18]. The wheat exome capture assays

are also available but have not yet been used to system-

atically investigate the phylogeographic patterns of

wheat domestication [33,34].

Barley domestication models
Wild barley (H. vulgare ssp. spontaneum) is an immediate

ancestor of the domesticated subspecies. Following do-

mestication, cultivated barley spread from the Near East-

ern region and became adapted to various ecogeographic

conditions — it thrives even beyond the Arctic Circle.

Despite adaptations to diverse cultivation environments

and intensive breeding for various end-use qualities, the

morphology of cultivated barley plants did not dramatically
e of

ay

Size,

Mba
Number

of SNPsd
Number of

genotypes

(domesticated/

wild)

Domestication

bottlenecke
Reference

me 4980 >15 M 5/1 n.d. [22]

e 60b 1.7 M 137/91 0.73 [32�]

e

et

13.8c 0.54 M 89/344 0.52 [18]

me 373 8 M 1083/446 0.80 [15��]

me 316 2.3 M 93/3 n.d. [14�]

8.4 M 20/94 0.43 [25]

me 626 4.9 M 35/7 0.62 [30]

me 2300 21.1 M 58/14 0.83 [13]

mpared to their wild ancestors.

www.sciencedirect.com
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Box 1 Barley domestication syndrome.

A domestication syndrome is a suite of morphological and

physiological traits that differentiate cultivated from wild forms [73].

In barley, spike brittleness remains the only known trait that reliably

distinguishes wild and cultivated plants. The brittle wild-type spikes

facilitate dissemination of the seeds, whereas the tough rachises of

cultivated barley, which prevent spontaneous disarticulation of the

mature spikes into spikelets, are an adaptive innovation ensuring

efficient harvesting [63��]. The other morphological characters such

as plant height, shape and size of seeds, width of spikes and flag

leaves, number and angle of side shoots, and synchroneity of

flowering and germination have been mentioned as the candidate

traits of cereal domestication syndrome [45,74]. However, variation

of these traits in wild and cultivated barley awaits a statistical

assessment. Such traits as reduced vernalization and photoperiod

sensitivity, fertility of lateral spikes and hulless caryopses are specific

only to certain groups of cultivated barley and therefore apparently

represent the improvement but not domestication traits [73,75].
diverge from the wild form. Spike brittleness, as a diag-

nostic trait of the barley domestication syndrome, has been

used by archaeologists to date the early onset of barley

domestication [35]. (Box 1) It is controlled by two adjacent

genetic loci Bt1 and 2 (also known as Btr1 and 2) and the

non-brittle spikes are produced by the recessive alleles of

either of these genes [36].

Archaeobotanical studies suggested that harvesting of

barley plants with wild-type brittle spikes occurred al-

ready during the Upper Paleolithic Period in the Rift

Valley of modern Israel at the site radiocarbon dated to

�23 kA [37,38]. The first non-brittle barley spikes were

discovered in the Fertile Crescent in excavation sites

dated to �10 kA [35]. The Fertile Crescent as a primary

habitat comprises most of the modern wild barley diver-

sity [39]. Although the modern range of its documented

occurrence spans the whole region between North Africa,

Western Anatolia and the Tibetan Plateau. At least nine

wild barley populations have been identified in the Fer-

tile Crescent and two additional populations across the

Zagros mountains [18,32�,40,41] (Figure 1).

It has been largely accepted that the major events of

barley domestication unfolded in the Fertile Crescent

and the adjacent areas. However, other regions such as

the Horn of Africa, Morocco and the Tibetan plateau

were discussed in the literature as alternative centers of

domestication [42–44]. One of the first studies that used

DNA marker technology to systematically investigate the

origin of barley using large samples of wild (317) and

domesticated (57) accessions was based on the amplified

fragment length polymorphism (AFLP) markers, which

are anonymous genomic fragments scored as a binary-

coded presence/absence pattern [45]. Phylogenetic clus-

tering of 400 AFLP alleles discovered that barley cultivars

and landraces from various geographic locations formed a

single monophyletic group. That seemed to refute

the earlier hypotheses of multiple barley domestication
www.sciencedirect.com 
centers. Wild barley populations collected from the area of

modern Israel and Jordan appeared genetically closer to

the cultivated genepool and were therefore deemed as the

likely primary ancestors. The distributions of several

AFLP alleles in cultivated barley closely resembled those

found in wild barley from Western Iran, which was con-

sidered as the evidence of a secondary gene flow between

wild and cultivated germplasm. These findings aligned

well with the then-prevailing idea that the domestication

of the Near Eastern cereals has been a rapid process

confined to the defined core regions within the Fertile

Crescent [46]. Thus, the model of a monophyletic barley

origin has long persisted in the scientific community.

A competing idea of the diffused non-centric origin of

crops — already expressed by the early botanists critically

revising the concept of the Vavilovian ‘centers of ori-

gin’ — was later formalized in the protracted model of

domestication [47–50]. This model was substantiated by a

large corpus of the archaeobotanical evidence and a

statistical framework [7,51–53]. Regarding the Near East-

ern crops, it postulates that the fixation of domestication

traits in cultivated populations was a slow process and

their origin was not restricted to a certain geographic

center. The concepts and the statistical methods of the

protracted model were heavily criticized [54–58].

The molecular evidence indicating that cultivated barley

could descend from several distinct lineages came from

the population structure analysis that split 25 wild barley

genotypes into two populations — ‘eastern’ and ‘west-

ern’ — separated by the Zagros Mountain range based

on the genotype data of 684 SNPs from 18 genes [59]. It

revealed that the ‘western’ and ‘eastern’ wild barley

populations disproportionately contributed to the ancestry

of cultivated barley genotypes. The ancestry assignments

bisected the cultivation areas of the Near Eastern and

Asian barley landraces into the western and eastern clus-

ters relative to the Zagros Mountains [59,60�]. This model

fit well into the long-established separation of cultivated

barley into the ‘occidental’ (btr1btr1Btr2Btr2) and ‘orien-

tal’ (Btr1Btr1btr2btr2) types based on the Btr allelic status

and also found support in later studies [61,62].

Cloning of the genes underlying the Btr1 and Btr2 loci

identified nucleotide deletions in their coding regions,

which truncated open reading frames and rendered the

non-brittle phenotype [63��]. The mutant btr alleles were

independent and private to cultivated barley. A geograph-

ic distribution of their frequencies followed the occiden-

tal-oriental model. However, the btr2 mutation did not

seem to originate in the proposed eastern cluster of barley

domestication. Geographic locations of the putative an-

cestral wild barley haplotypes pointed to the origin of

both mutations in the western horn of the Fertile Cres-

cent. Apparently, the btr2 was spread from its putative

place of origin in the Northern Levant to the east of
Current Opinion in Plant Biology 2017, 36:15–21
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Figure 1
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THE FERTILE CRESCENT

ZAGROS M
OUNTAINS

Domesticated
barley

s1 s2 s3 s1 s2 s3 s1 s2 s3

Model 1 Model 2 Model 3

V V V

The heterogeneous ancestry of cultivated barley genomes and the candidate demographic models of barley domestication. The approximate

locations of wild barley populations are shown on the map of the Near East by colored dots [18,40]. The pie chart is an artistic representation of

the mosaic ancestry model of modern cultivated barley genomes that comprise genetic material descending from wild Hordeum vulgare ssp.

spontaneum (s) populations from the Fertile Crescent and from the east of the Zagros mountains [17��,18]. The bifurcating charts are simplified

candidate demographic models assuming a single lineage that gave rise to the cultivated H. vulgare ssp. vulgare (v) genomes. The mosaic

ancestry patterns of vulgare genomes could have originated from the recurrent introgressions of wild material (s2 and s3) into the proto-vulgare

lineage (Model 1), the ancestral population structure of the wild founder lineage (s1) (Model 2), or a combination of the two (Model 3).
Western Asia with the migration of the early farmers and

subsequently enriched in the eastern part of barley culti-

vation range. Admixture patterns in the ancient human

DNA suggested the gene flow between Neolithic Levan-

tine and Zagros highland farmers hinting at the existence

of such migration route [64��].

In contrast with the analyses based on the sparsely

distributed DNA markers, the genome-wide analyses

using genotypes of thousands of markers densely cover-

ing all chromosomes revealed intricate patterns of genetic

ancestry. The first detailed genome-wide ancestry scan in

barley was based on a set of 6152 SNPs screened in

803 diverse landraces using Illumina genotyping plat-

forms. It revealed that the modern cultivated barley

genomes consist of a mosaic of fragments that descended
Current Opinion in Plant Biology 2017, 36:15–21 
from wild barley populations from the both sides of the

Zagros Mountains [17��]. (Figure 1) Another genome-

wide analysis based on �500 000 SNPs, which originated

from targeted resequencing of 433 wild and cultivated

barley accessions, arrived at a similar conclusion [18]. The

contribution of wild populations to the different landraces

was not uniform; the landrace populations were enriched

for genetic material originating from the proximal wild

populations [17��]. Nevertheless, the mosaic patterns of

different cultivated barley populations and individual

genotypes were strikingly similar; the wild population

from the Southern Levant contributed > that 50% of the

genetic material in all landraces [17��,18]. This raises a

hypothesis that a single admixed lineage might have been

at the root of all examined domesticated genotypes thus

contesting the model of the independent Eastern and
www.sciencedirect.com
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Western domestication lineages. Intriguingly, another

study discovered that the 6000-year-old cultivated barley

excavated at Yoram Cave in Israel was not genetically

distinct from the modern-day landraces based on the

genome and exome sequencing data, which tentatively

suggests a similar ancestral composition [19��]. This

corroborates the hypothesis that the admixed progenitor

lineage existed already at the early stages of barley

cultivation. Alternatively, similar mosaic admixture pat-

terns could occur independently in the western and

eastern domestication clusters but this solution is less

parsimonious and unlikely.

Various demographic scenarios — both related and unre-

lated to domestication process — may have resulted in the

mosaic patterns observed in the cultivated barley genomes

(Figure 1). One possibility is that the hypothetical wild

progenitor population could have had a highly admixed

ancestry that was passed down to the cultivated lineage.

The admixed wild barley genotypes frequently occur at

the contact zones between the modern wild populations

[18,32�,41]. The second hypothesis is that the wild pro-

genitor lineage was not admixed and the recurrent gene

flow from wild into the (proto-)domesticated populations

happened during the transition to cultivation gradually

creating the heterogeneous admixture patterns. The third

and perhaps the likeliest scenario is a combination of the

ancestral population structure and the gene flow. Statisti-

cal testing of these and other more complex demographic

models will help determine the best fit to the existing

empirical data and thus suggest the likeliest demographic

history of barley domestication [65].

In other crops, the mosaic ancestry of the domesticated

genomes has not been reported. The mosaic ancestry

model poses intriguing questions for future studies: to

which extent the mosaic ancestry is relevant for domesti-

cation versus the neutral gene flow or further adaptations;

and whether the other Fertile Crescent crops carry similar

patterns in their genomes, which would indicate parallel

trajectories of their domestication.

Concluding remarks and future perspectives
The state-of-the-art genomic resources enabled surveys

of genetic diversity in many cereal crops and its wild

relatives at the ultimate resolution probing variation at

millions of nucleotide positions. Using barley as an ex-

ample, we demonstrated that with the arrival of more

detailed and dense genomic datasets the increasingly

complex and reticulate models of domestication history

emerged. A similar trend is observed in some other cereal

crops [15��,16�].

Genome studies provided compelling evidence that hy-

bridization and introgression played a primary role in the

cereal domestication and further adaptation. A highly

admixed ancestral population(s) seemed to be a progenitor
www.sciencedirect.com 
of modern barley domesticates. In rice, japonica subspe-

cies contributed to the domestication of indica through

introgression [15��]. The maize landraces from Mexico

comprised introgressions from conspecific wild relative

Z. mays ssp. mexicana, which putatively led to the adapta-

tion of maize to the highland environments [66,67]. In

emmer wheat (Triticum turgidum), phylogenetic evidence

suggested reticulate domestication history [68].

In the domestication models that implicate long-distance

migration and introgression events, distinguishing single

and multiple origins of crops becomes a non-trivial task

since the genealogies of the domestication loci and the rest

of the genome may not always match. Arguably, it may

remain a semantic preference until a series of events that

gave rise to the cultivated forms is understood in much

greater detail. To this end, it is critical that, in future

studies, we engage in discovering and characterizing ad-

ditional domestication genes, which contributed to the

emergence of the cultivated forms. In cereals, genome

scans identified multiple genomic regions putatively af-

fected by selection under domestication, which comprised

hundreds of candidate genes [13,15��,18]. Further explor-

ing these regions to identify novel domestication genes

and specific mutations targeted by selection followed by

their phenotypic characterization will greatly promote our

understanding of domestication syndrome traits and their

genetic basis [63��,69]. Reconstructing genealogies of the

selected mutations will illuminate the history of the origin

of individual domestication traits thus providing a more

targeted approach to modeling the domestication process.

Furthermore, sequencing of ancient cereal DNA presents

another promising avenue for untangling the complex

domestication histories [19��,70–72]. The paleogenomics

data combined with the archaeobotanical findings will

inform the domestication models with a more precise

empirical evidence on the location and timing of events

that led to the assembly of the domestication syndrome.
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