188 research outputs found
Efficacy of common surgical compounds in preventing articular chondrocyte death from desiccation
Purpose: Purpose of this study was to identify potential substances that prevent desiccation of chondrocytes. Methods: Macroscopically normal bovine cartilage explants (n = 80) were exposed to room air, or covered with surgical lubricant, Lactated ringer (LR) or Seprafilm (Genzyme Biosurgery, Cambridge, MA) for 0, 30, 60 or 120 min. The viability of superficial chondrocytes was measured after 48 h of incubation in tissue culture media at 37 °C by Live/Dead staining. Chondrotoxicity was measured as the extent of cell death below the articular surface. Statistical analysis was performed with a two-way analysis of variance on the data set and a subsequent Tukey’s post hoc test. Results: Chondrocyte death correlated positively with the length of exposure, regardless of the treatment (p < 0.0001). The extent of superficial chondrocyte death was minimally lower in the LR (89.1 ± 2.6 %, 80.8 ± 1.2 %) and surgical lube (84.3 ± 1.8 %, 75.9 ± 2.7 %) groups than the control (82 ± 5.7 %, 65.6 ± 13.3 %) and Seprafilm group (77.6 ± 3.9 %, 63.3 ± 6.9 %) (p < 0.001) at the first two time points, with no significant difference between the latter groups. After 60 and 120 min, surgical lube resulted in less chondrocyte death than all other groups (70.4 ± 6.8 % and 60.9 ± 5.9 %, all p < 0.0001). Conclusion: The data suggest that depending on the expected length of exposure of the articular cartilage surface, different compounds appear to be protective. For exposures exceeding 60 min, surgical lubricant demonstrated the highest protective potential. Results from this study indicate that protecting exposed articular surfaces with surgical lubricant for orthopaedic procedures lasting more than 1 h lead to decreased chondrocyte death and suggest improved cartilage functional outcomes postoperatively
Plasma sheath tailoring by a magnetic field for three-dimensional plasma etching
Three-dimensional (3D) etching of materials by plasmas is an ultimate
challenge in microstructuring applications. A method is proposed to reach a
controllable 3D structure by using masks in front of the surface in a plasma
etch reactor in combination with local magnetic fields to steer the incident
ions in the plasma sheath region towards the surface to reach 3D directionality
during etching and deposition. This effect can be controlled by modifying the
magnetic field and/or plasma properties to adjust the relationship between
sheath thickness and mask feature size. Since the guiding length scale is the
plasma sheath thickness, which for typical plasma densities is at least 10s of
microns or larger, controlled directional etching and deposition target the
field of microstructuring, e.g. of solids for sensors, optics, or
microfluidics. In this proof-of-concept study, it is shown that
drifts tailor the local sheath expansion, thereby
controlling the plasma density distribution and the transport when the plasma
penetrates the mask during an RF cycle. This modified local plasma creates a 3D
etch profile. This is shown experimentally as well as using 2d3v
Particle-In-Cell/Monte Carlo collisions simulation
Azimuthal ion movement in HiPIMS plasmas -- Part I: velocity distribution function
Magnetron sputtering discharges feature complex magnetic field configurations
to confine the electrons close to the cathode surface. This magnetic field
configuration gives rise to a strong electron drift in azimuthal direction,
with typical drift velocities on the order of \SI{100}{\kilo\meter\per\second}.
In high power impulse magnetron sputtering (HiPIMS) plasmas, the ions have also
been observed to follow the movement of electrons with velocities of a few
\si{\kilo\meter\per\second}, despite being unmagnetized. In this work, we
report on measurements of the azimuthal ion velocity using spatially resolved
optical emission spectroscopy, allowing for a more direct measurement compared
to experiments performed using mass spectrometry. The azimuthal ion velocities
increase with target distance, peaking at about
\SI{1.55}{\kilo\meter\per\second} for argon ions and
\SI{1.25}{\kilo\meter\per\second} for titanium ions. Titanium neutrals are also
found to follow the azimuthal ion movement which is explained with resonant
charge exchange collisions. The experiments are then compared to a simple
test-particle simulation of the titanium ion movement, yielding good agreement
to the experiments when only considering the momentum transfer from electrons
to ions via Coulomb collisions as the only source of acceleration in azimuthal
direction. Based on these results, we propose this momentum transfer as the
primary source for ion acceleration in azimuthal direction
Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge
Publisher's version (útgefin grein)The self-organised plasma patterns, known as spokes or ionisation zones in magnetron sputtering discharges, were observed in a wide range of power densities, from low power direct current magnetron sputtering (dcMS) discharge to high power impulse magnetron sputtering (HiPIMS) discharge. For some target materials and non-reactive gases, it was observed that at very high power densities (>3 kW cm-2) the plasma exhibits a transition from a regime where spokes are observed to a homogeneous plasma regime. In this contribution, we present a comparison of plasma properties: plasma emission (optical emission spectroscopy) and flux of argon and chromium ions (mass spectrometry), measured both in the spoke regime and in the homogeneous plasma regime, aimed to expand the understanding of the plasma transition between the two modes. A simple biased flat probe was used to distinguish between the spoke regime and the homogeneous plasma regime. It was found that the flux of multiply charged ions (Ar2+, Cr2+, Cr3+, Cr4+) increases abruptly at the transition between the spoke regime and the homogeneous plasma regime. Similarly, the emission from Cr+ ions exhibits a strong increase of about 50% when the plasma torus becomes homogeneous. These observations are interpreted as an increase in electron temperature and a change in the electron heating mode, from a combination of secondary electron heating and Ohmic heating towards pure Ohmic heating. The transition to the homogeneous plasma regime and pure Ohmic heating is only observed in non-reactive HiPIMS discharges for target atoms with the second ionisation potential higher than the first ionisation potential of Ar (15.76 eV), and a self-sputter yield larger than 1.This research has been supported by project LM2018097 funded by the Ministry of Education, Youth and Sports of the Czech Republic and project GA19-00579S funded by the Czech Science Foundation. This work has been supported by the German Science Foundation (DFG) within the frame of the collaborative research centre SFB-TR 87Peer Reviewe
Thermal conductivity of amorphous carbon thin films
Thermal conductivities of amorphous carbon thin films are measured
in the temperatures range 80--400 K using the method. Sample films
range from soft a-C:H prepared by remote-plasma deposition ( W
m K at room temperature) to amorphous diamond with a large
fraction of bonded carbon deposited from a filtered-arc source ( W m K). Effective-medium theory provides a
phenomenological description of the variation of conductivity with mass
density. The thermal conductivities are in good agreement with the minimum
thermal conductivity calculated from the measured atomic density and
longitudinal speed of sound.Comment: 4 pages, 4 figure
Nivolumab for relapsed/refractory classical Hodgkin lymphoma: 5-year survival from the pivotal phase 2 CheckMate 205 study
Patients with relapsed/refractory (R/R) classical Hodgkin lymphoma (cHL) for whom autologous hematopoietic cell transplantation (auto-HCT) had failed experienced frequent and durable responses to nivolumab in the phase 2 CheckMate 205 trial. We present updated results (median follow-up, ~5 years). Patients with R/R cHL who were brentuximab vedotin (BV)–naive (cohort A), received BV after auto-HCT (cohort B), or received BV before and/or after auto-HCT (cohort C) were administered with nivolumab 3 mg/kg IV every 2 weeks until progression or unacceptable toxicity. Patients in cohort C with complete remission (CR) for 1 year could discontinue nivolumab and resume upon relapse. Among 243 patients (cohort A, n = 63; B, n = 80; and C, n = 100), the objective response rate (ORR) was 71.2% (95% confidence interval [CI], 65.1-76.8); the CR rate was 21.4% (95% CI, 16.4-27.1). Median duration of response, CR, and partial remission were 18.2 (95% CI, 14.7-26.1), 30.3, and 13.5 months, respectively. Median progression-free survival was 15.1 months (95% CI, 11.3-18.5). Median overall survival (OS) was not reached; OS at 5 years was 71.4% (95% CI, 64.8-77.1). In cohort C, all 3 patients who discontinued in CR and were subsequently re-treated achieved objective response. No new or unexpected safety signals were identified. This 5-year follow-up of CheckMate 205 demonstrated favorable OS and confirmed efficacy and safety of nivolumab in R/R cHL after auto-HCT failure. Results suggest patients may discontinue treatment after persistent CR and reinitiate upon progression. This trial was registered at www.clinicaltrials.gov as #NCT02181713
- …