101 research outputs found

    Comparing Cathelicidin Susceptibility of the Meningitis Pathogens Streptococcus suis and Escherichia coli in Culture Medium in Contrast to Porcine or Human Cerebrospinal Fluid

    Get PDF
    Host defense peptides or antimicrobial peptides (AMPs), e.g., cathelicidins, have recently been discussed as a potential new treatment option against bacterial infections. To test the efficacy of AMPs, standardized methods that closely mimic the physiological conditions at the site of infection are still needed. The aim of our study was to test the meningitis-causing bacteria Streptococcus suis and Escherichia coli for their susceptibility to cathelicidins in culture medium versus cerebrospinal fluid (CSF). Susceptibility testing was performed in analogy to the broth microdilution method described by the Clinical and Laboratory Standard Institute (CLSI) to determine minimum inhibitory concentrations (MICs) of antimicrobial agents. MICs were determined using cation-adjusted Mueller–Hinton broth (CA-MHB), lysogeny broth (LB), Roswell Park Memorial Institute medium (RPMI) or Dulbecco’s Modified Eagle’s Medium (DMEM) (the latter two supplemented with 5% CA-MHB or blood) and compared with MICs obtained in porcine or human CSF. Our data showed that MICs obtained in CA-MHB as recommended by CLSI do not reflect the MICs obtained in the physiological body fluid CSF. However, the MICs of clinical isolates of S. suis tested in RPMI medium supplemented with CA-MHB, were similar to those of the same strains tested in CSF. In contrast, the MICs in the human CSF for the tested E. coli K1 strain were higher compared to the RPMI medium and showed even higher values than in CA-MHB. This highlights the need for susceptibility testing of AMPs in a medium that closely mimics the clinically relevant conditions

    M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment

    Get PDF
    Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections. We confirm that pilus expression promotes GAS adherence to pharyngeal cells, keratinocytes, and skin. However, in contrast to findings reported for group B streptococcal and pneumococcal pili, we observe that pilus expression reduces GAS virulence in murine models of necrotizing fasciitis, pneumonia and sepsis, while decreasing GAS survival in human blood. Further analysis indicated the systemic virulence attenuation associated with pilus expression was not related to differences in phagocytic uptake, complement deposition or cathelicidin antimicrobial peptide sensitivity. Rather, GAS pili were found to induce neutrophil IL-8 production, promote neutrophil transcytosis of endothelial cells, and increase neutrophil release of DNA-based extracellular traps, ultimately promoting GAS entrapment and killing within these structures

    Patients with COVID-19: in the dark-NETs of neutrophils.

    Get PDF
    SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunÎż-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19

    How Neutrophil Extracellular Traps Become Visible

    No full text
    Neutrophil extracellular traps (NETs) have been identified as a fundamental innate immune defense mechanism against different pathogens. NETs are characterized as released nuclear DNA associated with histones and granule proteins, which form an extracellular web-like structure that is able to entrap and occasionally kill certain microbes. Furthermore, NETs have been shown to contribute to several noninfectious disease conditions when released by activated neutrophils during inflammation. The identification of NETs has mainly been succeeded by various microscopy techniques, for example, immunofluorescence microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Since the last years the development and improvement of new immunofluorescence-based techniques enabled optimized visualization and quantification of NETs. On the one hand in vitro live-cell imaging led to profound new ideas about the mechanisms involved in the formation and functionality of NETs. On the other hand different intravital, in vivo, and in situ microscopy techniques led to deeper insights into the role of NET formation during health and disease. This paper presents an overview of the main used microscopy techniques to visualize NETs and describes their advantages as well as disadvantages

    Extracellular traps : An ancient weapon of multiple kingdoms

    No full text
    The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life
    • …
    corecore