2 research outputs found

    Lymph node response to chemoradiotherapy in oesophageal cancer patients: relationship with radiotherapy fields

    Get PDF
    Background The presence of lymph node metastasis (LNmets) is a poor prognostic factor in oesophageal cancer (OeC) patients treated with neoadjuvant chemoradiotherapy (nCRT) followed by surgery. Tumour regression grade (TRG) in LNmets has been suggested as a predictor for survival. The aim of this study was to investigate whether TRG in LNmets is related to their location within the radiotherapy (RT) field. Methods Histopathological TRG was retrospectively classified in 2565 lymph nodes (LNs) from 117 OeC patients treated with nCRT and surgery as: (A) no tumour, no signs of regression; (B) tumour without regression; (C) viable tumour and regression; and (D) complete response. Multivariate survival analysis was used to investigate the relationship between LN location within the RT field, pathological TRG of the LN and TRG of the primary tumour. Results In 63 (54%) patients, viable tumour cells or signs of regression were seen in 264 (10.2%) LNs which were classified as TRG-B (n = 56), C (n = 104) or D (n = 104) LNs. 73% of B, C and D LNs were located within the RT field. There was a trend towards a relationship between LN response and anatomical LN location with respect to the RT field (p = 0.052). Multivariate analysis showed that only the presence of LNmets within the RT field with TRG-B is related to poor overall survival. Conclusion Patients have the best survival if all LNmets show tumour regression, even if LNmets are located outside the RT field. Response in LNmets to nCRT is heterogeneous which warrants further studies to better understand underlying mechanisms

    Predicting outcomes in radiation oncology-multifactorial decision support systems

    Get PDF
    With the emergence of individualized medicine and the increasing amount and complexity of available medical data, a growing need exists for the development of clinical decision-support systems based on prediction models of treatment outcome. In radiation oncology, these models combine both predictive and prognostic data factors from clinical, imaging, molecular and other sources to achieve the highest accuracy to predict tumour response and follow-up event rates. In this Review, we provide an overview of the factors that are correlated with outcome-including survival, recurrence patterns and toxicity-in radiation oncology and discuss the methodology behind the development of prediction models, which is a multistage process. Even after initial development and clinical introduction, a truly useful predictive model will be continuously re-evaluated on different patient datasets from different regions to ensure its population-specific strength. In the future, validated decision-support systems will be fully integrated in the clinic, with data and knowledge being shared in a standardized, instant and global manner
    corecore