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Abstract | With the emergence of individualized medicine and the increasing amount and complexity of 
available medical data, a growing need exists for the development of clinical decision-support systems based 
on prediction models of treatment outcome. In radiation oncology, these models combine both predictive and 
prognostic data factors from clinical, imaging, molecular and other sources to achieve the highest accuracy 
to predict tumour response and follow-up event rates. In this Review, we provide an overview of the factors 
that are correlated with outcome—including survival, recurrence patterns and toxicity—in radiation oncology 
and discuss the methodology behind the development of prediction models, which is a multistage process. 
Even after initial development and clinical introduction, a truly useful predictive model will be continuously 
re‑evaluated on different patient datasets from different regions to ensure its population-specific strength.  
In the future, validated decision-support systems will be fully integrated in the clinic, with data and knowledge 
being shared in a standardized, instant and global manner.

Lambin, P. et al. Nat. Rev. Clin. Oncol. 10, 27–40 (2013); published online 20 November 2012; doi:10.1038/nrclinonc.2012.196

Introduction
Over the past decade, we have witnessed advances in 
cancer care, with many new diagnostic methods and 
treatment modalities becoming available,1 including 
advances in radiation oncology.2 The abundance of new 
options and the progress in individualized medicine has, 
however, created new challenges. For example, achiev-
ing level I evidence is increasingly difficult given the 
numerous disease and patient parameters that have been 
discovered, resulting in an ever-diminishing number 
of ‘homogeneous’ patients.3 This reality contrasts to a 
certain extent with classic evidence-based medicine, 
whereby randomized trials are designed for large popu-
lations of patients. Thus, new strategies are needed to find 
evidence for subpopulations on the basis of patient and 
disease characteristics.4

For each patient, the clinician needs to consider state-
of-the-art imaging, blood tests, new drugs, improved 
modalities for radiotherapy planning and, in the near 
future, genomic data. Medical decisions must also consi
der quality of life, patient preferences and, in many health-
care systems, cost efficiency. This combination of factors 
renders clinical decision making a dauntingly complex, 
and perhaps inhuman, task because human cognitive 
capacity is limited to approximately five factors per deci-
sion.3 Furthermore, dramatic genetic,5 transcriptomic,6 
histological7 and microenvironmental8 heterogeneity 
exists within individual tumours, and even greater 
heterogeneity exists between patients.9 Despite these 

complexities, individualized cancer treatment is inevitable. 
Indeed, intratumoural and intertumoural variability might 
be leveraged advantageously to maximize the therapeutic 
index by increasing the effects of radiotherapy on the 
tumour and decreasing those effects on normal tissues.10–12

The central challenge, however, is how to integrate 
diverse, multimodal information (clinical, imaging and 
molecular data) in a quantitative manner to provide 
specific clinical predictions that accurately and robustly 
estimate patient outcomes as a function of the possi
ble decisions. Currently, many prediction models are 
being published that consider factors related to disease 
and treatment, but without standardized assessments 
of their robustness, reproducibility or clinical utility.13 
Consequently, these prediction models might not 
be suitable for clinical decision-support systems for 
routine care.

In this Review, we highlight prognostic and predictive 
models in radiation oncology, with a focus on the metho
dological aspects of prediction model development. Some 
characteristic prognostic and predictive factors and their 
challenges are discussed in relation to clinical, treatment, 
imaging and molecular factors. We also enumerate the 
steps that will be required to present these models to 
clinical professionals and to integrate them into clinical 
decision-support systems (CDSSs).

Methodological aspects
Factors for prediction
The overall aim of developing a prediction model for a 
CDSS is to find a combination of factors that accurately 
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anticipate an individual patient’s outcome.14 These 
factors include, but are not limited to, patient demo-
graphics as well the results of imaging, pathology, 
proteomic and genomic testing, the presence of key 
biomarkers and, crucially, the treatment undertaken. 
‘Outcome’ can be defined as tumour response to radio-
therapy, toxicity evolution during follow up, rates of local 
recurrence, evolution to metastatic disease, survival or 
a combination of these end points. Although predictive 
factors (that is, factors that influence the response to a 
specific treatment) are necessary for decision support, 
prognostic factors (that is, factors that influence response 
in the absence of treatment)15 are equally important in  
revealing the complex relationship with outcome. Here
in, we refer to both of these terms generically as ‘fea-
tures’ because, for a predictive model, correlation with 
outcome must be demonstrable.

Model development stages
The procedure for finding a combination of features 
correlated with outcome is analogous to the development 
of biomarker assays.16 In that framework, we can distin-
guish qualification and validation. Qualification demon-
strates that the data are indicative or predictive of an end 
point, whereas validation is a formalized process used to 
demonstrate that a combination of features is both reli-
able and suitable for the intended purpose. That is, we 
need to identify features, test whether they are predic-
tive in independent datasets and then determine whether 
treatment decisions made using these features improve 
outcome. The complete cycle of model development 
entails several stages (Figure 1).

In the hypothesis-generation stage, one must consider 
the end point to predict, the timing of the treatment deci-
sion and the available data at these time points. In the 
data-selection step, a review of potential features is first 
conducted, ideally by an expert panel. A practical inven-
tory of the available data and sample-size calculations 
are recommended, especially for the validation phase.17,18 
Data from both clinical trials (high quality, low quantity, 
controlled, biased selection) and clinical practice (low 
quality, high quantity, unbiased selection) are useful, but 
selection biases must be identified in both cases and the 
inclusion criteria should be equivalent. For all features, 
including the characteristics of the treatment decision, 

data heterogeneity is a requirement to identify predictive 
features and to have the freedom to tailor treatment.

Next, performance measures for models are deter-
mined, and these measures include the area under the 
receiver operating characteristic curve (AUC), accuracy, 
sensitivity, specificity and c‑index of censored data.19 
AUC, which has values between 0 and 1 (with 1 denoting 
the best model and 0.5 randomness), is the most com-
monly used performance measure. However, for time-
to-event models, the c‑index and hazard ratio are more 
appropriate because both can handle censored data.

The preprocessing stage deals with missing data 
(imputation strategies; that is, replacing missing values 
by calculated estimates),20 identifying incorrectly meas-
ured or entered data21 as well as discretizing (if appli-
cable) and normalizing data to avoid sensitivity for 
different orders of data scales.22 If an external, indepen
dent dataset is not available for validation, the available 
data must be split (in a separate stage) into a model-
training dataset and a validation set, the latter of which 
is used subsequently in the validation step. In the feature-
selection stage, the ratio of the number of evaluated fea-
tures to number of outcome events must be kept as low as 
possible to avoid overfitting. When a model is overfitted, 
it is specifically and exclusively trained for the training 
data (including its data noise) and, as a result, performs 
poorly on new data. Data-driven preselection of fea-
tures is, therefore, recommended.23 Univariate analyses 
are commonly used to prioritize the features—that is, 
testing each feature individually and ranking them on 
their strength of correlation with outcome.

Predicting outcomes
In the next stage, the input data are fed into a model that 
can classify all possible patient outcomes. Traditional 
statistical24 and machine-learning models25 can be consi
dered. For two or more classes (for example, response 
versus no response), one might consider logistic regres-
sion, support vector machines, decision trees, Bayesian 
networks or Naive Bayes algorithms.26,27 For time-to-
event outcomes, whether censored or not, Cox propor-
tional hazards models28 or the Fine and Gray model28 of 
competing risks are most common. The choice of model 
depends on the type of outcome (for example, logistic 
regression for two or more outcomes, or Cox regres-
sion for survival-type data) and the type of input data 
(for example, Bayesian networks require categorized 
data, whereas support-vector machines can deal with 
continuous data). In general, several models with similar 
properties can be tested to find the optimal model for 
the available data. A simple model is, however, preferred 
because it is expected to be robust to a wider range of 
data than a more complex model. 

Performance on the training dataset is upwards-biased 
because the features were selected. Thus, external vali-
dation data must be used, which can be derived from a 
separate institute or independent trial. When data are 
limited, internal validation can be considered using 
random split, temporal split or k‑fold cross-validation 
techniques.29 The developed model should have a benefit 

Key points

■■ Many prediction models that consider factors related to disease and treatment 
are available, but lack standardized assessments of their robustness, 
reproducibility or clinical utility

■■ The complete cycle of model development for decision making in radiotherapy 
involves several stages, including selection of data, performance measure, 
classification and external validation

■■ Clinical decision-support systems (CDSSs) based on validated predictors will 
be crucial to implement personalized radiation oncology

■■ Tolerance of normal tissue is the dose-limiting factor for the administration of 
radiotherapy, therefore, any CDSS should be based on predictors of tumour 
control and the probability of complications

■■ Rapid-learning healthcare will enable the increasingly rapid validation of CDSSs, 
which, in turn, will enable the next major advances in shared decision making
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over standard decision making, and must be assessed 
prospectively in the clinic in the penultimate stage of 
development. Models must be compared against pre-
dictions by clinicians30,31 and to standard prognostic 
and predictive factors.32 Critically, to demonstrate the 
improvement of patient outcome, quality of life and/or  
reduced toxicity,33 clinical trials must be conducted 
whereby the random assignment of patients is based 
on the prediction model output. Fulfilling this require-
ment will generate the final evidence that the model is 
improving health care by comparing, in a controlled 
way, the tailored treatments with standard treatments in 
the clinic. 

Finally, the prediction models and data can be pub-
lished, enabling the wider oncological community to 
evaluate them. Full transparency on the data and metho
dology is the key towards global implementation of the 
model into CDSSs. This suggestion is similar to clinical 
‘omics’ publications for which the raw data, the code used 
to derive the results from the raw data, evidence for data 
provenance (the process that led to a piece of data) and 
a written description of nonscriptable analysis steps are 
routinely made available.34

In practice, this cycle of development usually begins  
by identifying clinical parameters, because these are 
widely and instantly available in patient information 
systems and clinical trials. These clinical variables also 
form the basis for extending prediction models with 
imaging or molecular data.

Clinical features
Decision making in radiotherapy is mainly based on 
clinical features, such as the patient performance status, 
organ function and grade and extent of the tumour (for 
example, as defined by the TNM system). In almost 
all studies, such features have been found to be prog-
nostic for survival and development of toxicity.35–37 
Consequently, these features should be evaluated in 
building robust and clinically acceptable radiotherapy 
prognostic and predictive models. Moreover, measure-
ment of some clinical variables, such as performance 
status, can be captured with minimal effort.

Even the simplest questionnaire, however, should be 
validated as is the case for laboratory measurements of 
organ function or parameters measured from blood.38,39 
Furthermore, a standardized protocol should be available 
to ensure that comparisons are possible between centres 
and questionnaires over time.40 Moreover, why specific 
features were chosen for measurement should be clearly 
explained. For example, if haemoglobin measurements 
were only taken in patients with fatigue, the resulting bias 
would demand caution when including and interpreting 
the measurements. Only when clinical parameters are 
recorded prospectively with the same scrutiny as labora-
tory measurements will observational studies become as 
reliable as randomized trials.41,42

Toxicity measurements and scoring should also build 
on validated scoring systems, such as the Common 
Terminology Criteria for Adverse Events (CTCAE), 
which can be scored by the physician or patient.43,44 

Indeed, a meta-analysis showed that high-quality toxi
city assessments from observational trials are similar to 
those of randomized trials.45,46 However, a prospective 
protocol must clarify which scoring system was used and 
how changes in toxicity score were dealt with over time 
with respect to treatment.

Finally, to ensure a standardized interpretation, the 
reporting of clinical and toxicity data and their analy-
ses should be performed in line with the STROBE 
(Strengthening the Reporting of Observational Studies 
in Epidemiology) statement for observational studies and  
genetic-association studies, which is represented as 
checklists of items that should be addressed in reports 
to facilitate the critical appraisal and interpretation of 
these type of studies.47,48

Treatment features
Currently, image-guided radiotherapy (IGRT) is a 
highly accurate cancer treatment modality in delivering 

Training Validation

Motivation
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criteria, raw data
and data provenance

Algorithm

Motivation 
Algorithm
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Figure 1 | Schematic overview of methodological 
processes in clinical decision-support system 
development, describing model development, assessment 
of clinical usefulness and what ideally to publish. The 
coloured, parallel lines represent heterogeneous data, 
which have been split early for independent validation  
(but without internal cross-validation).
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its agent (radiation) to the tumour.49 Furthermore,  
very accurate knowledge of the effects of radiation on 
normal tissue has been obtained.50 With modern radio
therapy techniques—such as intensity-modulated 
radiotherapy, volumetric arc therapy or particle-beam 
therapy—the treatment dose can be sculpted around the 
target volume with dosimetric accuracy of a few percent-
age points. IGRT ensures millimetre precision to spare 
the organs at risk as much as possible.51

For prediction modelling, recording features that are 
derived from planned spatial and temporal distribution 
of the radiotherapy dose is crucial. Additionally, features 
must be recorded that describe the efforts undertaken 
during treatment to ensure that the dose is delivered as 
planned (that is, in vivo dosimetry); a delicate balance 
exists between tumour control and treatment-related 
toxicity.52 Additional therapies, such as (concurrent) 

chemotherapy, targeted agents and surgery, and their fea-
tures must also be recorded because these have various 
effects on outcome.32,53 An example is the difference 
between concurrent versus sequential chemoradiation, 
which has a major influence on the occurrence of acute 
oesophagitis that induces dysphagia.54

With respect to the spatial dimension of radiotherapy, 
how to combine information about the spatially vari-
able dose distribution for every subvolume of the target 
tumour (or organ) with the global effect to the tumour 
or adjacent normal tissue remains indeterminate. Dose-
response relationships for tumour tissues are often 
reported in terms of mean (biologically equivalent) 
dose, although voxel-based measures have also been 
reported.55 Mean doses or doses to a prescription point 
inside the tumour are easily determined and reported 
and can suffice for many applications. However, spatial 
characteristics might be more relevant in personalized 
approaches to ensure radioresistant areas of the tumour 
receive higher doses.55 For normal tissue toxicity, dose 
features—including the mean and maximum dosage, 
as well as the volume of the normal tissue receiving a 
certain dose—are important. For example, V20 <35% is 
a common threshold to prevent lung toxicity.56

Clinical dose–volume histogram analysis for pneumo
nitis after the 3D treatment for non-small-cell lung 
cancer was first described in 1991.57 In 2010, a series 
of detailed reviews of all frequently irradiated organs 
(the QUANTEC project) was described,50 showing that, 
as for the tumour, care must be taken when assessing 
dose at the organ level. For example, in some organs, the 
volume receiving a certain dose is important (such as 
the oesophagus or lung) because of their proximity to 
other vital structures, whereas the maximum dose to a 
small region of other organs might be most important 
(such as for the spinal cord) because preserving its post-
treatment function is crucial. Predicting complications to 
normal tissue is an active research area in ongoing, large, 
prospective multicentre projects, including ALLEGRO58 
and others.59–61

Although important, in general, one must be care
ful about relying completely on planned-radiotherapy 
dose-based predictions because patients display  
wide variability in toxicity development. The reasons 
for this variability include many known clinical and 
molecular-based features as well as the quality of the 
treatment execution. The focus on the planned radio-
therapy dose distribution as the prime determinant of 
outcome is perhaps the most common pitfall in predic-
tion models because deviations from the original plan 
during the time of treatment frequently occur.62 The 
accuracy of prediction models is expected to increase 
when measured dose is used, as this measure reflects the 
effect of radiotherapy most accurately. Figure 2 shows 
an example of these variations in a patient with prostate 
cancer. Dose reconstructions (2D and 3D), Gamma-
Index calculations and dose–volume histograms during 
treatment can help in identifying increasingly accurate 
dose-related features,63,64 such as radiation pneumonitis65 
and oesophagitis.66
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Figure 2 | The importance of considering measured dose for outcome prediction for 
a patient with prostate cancer. a | Original planning CT scan that includes contours 
of the prostate (red), bladder (yellow), exterior wall of the rectum (blue) and seminal 
vesicles (green). b | Contoured CT scan after 16 fractions of radiotherapy. 
c | Reconstructed 3D dose after 16 fractions of radiotherapy. d | Calculated dose 
differences (expressed as a 3D Gamma Index) after 16 fractions of radiotherapy. 
e | Dose–volume histograms at fractions 1, 6, 11, 16, 21 and 26 (dashed lines) as 
well as pretreatment histograms (solid lines). Clear deviations are visible from the 
planned dose–volume histogram for the rectum and bladder.
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The temporal aspect of fractionated radiotherapy 
is also an active area of research. The fact that higher 
radiation doses are required to control a tumour when 
treatment is prolonged is well-known, and increasing 
evidence suggests that accelerated regimens giving the 
same physical dose can improve outcome.67,68 A multi-
centre analysis of patients with head-and-neck cancer 
treated with radiotherapy alone showed that the potential 
doubling time of the tumour before treatment was not a 
predictor for local control.69 Alongside the classic expla-
nation of accelerated repopulation,70 changes in cell loss, 
hypoxia and selection of radioresistant stem cells have 
each been suggested as underlying causes of this obser
vation, the possible implications of which include shorter 
overall treatment times with higher doses per frac-
tion and the avoidance of breaks during treatment.71,72 
Overall, treatment time is an accessible feature that is 
correlated with local failure in several tumour sites.73,74

Ideally, the spatial and temporal dimensions of radio-
therapy would be exploited by showing a fractional dose 
distribution in a tumour radioresistance (and normal-
tissue radiosensitivity) map that is continuously updated 
during treatment. However, such an image of radio
resistance does not yet exist. If it did, CDSSs would guide 
the planning and modification of the spatial and tempo-
ral distribution of radiation in such a way as to maintain 
or improve the balance between tumour control and the 
probability of normal tissue complications continuously 
during treatment, instead of the current approach that 
delivers radiation as planned with an identical dose to 
the tumour as a whole.

Imaging features
Medical imaging has a fundamental role in radiation  
oncology, particularly for treatment planning and 
response monitoring.75,76 Technological advances in 
noninvasive imaging—including improved tempo-
ral and spatial resolution, faster scanners and proto-
col standardization—have enabled the field to move 
towards the identification of quantitative noninvasive 
imaging biomarkers.77–79

Metrics based on tumour size and volume are the 
most commonly used image-based predictors of tumour 
response to therapy and survival,80–87 and rely on CT and 
MRI technology for 3D measurement.88–90 Although used 
in clinical practice, tumour size and volume measure-
ments are subject to interobserver variability that can be 
attributed to differences in tumour delineations.85–87, 91,92  
Moreover, the optimal measurement technique and 
definitions of appropriate response criteria, in terms 
of changes in tumour size, are unclear.93 Additionally, 
tumour motion and image artefacts are additional 
sources of variability.94,95 To overcome these issues, 
automated tumour delineation methods have been intro-
duced96–99 on the basis of, for example, the selection of 
ranges of Hounsfield units (which represent the linear 
attenuation coefficient of the X‑ray beam by the tissue) 
on CT that define a certain tissue type, or calculation  
of the gradient of an image (mathematical filter) to reveal 
the borders between tissue types. Extensive evaluation, 

however, is needed before these methods can be used 
routinely in the clinic.100–102

A commonly used probe for the metabolic uptake of 
the tumour is 18F‑fluorodeoxyglucose (FDG) for PET 
imaging.103,104 The pretreatment maximum standardized 
uptake value (SUV, which is the normalized FDG uptake 
for an injected dose according to the patient’s body 
weight) is strongly associated with overall survival and 
tumour recurrence in a range of tumour sites, includ-
ing the lung, head and neck, rectum, oesophagus and 
cervix.105–111 Furthermore, several studies have shown 
that changes in SUV during and after treatment are 
early predictors of tumour recurrence.112–115 FDG–PET 
measurements, however, are dependent on a number of 
factors, including injected dose, baseline glucose concen-
tration, FDG clearance, image reconstruction methods 
used and partial-volume effects.116,117 Standardization 
of these factors across institutions is, therefore, funda
mental to enable comparisons and validation of data 
from FDG–PET imaging.118,119

Multiple studies have shown that diffusion-weighted 
MRI parameters, such as the apparent diffusion coeffi
cient (ADC), which is a measure of water mobility in 
tissues, can accurately predict response and survival  
in multiple tumour sites.120–124 However, lack of repro-
ducibility of ADC measurements—due to lack of stand-
ardization of instruments between vendors and of 
internationally accepted calibration protocols—remains 
a bottleneck in these types of studies.125 Evaluations of 
different time points in dynamic contrast-enhanced MRI 
have also been used to describe tumour perfusion.90,126–128 
Indeed, hypothesis-driven preclinical129 and xenograft 
studies130,131 support these clinical studies. For example, 
assessment of the correlation of features from imaging 
(such as lactate level and the extent of reoxygenation) 
with tumour control is possible.130,131

Increasingly advanced image-based features are cur-
rently being investigated. For example, routine clini-
cal imaging can capture both tumour heterogeneity 
and post-treatment changes, which can be analysed to 
identify functional biomarkers (Figure 3). Changes in 
Hounsfield units in contrast-enhanced CT are directly 
proportional to the quantity of contrast agent present in 
the tissue and have been used as a surrogate for tumour 
perfusion.132,133 Indeed, reductions of Hounsfield units 

Figure 3 | Axial FDG–PET and CT images of two different patients with NSCLC. 
Tumour imaging biomarkers describing, for example, textural heterogeneity, FDG 
uptake and tumour size can be assessed noninvasively before, during and after 
radiotherapy and associated with treatment outcome. Abbreviations: FDG, 
18F-fluorodeoxyglucose; NSCLC, non-small-cell lung cancer.
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following treatment have been used to evaluate treatment 
response in rectal, hepatic and pulmonary cancers.134,135

Standardizing the extraction and quantification 
of a large number of traits derived from diagnostic 
imaging are now being considered in new imaging 
marker approaches.79 Through advanced image-analysis 
methods, we can quantify descriptors of tumour 
heterogeneity (such as variance or entropy of the voxel 
values) and the relationship of the tumour with adja-
cent tissues.136–138 These analytical methods enable 
high-throughput evaluation of imaging parameters that 
can be correlated with treatment outcome and, poten-
tially, with biological data. Indeed, qualitative imaging 
parameters on CT and MRI scans have been used to 
predict mRNA abundance variation in hepatocellular 
carcinomas and brain tumours.139–141 Furthermore, 
a combination of anatomical, functional and meta-
bolic imaging techniques might be used to capture 
pathophysiological and morphological tumour charac-
teristics in a noninvasive manner, including apparent 
intratumoural heterogeneity.142

Molecular features
Biological markers are also valuable clinical decision-
support features; these include prognostic and predic-
tive factors for outcomes, such as tumour response and 
normal-tissue tolerance. Despite these strengths, trials 
of molecular biomarkers are prone to experimental vari-
ability; for this reason standardizing assay criteria, trial 
design and analysis are imperative if multiple molecular 
markers are to be used in predictive modelling.16

Tumour response
Next to tumour size, tumour control after radiotherapy 
is largely determined by three criteria: intrinsic radio-
sensitivity, cell proliferation and the extent of hypoxia.143 
In addition, large tumours intuitively require higher 
doses of radiation than small tumours because there are 
simply more cells to kill—this requirement is true even 
if intrinsic radiosensitivity, hypoxia and repopulation 
rates are equal. Several approaches have been developed 
to measure these additional three parameters to predict 
tumour response to radiotherapy.

Intrinsic radiosensitivity
Malignant tumours display wide variation in intrinsic 
radiosensitivity, even between tumours of similar origin 
and histological type.144 Attempts to assess the radio
sensitivity of human tumours have relied on determining 
the ex vivo tumour survival fraction.145 Those studies and 
others have shown that tumour cell radiosensitivity is a 
significant prognostic factor for radiotherapy outcome 
in both cervical146 and head-and-neck147 carcinomas. 
However, these colony assays suffer from technical dis-
advantages that include a low success rate (<70%) for 
human tumours and the time needed to produce data, 
which can be up to several weeks.

Other studies have included assessments of chromo
some damage, DNA damage, glutathione levels and apop
tosis.148 Indeed, some clinical studies using such assays  

have shown correlations with radiotherapy outcome, 
whereas others have not.149 However, these cell-based 
functional assays only have limited clinical utility as 
predictive assays, despite being useful in confirming a 
mechanism that underlies differences in the response 
of tumours to radiotherapy. For example, some studies 
have provided encouraging data showing that immuno-
histochemical staining for γ‑histone H2AX, a marker of 
DNA damage, might be a useful way to assess intrin-
sic radiosensitivity very early after the start of treat-
ment.150,151 Double-stranded breaks are generated when 
cells are exposed to ionizing radiation or DNA-damaging 
chemotherapeutic agents, which rapidly results in the 
phosphorylation of γ‑histone H2AX. γ‑Histone H2AX 
is the most sensitive marker that can be used to examine 
the DNA damage and its subsequent repair, and it can be 
detected by immunoblotting and immunostaining using 
microscopic or flow cytometric detection. Clinically, two 
biopsies (one before and one after treatment) are needed 
to assess the γ‑histone H2AX status, which is not always 
easy to implement in practice. 

Hypoxia
Tumour hypoxia is the key factor involved in determin-
ing resistance to treatment and malignant progression; it 
is a negative prognostic factor after treatment with radio-
therapy, chemotherapy and surgery.152,153 Indeed, some 
data show that hypoxia promotes both angiogenesis 
and metastasis and, therefore, has a key role in tumour 
progression.154 Although a good correlation has been 
demonstrated between pimonidazole (a chemical probe 
of hypoxia) staining and outcome after radiotherapy in 
head-and-neck cancer,155 the same relationship has not 
been found in cervical cancer.156 In light of these con-
trasting results, one of the hypotheses put forward to 
explain this is that hypoxia tolerance is more important 
than hypoxia itself.157

The use of fluorinated derivatives of such chemi-
cal probes also enables their detection by noninvasive 
PET.158–160 Although this approach requires administra-
tion of a drug, it does benefit from sampling the whole 
tumour and not just a small part of it. Another possible 
surrogate marker of hypoxia is tumour vasculature; the 
prognostic significance of tumour vascularity has been 
measured as both intercapillary distance (thought to 
reflect tumour oxygenation) and microvessel density (the 
‘hotspot’ method that provides a histological assessment 
of tumour angiogenesis). Some studies have found posi-
tive correlations with outcome—mainly using micro
vessel density in cervical cancer—whereas others have 
shown negative correlations.161 Some concerns have been 
raised about the extent to which biopsies taken randomly 
truly represent the usually large, heterogeneous tumours. 

Proliferation
If the overall radiotherapy treatment time is prolonged, 
for example, for technical reasons (breakdown of a linear 
particle accelerator) or because of poor tolerance by the 
patient to the treatment, higher doses of radiation are 
required for tumour control—clearly indicating that 
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the influence of tumour proliferation is important.162 
Although proliferation during fractionated radiotherapy 
is clearly an important factor in determining outcome, 
reliable measurement methods are not yet available. 
To understand why radiation leads to an accelerated 
repopulation response in some tumours and not in 
others, a greater understanding of the response at both 
the cellular and molecular level is required.

Normal-tissue tolerance
Inherent differences in cellular radiosensitivity among 
patients dominate normal-tissue reactions more than 
other contributing factors.164 That is, the radiation doses 
given to most patients might in actuality be too low for 
an optimal cure because 5% of patients are very sensi-
tive; these 5% of patients are so sensitive that they skew 
what is ‘optimal’ radiotherapy to the lower end of the 
spectrum, to the detriment of the majority of patients 
who are not as sensitive. Future CDSSs should be able 
to distinguish such overly sensitive patients and classify 
them separately so they receive different treatments to 
the less-sensitive patients. 

Several small165 and large166 in vitro studies found a 
correlation between radiosensitivity and severity of 
late effects, namely radiation-induced fibrosis of the 
breast, but these findings were not consistent because 
no standardized quality assurance exists for radio-
therapy in vivo.167,168 Similar discrepancies were later 
found using rapid assays that measure chromosomal 
damage,169 DNA damage170 and clonogenic cell survi
val.171 For example, the lymphocyte apoptosis assay 
has been used in a prospective trial as a stratification 
factor to assess late toxicity using letrozole as radio
sensitizer in patients with breast cancer.172 Cytokines 
such as TGF‑β, which influences fibroblast proliferation 
and differentiation, are known to have a central role in 
fibrosis and senescence.173,174 Currently, the relation-
ships between the lymphocyte predictive assay, TGF‑β 
and late complications are purely correlative and a clear 
molecular explanation is lacking. Genome-wide associ
ation studies (GWAS) and the analysis of single nucleo-
tide polymorphisms (SNPs) in candidate genes have 
also shown promise in identifying normal-tissue toler-
ance,175,176 although these do not often validate results 
from independent studies.177 In general, the problem 
with all these studies has been the wide experimental 
variability rather than interindividual differences in 
radiosensitivity. Normal-tissue tolerance is the dose-
limiting factor for the administration of radiotherapy, 
therefore, any CDSS should be based on predictors of 
tumour control and the probability of complications.

Representation of predictions
Although the decisions made in the process of develop-
ing predictive models will determine the characteristics 
of a multivariate model (for example, which features are 
selected and the overall prediction accuracy), the success 
of the model depends on other factors, such as its availa
bility and interactivity, which increases the acceptability. 
Even models based on large patient populations, with 

proper external validation, can fail to be accepted within 
the health-care community if the model and its output 
are not easily interpretable, if there is a lack of opportu-
nity to apply the model or if the clinical usefulness is not 
proven or reported.178

Although some models, such as decision trees, impli
citly have a visual representation that is somewhat inter-
pretable, most models do not. One highly interpretable 
representation of a set of features is the nomogram.179 
The nomogram was originally used in the early 20th 
century to make approximate graphical computations 
of mathematical equations. In medicine, nomograms 
have experienced a revival, reflected by the increasing 
number of studies reporting them.180–184 Figure 4 shows 
an example of a published clinical nomogram of local 
control in larynx cancer in which values for the selected 
features directly relate to a prediction score. The sum of 
these scores corresponds to a probability of local control 
within 2 or 5 years.181

Another idea for increasing acceptability of computer- 
assisted personalized medicine is to make prediction 
models available on the internet. If interactive, peer-
reviewed models are provided with sufficient back-
ground information, clinicians can test them using 
their own patient data. Such a system would provide 
retrospective validation of the multiple features by the 
wider community, as well as provide an indication on 
the clinical usefulness of the methodology. The best-
known website with interactive clinical prediction tools 
is Adjuvant! Online.185 This website provides decision 
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Figure 4 | A published nomogram for local control in patients with cancer of the 
larynx treated with radiotherapy. Clinical and treatment variables are associated 
with local control status at follow-up durations of 2 and 5 years. The predictors are 
age of the patient (in years), haemoglobin level (in mmol/l), clinical tumour stage 
(T-stage), clinical nodal stage (N-stage), patient’s sex and equivalent dose (in Gy). 
A probability for local control can be calculated by drawing a vertical line from each 
predictor value to the score scale at the top—‘points’. After manually summing up 
the scores, the ‘total points’ correspond to the probability of local control, which 
are estimated by drawing a vertical line from this value to the bottom scales to 
estimate local control.181
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support for adjuvant therapy (for example, chemo-
therapy and hormone therapy) after surgery for patients 
with early-stage cancer. Many researchers have evalu-
ated the models available on this prediction website, 
thereby refining them with additional predictors and 
updated external validations.186,187 A prediction website 
that focuses on decision support for radiotherapy was 
recently established.188 The aim of this website is to let 
users work with and validate the interactive models 
developed for patients with cancer treated with radio-
therapy, which contributes to CDSS development in 
general by demonstrating the potential of these predic
tions and raising the awareness of their existence 
and limitations.

Future prospects
The major focus of this Review, thus far, has been model 
development, validation and presentation (including the 
features from different domains that might be consid-
ered as predictive and prognostic). Although an accurate 
outcome prediction model forms the basis of a CDSS, 
additional considerations must be made before a new 
CDSS can be used in daily radiation oncology practice.

First, any decision a patient or physician makes is 
based on a balance between its benefits (survival, local 
control and quality of life) and harms (toxic effects, 
complications, quality of life and financial cost). For 
example, an increased radiation dose usually results in 
both a higher probability of tumour control, but a con-
comitant higher probability of normal-tissue compli
cations. Identifying the right balance between harm 
and benefit is a deeply personal choice that can vary 
substantially among patients. Thus, a CDSS should 
simultaneously predict local control, survival, treatment 
toxicity, quality of life and cost. The system should repre-
sent these predictions and the balance between them in a 
way that is not only clear to the physician, but also to the 
patient, to achieve shared decision making.

Additionally, any prediction using a CDSS should be 
accompanied by a confidence interval. Accurately evalu-
ating the confidence interval is an active and challenging 
area of research because uncertainties in the input fea-
tures, missing features, size and quality of the training set 
and the intrinsic uncertainty of cancer must be incorpo-
rated to specify the uncertainty in the prediction for an 
individual patient. Without knowing if two possible deci-
sions have a statistically significant and clinically mean-
ingful difference in outcome, clinical decision support 
is difficult. Always sharing the data on which the model 
was based is a crucial prerequisite for this effort.

Current prediction models for decision support can 
only assist in distinguishing very high-level decisions—
such as palliative versus curative treatment, sequential 
versus concurrent chemoradiation, surgery versus a 
watch-and-wait approach. The radiation oncology com-
munity, however, is probably more interested in deci-
sions such as intensity-modulated radiotherapy versus 
3D-conformal radiotherapy or accelerated versus non-
accelerated treatment. The current prediction models 
are simply not trained on datasets with these detailed 
subgroups and are not, therefore, accurate enough to 
support these decisions. Whether learning from increas-
ingly diverse patient groups and adding other features 
will sufficiently improve the current models is unclear. 
As a result, tightly controlled studies using evidence-
based medicine approaches are still crucial to guide 
clinical practice.

Finally, CDSSs should be seen as medical devices 
that require stringent acceptance, commissioning and 
quality assurance by the local institute. The key part of 
the commissioning and subsequent quality assurance 
is to validate the accuracy of the prediction model in 
the local patient population. Indeed, local patient data 
should be collected and the predicted outcomes com-
pared with actual outcomes to convince local physicians 
that the support system works in their local setting. This 
‘local validation’ should be done at the commissioning 
stage, but should be repeated to ensure the decision 
support remains valid, despite changes in local prac-
tice. Validation studies need to indicate what will be the 
required commission frequency.

This required quality assurance also enables the 
improvement of the system as more patient data becomes 
available. Using routine patient data to extract knowledge 
and apply that knowledge immediately is called ‘rapid 
learning’.3,189 Rapid learning via continuously updated 
CDSSs offers a way to quickly learn from retrospective 
data and include new data sets (such as randomized 
controlled trial results) to adapt treatment protocols and 
deliver personalized decision support.

As a data-driven discipline with well-established 
standards, such as DICOM–RT (digital imaging and 
communications in medicine in radiotherapy), radio-
therapy offers an excellent starting point for adopting 
these rapid-learning principles (Figure 5). Aside from 
the importance of local data capture, which is still often 
lacking for (patient-reported) outcome and toxicity in 
particular, the quantity and heterogeneity of data that 
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  Adapt during treatment

Figure 5 | Knowledge-driven health-care principles using a clinical decision-support 
system in conjunction with standard evidence and regulations to choose the 
optimal treatment. In learning from follow-up data, knowledge is fed back to 
improve the clinical decision-support system and adapt regulations.
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is necessary for rapid learning requires the pooling of 
data in a multi-institutional, international fashion.190,191 
One method of pooling data is to replicate routine 
clinical data sources in a distributed de-identified data 
warehouse, such as what is done in an international 
Computer-Aided Theragnostics network.192 Examples 
of initiatives that create large centralized data and tissue 
infrastructures for routine radiation oncology patients 
are GENEPI,193 the Radiogenomics Consortium,194 
ALLEGRO58 and ULICE.195 These initiatives also facili-
tate studies for external validation, reproducibility and 
hypothesis generation.190

As datasets become larger (both in number of patients 
and in number of features per patient) high-throughput 
methods, both molecular196–201 and imaging-based,79 can 
produce large numbers of features that correlate with 
outcome.68,70,202–204 A limited application of these tech-
niques has already transformed our understanding of 
radiotherapy response. For example, GWAS have associ-
ated SNPs with radiation toxicity.205,206 Similarly, mRNA-
abundance microarrays have been used to predict tumour 
response and normal-tissue toxicity in both patient and 
in-vitro studies,207–211 as well as to create markers that 
reflect biological phenotypes that are important for 
radiation response, such as hypoxia212,213 and prolifera-
tion.214 Both the data analysis and validation are impor-
tant but challenging aspects of model development.196,215 
For example, the studies described above207–214 suffer 
from the substantial multiple-testing problem (that is, a 
large number of measured features compared with the 
sample number), which renders their results preliminary. 
Human input and large, robust validation studies are, 
therefore, needed before features from high‑throughput 
techniques can be included in CDSSs.216–218

Although studies on a single feature can be informa-
tive, only its combination into multimodal, multivariate 
models can be expected to provide a more holistic view 
of the response to radiation. By combining events at 
different levels using systems-biology-like approaches, 
creating tumour-specific and patient-specific models of 
the effects and implications of radiation therapy should 
become possible (Figure 6). Indeed, future studies will 
not only need to identify the individual components 
related to radiation response, but will also need to estab-
lish the interactions and relations amongst them.219 
Although this approach has not yet been applied to 
model radiotherapy responses, at least one study has 
demonstrated that combining multiple high-throughput 
data types can be used to map molecular cancer charac-
teristics.220 Combining models at different levels (soci-
etal, patient, whole tumour or organ, local tumour or 
organ, and cellular) is expected to lead to an increasingly 
holistic and accurate CDSS for the individual patient. 
Evidence that longitudinal data have added value to 
predicting outcome in, for example, repeated PET-
imaging221 and tumour-perfusion222 studies is growing, 
implying that this data need to be taken into account as 
candidates for future CDSSs.

Despite the challenges that remain, the vision of pre-
dictive models leading to CDSSs that are continuously 

updated via rapid learning on large datasets is clear, 
and numerous steps have already been taken. These 
include universal data-quality assurance programmes 
and semantic interoperability issues.223 However, we 
believe that this truly innovative journey will lead to 
necessary improvement of healthcare effectiveness 
and efficiency. Indeed, investments are being made in 
research and innovation for health-informatics systems, 
with an emphasis on interoperability and standards for 
secured data transfer, which shows that ‘eHealth’ will 
be among the largest health-care innovations of the 
coming decade.223,224

Conclusions
Accurate, externally validated prediction models are 
being rapidly developed, whereby multiple features 
related to the patient’s disease are combined into an inte-
grated prediction. The key, however, is standardization—
mainly in data acquisition across all areas, including 
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Figure 6 | A simplified schematic representation of systems biology applied to 
radiotherapy. a | On the basis of in-vitro, in-vivo and patient data, modules 
representing the three biological categories (gene expression, 
immunohistochemical data and mutation data) important for radiotherapy 
response can be created. b | For an individual patient, appropriate molecular  
data will be accumulated. c | Combining the individual patient data with the 
modules will provide knowledge on specific module alterations (such as a 
deletion [X], upregulation [red] or downregulation [blue]), which can be translated 
to information on relative radioresistance and the molecular ‘weak’ spots of the 
tumour. This information will subsequently indicate whether dose escalation is 
necessary and which targeted drug is most effective for the patient. Part b used 
with permission from the National Academy of Sciences © Duboisa, L. J. Proc. Natl 
Acad. Sci. USA 108, 14620–14625 (2011).
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molecular-based and imaging-based assays, patient 
preferences and possible treatments. Standardization 
requires harmonized clinical guidelines, regulated 
image acquisition and analysis parameters, validated 
biomarker assay criteria and data-sharing methods that 
use identical ontologies. Assessing the clinical useful-
ness of any CDSS is just as important as standardizing 
the development of externally validated accurate pre-
diction models with high-quality data, preferably by 
standardizing the design of clinical trials. These crucial 
steps are the basis of validating a CDSS, which, in turn, 

will stimulate developments in rapid-learning health-
care and will enable the next major advances in shared 
decision making.
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