30 research outputs found

    Evaluating Toxicity of Chemicals using a Zebrafish Vibration Startle Response Screening System

    Get PDF
    We developed a simple screening system for the evaluation of neuromuscular and general toxicity in zebrafish embryos. The modular system consists of electrodynamic transducers above which tissue culture dishes with embryos can be placed. Multiple such loudspeaker-tissue culture dish pairs can be combined. Vibrational stimuli generated by the electrodynamic transducers induce a characteristic startle and escape response in the embryos. A belt-driven linear drive sequentially positions a camera above each loudspeaker to record the movement of the embryos. In this way, alterations to the startle response due to lethality or neuromuscular toxicity of chemical compounds can be visualized and quantified. We present an example of the workflow for chemical compound screening using this system, including the preparation of embryos and treatment solutions, operation of the recording system, and data analysis to calculate benchmark concentration values of compounds active in the assay. The modular assembly based on commercially available simple components makes this system both economical and flexibly adaptable to the needs of particular laboratory setups and screening purposes

    Identification of an Imidazopyridine-based Compound as an Oral Selective Estrogen Receptor Degrader for Breast Cancer Therapy.

    Get PDF
    UNLABELLED: The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. SIGNIFICANCE: An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth

    Cathepsin D from human leukocytes. Purification by affinity chromatography and properties of the enzyme

    No full text
    von Clausbruch UC, Tschesche H. Cathepsin D from human leukocytes. Purification by affinity chromatography and properties of the enzyme. Biol Chem Hoppe Seyler. 1988;369(8):683-691.Cathepsin D of human leukocytes was isolated and characterized. Purified leukocytes were lysed under nitrogen pressure and the proteinase activity precipitated by centrifugation at 48,000 x g. The precipitate was extracted by various buffers. The yield of cathepsin D was almost pH-independent but could be increased by Triton X-100. Employing gel chromatography the activity was found at a molecular mass close to 42,000 Da. Purification of the enzyme was performed by a two-step procedure using pepstatin-Sepharose chromatography and ion exchange chromatography. Three multiple forms of the enzyme were separated by ion exchange chromatography. The isoelectric points of the three forms of the enzyme were close to pH 5.0. The enzyme showed the typical characteristics of the acid proteinase cathepsin D. Enzyme activity was influenced by heavy metals such as Hg2 and Fe3 as well as by typical inhibitors for carboxyl-proteinases such as diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(4-nitrophenoxy)propane and 4-bromo-phenacylbromide. An immunological comparison with cathepsin D from human liver by immunodiffusion and immunoelectrophoresis indicates identity of the two enzymes
    corecore