9 research outputs found

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.Peer reviewe

    Turning Points

    No full text

    A stapled peptide mimetic of the CtIP tetramerization motif interferes with double-strand break repair and replication fork protection

    Get PDF
    Cancer cells display high levels of DNA damage and replication stress, vulnerabilities that could be exploited by drugs targeting DNA repair proteins. Human CtIP promotes homology-mediated repair of DNA double-strand breaks (DSBs) and protects stalled replication forks from nucleolytic degradation, thus representing an attractive candidate for targeted cancer therapy. Here, we establish a peptide mimetic of the CtIP tetramerization motif that inhibits CtIP activity. The hydrocarbon-stapled peptide encompassing amino acid residues 18 to 28 of CtIP (SP1828^{18-28}) stably binds to CtIP tetramers in vitro and facilitates their aggregation into higher-order structures. Efficient intracellular uptake of SP1828^{18-28} abrogates CtIP localization to damaged chromatin, impairs DSB repair, and triggers extensive fork degradation. Moreover, prolonged SP1828^{18-28} treatment causes hypersensitivity to DNA-damaging agents and selectively reduces the viability of BRCA1-mutated cancer cell lines. Together, our data provide a basis for the future development of CtIP-targeting compounds with the potential to treat patients with cancer

    Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair

    Full text link
    DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIP are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction

    CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress

    Full text link
    Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Full text link
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors. Keywords: BARD1; BRCA1; CtIP; DNA damage; replication stress; synthetic lethalit
    corecore