45 research outputs found

    Protection of the Weak Party of the Banking Contract in the Case of Using Smart Contract

    Get PDF
    The article is devoted to the features of protection the weak party in the situation when the parties to the banking agreement use the “smart contract” technology from the point of view of Russian and foreign doctrine. The author proposes particular changes and additions to the current regulation and the established judicial practice, while the general principles of legislation remain unchanged

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Grassroots Agency: Participation and Conflict in Buenos Aires Shantytowns seen through the Pilot Plan for Villa 7 (1971–1975)

    Get PDF
    open access articleIn 1971, after more than a decade of national and municipal policies aimed at the top-down removal of shantytowns, the Buenos Aires City Council approved the Plan Piloto para la Relocalización de Villa 7 (Pilot Plan for the Relocation of Shantytown 7; 1971–1975, referred to as the Pilot Plan hereinafter). This particular plan, which resulted in the construction of the housing complex, Barrio Justo Suárez, endures in the collective memory of Argentines as a landmark project regarding grassroots participation in state housing initiatives addressed at shantytowns. Emerging from a context of a housing shortage for the growing urban poor and intense popular mobilizations during the transition to democracy, the authors of the Pilot Plan sought to empower shantytown residents in novel ways by: 1) maintaining the shantytown’s location as opposed to eradication schemes that relocated the residents elsewhere, 2) formally employing some of the residents for the stage of construction, as opposed to “self-help” housing projects in which the residents contributed with unpaid labor, and 3) including them in the urban and architectural design of the of the new housing. This paper will examine the context in which the Pilot Plan was conceived of as a way of re-assessing the roles of the state, the user, and housing-related professionals, often seen as antagonistic. The paper argues that residents’ fair participation and state intervention in housing schemes are not necessarily incompatible, and can function in specific social and political contexts through multiactor proposals backed by a political will that prioritizes grassroots agency

    Varying-parameter finite-time zeroing neural network for solving linear algebraic systems

    No full text
    A new recurrent neural network is presented for solving linear algebraic systems with finite-time convergence. The proposed model includes an exponential term in the Zhang neural network dynamical system, which leads to a faster convergence of the error-monitoring function in comparison to previous methods. Theoretical analysis, as well as simulation results, validate the efficacy of the proposed model. © The Institution of Engineering and Technology 2020 Submitted: 23 January 2020 E-first: 22 June 202

    Chaotification of 1D maps by Multiple Remainder Operator Additions : Application to B-Spline Curve Encryption

    Get PDF
    Acknowledgments The authors are thankful to Chongyang Deng for providing the control points for the three curves used for encryption. The authors are thankful to the anonymous Reviewers for their comments.Peer reviewedPublisher PD

    Hyperchaotic Attractor in a Novel Hyperjerk System with Two Nonlinearities

    No full text
    Hyperjerk systems have received considerable interest in the literature because of their simplicity and complex dynamical properties. In this work, we introduce a novel hyperjerk system with an absolute nonlinearity and a quintic term. Interestingly, the hyperjerk system exhibits hyperchaotic behavior. Dynamics and the feasibility of the hyperjerk system are discovered by using numerical analysis and circuit implementation. Moreover, adaptive controllers have been designed for stabilization and synchronization of the new hyperjerk system. The control results have been established by using Lyapunov stability theory, and numerical simulations with MATLAB have been shown to illustrate the validity of the constructed adaptive controllers. © 2017, Springer Science+Business Media New York

    A Memristor-Based Hyperchaotic System with Hidden Attractors: Dynamics, Synchronization and Circuital Emulating

    No full text
    Memristor-based systems and their potential applications, in which memristor is both a nonlinear element and a memory element, have been received significant attention recently. A memristor-based hyperchaotic system with hidden attractor is studied in this paper. The dynamics properties of this hyperchaotic system are discovered through equilibria, Lyapunov exponents, bifurcation diagram, Poincaré map and limit cycles. In addition, its anti-synchronization scheme via adaptive control method is also designed and MATLAB simulations are shown. Finally, an electronic circuit emulating the memristor-based hyperchaotic system has been designed using off-the-shelf components

    An Inverse Pheromone Approach in a Chaotic Mobile Robot’s Path Planning Based on a Modified Logistic Map

    No full text
    One major topic in the research of path planning of autonomous mobile robots is the fast and efficient coverage of a given terrain. For this purpose, an efficient method for covering a given workspace is proposed, based on chaotic path planning. The method is based on a chaotic pseudo random bit generator that is generated using a modified logistic map, which is used to generate a chaotic motion pattern. This is then combined with an inverse pheromone approach in order to reduce the number of revisits in each cell. The simulated robot under study has the capability to move in four or eight directions. From extensive simulations performed in Matlab, it is derived that motion in eight directions gives superior results. Especially, with the inclusion of pheromone, the coverage percentage can significantly be increased, leading to better performance
    corecore