29 research outputs found

    Disutility of climate change damages warrants much stricter climate targets

    Get PDF
    Cost-benefit integrated assessment models (IAMs) inform the policy deliberation process by determining cost-optimal greenhouse gas emission reduction pathways based on economic considerations. These models seek to maximise economic utility and treat estimates of climate impacts (damages) and mitigation costs at par as GDP losses, having the same impact on utility reduction. However, prospect theory suggests that a certain level of climate damages could be valued higher by society than the same level of mitigation costs, as climate damages often occur as sudden unexpected events. In this paper, we show how this concept could be taken into account in cost-benefit IAMs and explore possible consequences on optimal mitigation pathways. Our results suggest that compared to the standard utility approach, capturing explicit aversion to climate impact incidence shows optimal pathways with earlier and deeper emission reduction, lowering both net-negative emissions and mid-century temperature peaks in line with stringent Paris Agreement targets

    Decomposition analysis of per capita emissions : a tool for assessing consumption changes and technology changes within scenarios

    Get PDF
    Recent studies show that behaviour changes can provide an essential contribution to achieving the Paris climate targets. Existing climate change mitigation scenarios primarily focus on technological change and underrepresent the possible contribution of behaviour change. This paper presents and applies a methodology to decompose the factors contributing to changes in per capita emissions in scenarios. With this approach, we determine the relative contribution to total emissions from changes in activity, the way activities are carried out, the intensity of activities, as well as fuel choice. The decomposition tool breaks down per capita emissions loosely following the Kaya Identity, allowing a comparison between the contributions of technology and consumption changes among regions and between various scenarios. We illustrate the use of the tool by applying it to three previously-published scenarios; a baseline scenario, a scenario with a selection of behaviour changes, and a 2 degrees C scenario with the same selection of behaviour changes. Within these scenarios, we explore the contribution of technology and consumption changes to total emission changes in the transport and residential sector, for a selection of both developed and developing regions. In doing so, the tool helps identify where specifically (i.e. via consumption or technology factors) different measures play a role in mitigating emissions and expose opportunities for improved representation of behaviour changes in integrated assessment models. This research shows the value of the decomposition tool and how the approach could be flexibly replicated for different global models based on available variables and aims. The application of the tool to previously-published scenarios shows substantial differences in consumption and technology changes from CO2 price and behaviour changes, in transport and residential per capita emissions and between developing and developed regions. Furthermore, the tool's application can highlight opportunities for future scenario development of a more nuanced and heterogeneous representation of behaviour and lifestyle changes in global models.Peer reviewe

    The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures

    Get PDF
    While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the "climate-assessment"workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to "1.5 ° C (with a probability of greater than 50 %) with no or limited overshoot"includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, "limited overshoot"typically implies exceedance of median temperature projections of up to about 0.1 ° C for up to a few decades before returning to below 1.5 ° C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being "Paris-compatible", including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3-0.4 ° C after peaking at 1.5-1.6 ° C in 2035-2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a "climate-assessment"Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts

    The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures

    Get PDF
    While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the “climate-assessment” workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to “1.5 ∘C (with a probability of greater than 50 %) with no or limited overshoot” includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, “limited overshoot” typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being “Paris-compatible”, including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3–0.4 ∘C after peaking at 1.5–1.6 ∘C in 2035–2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a “climate-assessment” Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts

    The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures

    Get PDF
    While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the “climate-assessment” workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to “1.5 ∘C (with a probability of greater than 50 %) with no or limited overshoot” includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, “limited overshoot” typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being “Paris-compatible”, including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3–0.4 ∘C after peaking at 1.5–1.6 ∘C in 2035–2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a “climate-assessment” Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts

    IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.

    Get PDF
    This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation. It integrates the main findings of the Sixth Assessment Report (AR6) based on contributions from the three Working Groups1 , and the three Special Reports. The summary for Policymakers (SPM) is structured in three parts: SPM.A Current Status and Trends, SPM.B Future Climate Change, Risks, and Long-Term Responses, and SPM.C Responses in the Near Term.This report recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development, and reflects the increasing diversity of actors involved in climate action. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language

    Costs of avoiding net negative emissions under a carbon budget

    Get PDF
    The 2°C and 1.5°C temperature targets of the Paris Agreement can be interpreted as targets never to be exceeded, or as end-of-century targets. Recent literature proposes to move away from the latter, in favour of avoiding a temperature overshoot and the associated net negative emissions. To inform this discussion, we investigate under which conditions avoiding an overshoot is economically attractive. We show that some form of overshoot is attractive under a wide range of assumptions, even when considering the extra damages due to additional climate change in the optimisation process. For medium assumptions regarding mitigation costs and climate damages, avoiding net negative emissions leads to an increase in total costs until 2100 of 5% to 14%. However, avoiding overshoot only leads to some additional costs when mitigation costs are low, damages are high and when using a low discount rate. Finally, if damages are not fully reversible, avoiding net negative emissions can even become attractive. Under these conditions, avoiding overshoot may be justified, especially when non-monetary risks are considered

    On the optimality of 2°C targets and a decomposition of uncertainty

    Get PDF
    Determining international climate mitigation response strategies is a complex task. Integrated Assessment Models support this process by analysing the interplay of the most relevant factors, including socio-economic developments, climate system uncertainty, damage estimates, mitigation costs and discount rates. Here, we develop a meta-model that disentangles the uncertainties of these factors using full literature ranges. This model allows comparing insights of the cost-minimising and cost-benefit modelling communities. Typically, mitigation scenarios focus on minimum-cost pathways achieving the Paris Agreement without accounting for damages; our analysis shows doing so could double the initial carbon price. In a full cost-benefit setting, we show that the optimal temperature target does not exceed 2.5 °C when considering medium damages and low discount rates, even with high mitigation costs. With low mitigation costs, optimal temperature change drops to 1.5 °C or less. The most important factor determining the optimal temperature is the damage function, accounting for 50% of the uncertainty

    Disutility of climate change damages may warrant much stricter climate targets

    No full text
    Cost-benefit integrated assessment models (IAMs) inform the policy deliberation process by determining cost-optimal greenhouse gas emission reduction pathways based on economic considerations. These models seek to maximise economic utility and treat estimates of climate impacts (damages) and mitigation costs at par as GDP losses, having the same impact on utility reduction. However, prospect theory suggests that a certain level of climate damages could be valued higher by society than the same level of mitigation costs, as climate damages often occur as sudden unexpected events. In this paper, we show how this concept could be taken into account in cost-benefit IAMs and explore possible consequences on optimal mitigation pathways. Our results suggest that compared to the standard utility approach, capturing explicit aversion to climate impact incidence shows optimal pathways with earlier and deeper emission reduction, lowering both net-negative emissions and mid-century temperature peaks in line with stringent Paris Agreement targets

    The Impact of Socio-Economic Inertia and Restrictions on Net-Negative Emissions on Cost-Effective Carbon Price Pathways

    Get PDF
    Many countries have indicated to plan or consider the use of carbon pricing. Model-based scenarios are used to inform policymakers about emissions pathways and cost-effective carbon prices. Many of these scenarios are based on the Hotelling rule, assuming that a carbon price path increasing with the interest rate leads to a cost-effective strategy. We test the robustness of this rule by using experiments with plausible assumptions for learning by doing, inertia in reducing emissions, and restrictions on net-negative emissions. Analytically, we show that if mitigation technologies become cheaper if their capacities are increased, Hotelling does not always apply anymore. Moreover, the initial carbon price is heavily influenced by restrictions on net-negative emissions and the pathway by both restrictions on net-negative emissions and socio-economic inertia. This means that Hotelling pathways are not necessarily optimal: in fact, combining learning by doing and the above restrictions leads to initial carbon prices that are more than twice as high as a Hotelling pathway and thus to much earlier emission reductions. The optimal price path also increases less strongly and may even decline later in the century, leading to higher initial abatement costs but much lower long-term costs
    corecore